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We investigated the evaluation of nuclear shape transition from spherical to axially rota-
tional shapes using the Coherent state formalism of the first version of interacting boson
model (sd IBM). The validity of such model is examined for rare-earth Nd/Sm/Gd/Dy
isotopic chains by analyzing the potential energy surface (PES’s). In this region, a
change from spherical to well-deformed nuclei is observed when moving from the
lighter to heavier isotopes.

1 Introduction

In recent years, the study of quantum phase transition (QPT)
is an important topic in the research of nuclear structure.
Some evidence of nuclear shape transition have been
observed. For instance, several isotopes have been found to
undergo shape phase evolution of first order from spherical
vibrator to deformed axially symmetric rotor and phase tran-
sition of second order from spherical vibrator to deformedγ−
soft [1–3].

The Hamiltonian describing this transition is a repulsive
boson pairing Hamiltonian that has the particularity of be-
ing exactly solvable allowing the study of very large systems.
The study of phase shape transitions in nuclei can be best
done in the interacting boson model (IBM) [4] which repro-
duces well the data in all transition regions [5–11].

The possible phases that can occur in the IBM have been
classified in a triangular Casten diagram [12], the three phases
correspond to the breaking of U(6) into its three subalgebras
U(5), SU(3) and O(6) [13]. TheX(5) critical point symme-
try [14] was developed to describe analytically the structure
of nuclei at the critical point of the transition from vibrational
U(5) to prolate axially symmetric SU(3) shapes. In addition
the symmetry E(5) [15, 16] have been introduced to describe
the nuclei at the critical point corresponding to second or-
der transition, nuclear examples of which were used [17].
Recently, the critical point in the phase transition from ax-
ially deformed to triaxial nuclei called Y(5), has been ana-
lyzed [18]. In all these cases, critical points are defined in the
context of the collective Bohr Hamiltonian [19].

Since the IBM was formulated from the beginning in
terms of creation and annihilation boson operators, its ge-
ometric interpretation in terms of shape variables is usually
done by introducing a boson condensate with two shape pa-
rametersβ and γ. The parameterβ is related to the axial
deformation of the nucleus, whileγ measures the deviation
from axial symmetry. The equilibrium shape of the nucleus
is obtained by minimizing the expectation value of the Hamil-
tonian in the intrinsic state.

In this paper, we discuss some aspects of the nuclear

shape phase transition in even-even nuclei using the IBM with
the intrinsic state formalism. The outline of the present paper
is as follows: In Section 2, we construct the IBM Hamiltonian
in terms of Casimir operators and using coherent state to get
the potential energy surface (PES). In section 3, we check that
results of the IBM with coherent state to agree for dynamical
limits U(5), SU(3) and O(6) in the limit of large N. In sec-
tion 4 we applied our model to the rare earth Nd/Sm/Gd/Dy
isotopic chains which evolve a rapid structural changes from
spherical to well-deformed nuclei when moving from lighter
to the heavier isotopes.

2 Coherent State Potential Energy Surface

We start by considering a general standard two-body sd IBM
Hamiltonian in the Casimir forms as:

H = εC1[U(5)] + K1C2[U(5)]

+K2C2[O(5)] + K3C2[O(3)]

+K4C2[S U(3)] + K5C2[O(6)]

(1)

HereCn[G]is the n-rank Casimir operator of the Lie group
G, with

C1[U (5)] = n̂d (2)

C2[U (5)] = n̂d (n̂d + 4) (3)

C2[O (5)] = 4[
1
10

(L̂ L̂) + T̂3 T̂3] (4)

C2[O (3)] = 2(L̂ L̂) (5)

C2[S U(3)] =
2
3

[

2
(
Q̂ Q̂

)
+

3
4

(L̂ L̂)

]

(6)

C2[O (6)] = 2
[
N(N + 4)− 4(P̂ P̂)

]
(7)

wheren̂d, P̂, L̂, Q̂, T̂3 and T̂4 are the boson number, pairing,
angular momentum, quadrupole, octupole and hexadecapole
operators defined as:

n̂d = (d† d̃)(0) (8)

P̂ =
1
2

(d̃ d̃) −
1
2

(s̃ s̃) (9)
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L̂ =
√

10
[
d† × d̃

](1)
(10)

T̂3 =
[
d† × d̃

](3)
(11)

T̂4 =
[
d† × d̃

](4)
(12)

where s†(s)and d†(d̃) are monopole and quadrupole boson
creation (annihilation) operators, respectively. The scalar
product is defined as

T̂L T̂L =
∑

M

(−1)MT̂L,M T̂L,−M (13)

whereT̂L,M corresponds to theM component of the operator
T̂L. The operatord̃m(−1)md−m and s̃ = s are introduced to
ensure the correct tensorial character under spatial rotations.

The Connection between the IBM, PES, geometric shapes
and phase transitions can be investigated by introducing a co-
herent, or intrinsic state which is expressed as a boson con-
densate [20]

|N, β, γ〉 =
1
√

N!

(
b†c

)N
|0〉 (14)

with

b†c =
1

√
1+ β2

(

s†+β cosγ d†o +
1
√

2
β sinγ(d†2+d†−2)

)

. (15)

|0〉 is the boson vacuum and the variablesβ andγ deter-
mine the geometry of nuclear surface. Spherical shapes are
characterized byβ = 0 and deformed ones byβ > 0. The
angleγ allows one to distinguish between axially deformed
nucleiγ = 0◦ for prolate andγ = 60◦ for oblate deformation
and triaxial nuclei 0◦ < γ < 60◦.

The expectation values of the Casimir operators equations
(2–7) in the ground state equation (14) is:

〈C1[U (5)]〉 =
N

1+ β2
β2 (16)

〈C2[U (5)]〉 =
5N

1+ β2
β2 +

N (N − 1)
(
1+ β2

)2
β4 (17)

〈C2[O (5)]〉 =
8N

1+ β2
β2 (18)

〈C2[O (3)]〉 =
12N

1+ β2
β2 (19)

〈C2[S U(3)]〉 =
20
3

N +
4
3

N (N − 1)
(
1+ β2

)2
∙

(

4β2 +
1
2
β4 + 2

√
2β3 cos(3γ)

) (20)

〈C2[O (6)]〉 = 2N(N + 4)−
1
2

N (N − 1)
(
1+ β2

)2

(
1− β2

)2
. (21)

The PES associated with the IBM Hamiltonian of equa-
tion (1) is given by its expectation value in the coherent state
and can be written as:

V (β, γ) = a◦
N

1+ β2
β2

+
N (N − 1)
(
1+ β2

)2

(
a1 + a2β

2+

a3β
3 cos(3γ) + a4β

4
)

(22)

where the coefficientsai are linear combinations of the pa-
rameters of the Hamiltonian and terms which do not depend
onβ and/or γ have not been included.

3 Shape Structure of the Dynamical Symmetries

The analysis of the three dynamical symmetry limits of the
IBM provides a good test of the formalism presented in the
previous section.

3.1 The U(5) Symmetry

The Hamiltonian of the vibrational limitU(5) can be written
down by puttingk4 = k5 = 0 in equation (1). This has the
consequence that inH remain only the terms which conserve
both the number of d-bosons and the one of the s-bosons. The
Hamiltonian operator of this approximation reads:

H[U (5)] = εC1[U (5)] + K1C2[U (5)]+

K2C2[O (5)] + K3C2[O (3)].
(23)

This yields the PES

E(N, β) = εd
N

1+ β2
β2 + f

N (N − 1)
(
1+ β2

)2
β4. (24)

This energy functional isγ− independent and has a mini-
mum atβ = 0, Special case forU (5) limit, when

H = εC1[U (5)], (25)

E(N, β) = ε
N

1+ β2
β2. (26)

3.2 The SU(3) Symmetry

In the parametrization equation (1), theS U(3) limit corre-
sponds toε = K1 = K2 = K5 = 0 and the Hamiltonian reads:

H[S U(3)] = K3C2[O(3)] + K4C2[S U(3)]. (27)

This yields the PES

E (N, β, γ) =

3(4k3 + k4)
N

1+ β2
β2 +

4
3

k4

[
N

1+ β2

(

5+
11
4
β2

)

+
N (N − 1)
(
1+ β2

)2

(

4β2 + 2
√

2β3 cos(3γ) +
1
2
β4

)
 .

(28)
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Fig. 1: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for144−154Nd (with Nπ = 5 andNν = 1−6
neutron bosons) isotopic chain. The total number of bosons N=6-11
andχ = −

√
7/2).

Fig. 2: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for146−154Sm (with Nπ = 6 andNν =

1− 5) isotopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

This energy functional has a shape minimum atγ = 0 and
at a valueβ , 0.

Special case for SU(3) limit, when

H = aQ̂ Q̂ (29)

and if we eliminate the contribution of the one-body terms of
the quadrupole -quadrupole interaction, then, the PES reads

E (N, β, γ) = a
N (N − 1)
(
1+ β2

)2
(4β2±2

√
2β3 cos(3γ)+

1
2
β4). (30)

The equilibrium values are obtained by solving

∂E
∂β

=
∂E
∂γ

= 0 (31)

Fig. 3: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for148−162Gd (with Nπ = 7 andNν =

1− 8) isotopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

to giveβe =
√

2 andγ = 0◦ andγ = 60◦.

3.3 The O(6) Symmetry

For the O(6) limitε = K1 = K2 = 0 and the Hamiltonian
takes the form

H[O(6)] = K2C2[O(5)] + K3C2[O(3)] + K5C2[O(6)]. (32)

One then obtains the PES

E (N, β) = 12(2K2 + K3)
N

1+ β2
β2−

2k5N (N − 1)

(
1− β2

1+ β2

)2

.

(33)

This energy functional isγ−independent and has a min-
imum at a value|β| , 0. For largeN, the minimum is at
|β| = 1.

Special case forO(6) limit, when

H = aQ̂ (χ) Q̂ (χ) (34)

χ = 0 (35)

and if we eliminate the contribution of the one-body term of
the quadrupole-quadrupole interaction, then

E (N, β) = 4aN (N − 1)

(
β

1+ β2

)2

(36)
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Fig. 4: Calculated PES’s as a function of the deformation parameter
β in U(5)-SU(3) transition for150−166Dy (with Nπ = 8 andNν =

1− 9) isptopic chain. The total number of bosons N=6-11 andχ =

−
√

7/2).

the equilibrium value is given byβ = 1 corresponding to a
γ-unstable deformed shape.

4 Application to Rare-Earth Isotope Chains

Nuclei in the region of Sm are well known examples of U(5)-
SU(3) transition going from a vibrational into a rotational be-
havior. The validity of our model is examined for typical var-
ious even-even Nd/Sm/Gd/Dy isotopic chains with total num-
ber of bosons from N=6 to N=17.

The set of parameters of the model for each nucleus are
adjusted by using a computer simulated search program in
order to describe the gradual change in the structure as bo-
son number is varied and to reproduce the properties of the
selected states of positive parity excitation (2+

1 ,4
+
1 ,6

+
1 ,8

+
1 ,0

+
2 ,

2+3 ,4
+
3 ,2

+
2 ,3

+
1 and 4+2) and the two neutron separation energies

of all isotopes in each isotopic chain. The best fitting param-
eters obtained for each nucleus are given explicitly in Tables
(1,2).

The PES’s versus deformation parameterβ for rare earth
isotopic chain of nuclei evolving from spherical to axially
symmetric well deformed nuclei are illustrated in figures
(1-4). A first order shape phase transition with changes in
number of bosons when moving from the lighter to heavier
isotopes i.e. U(5)-SU(3) transitional region are observed. In
our selected region we assumed a valueχ = −

√
7/2 because

someGd isotopes clearly exhibit the character of the SU(3)

dynamical symmetry. AroundN = 90 these seems to be the
X(5)critical point symmetry. Each PES displays a relatively
similar shape with only a small increase in the sharpness of
the potential for increasing boson number.

5 Conclusion

In conclusion, the paper is focused on the properties of quan-
tum phase transition between spherical U(5) and prolate de-
formed SU(3) in framework of the simple version of interact-
ing boson model IBM-1 of nuclear structure.

The Hamiltonian was studied in the three different limits
of the IBM and formed by laking. A systematic study of rare
earth Nd/Sm/ Gd/Dy isotope chains was done using the co-
herent states. Nuclei located at or very close to the first order
transition were the N=90 isotones150Nd, 152Nd, 154Nd and
156Nd. They also follow theX(5) pattern in ground state en-
ergies. The geometric character of the nuclei was visualizes
by plotting the potential energy surface (PES’s). parameters
of our model were adjusted for each nucleus by using a com-
puter simulated search program, while the parameterX in the
quadrupole operator was restricted to fixed valuex = −

√
7/2.

Submitted on: September 24, 2012/ Accepted on: September 27, 2012

References
1. Jolie J. et al. Triple Point of Nuclear Deformation.Physical Review

Letters, 2002, v. 89, 182502–182504.

2. Arios J.M., Dukelsky J., and Garcia-Ramos J.E. Quantum Phase Tran-
sitions in the Interacting Boson Model: Integrability, Level Repulsion
and Level Crossing.Physical Review Letters, 2003, v. 91, 162502–
162504.

3. Turner P.S. and Rowe D.J. Phase Transitions and Quesidynamical Sym-
metry in Nuclear Collective Model, II. The Sperical vibrator to gamma-
soft rotor Transition in an O(5)-invariant Bohr Model.Nuclear Physics,
2005, v. A756, 333–355.

4. Iachello F. and Arima A. The Interacting Boson Model. Cambridge
University Press, Cambridge, England, 1987.

5. Scholten O., Iachello F. and Arima A. Interacting Boson Model of Col-
lective Nuclear State III. The Transition from SU(5) to SU(3).Annals
of Physics, 1978, (N.Y.) v. 115, 325–366.

6. Castonos O., Frank A. and Federman, A. The shape transition in the
Sm isotopes and the structure of the IBA hamiltonian.Physics Letters,
1979, v. B88, 203–206.

7. Cejnar P. and Jolie J. Quantum Phase Transition Studied within the In-
teracting Boson Model,Physical Review, 2000, v. E61, 6237–6247.

8. Cejnar P., Heinze S., and Jolie J. Ground-State Shape Phase Transi-
tions in Nuclei: Thermodynamic analogy and fitie N-effects.Physical
Review, 2003, v. C68, 034326–034326.

9. Rowe D.J. and Thiamova G. The many relationships between the IBM
and the Bohr Model.Nuclear Physics, 2005, v. A760, 59–81.

10. Cejnar P., Heinze S. and Dobes J. Thermodynamic analogy for quantum
phase transitions at zero temperature.Physical Review, 2005, v. C71,
011304R–011309R.

11. Heinze S. et al. Evolution of spectral properties along the O(6)-U(5)
transition in the interacting boson model. I. Level dynamics.Physical
Review, 2006, v. C73, 014306–014316.

12. Casten R.F. Nuclear Structure from a Simple Prespective. Oxford Uni-
versity, Oxford, 1990.

10 A. M. Khalaf and T. M. Awwad. A Theoretical Description of U(5)-SU(3) Nuclear Shape Transitions in the Interacting Boson Model



January, 2013 PROGRESS IN PHYSICS Volume 1

Table 1: Values of the parameterao and the total number of boson for the Nd/Sm/Gd/Dy isotopic chain.

No. of Neutrons 60Nd 62Sm 64Gd 66Dy

84 1161.91775(6) 1112.0059(7) 1130.70265(8) 1174.6685(9)

86 1082.31775(7) 1078.2059(8) 1160.10265(9) 1223.4685(10)

88 1121.01775(8) 974.0059(9) 1060.40265(10) 1178.2685(11)

90 1078.51735(9) 895.5059(10) 951.80265(11) 1119.7685(12)

92 1011.71775(10) 843.3059(11) 872.90265(12) 1076.8685(13)

94 1071.51775(11) 877.2059(12) 825.80265(13) 1043.5685(14)

96 −− 996.9059(13) 813.40265(14) 1029.2685(15)

98 −− 1136.7059(14) 827.90265(15) 1025.0685(16)

100 −− −− −− 1058.9685(17)

Table 2: Values of the parametersa1, a2, a3, anda4 describing the IBM Hamiltonian for Nd/Sm/Gd/Dy isotopic chains.

Isotopic chains a1 a2 a3 a4

144−154Nd 20.93825 −110.4805 −48.51035 −84.10182
146−160Sm 13.30225 −85.3005 −41.50433 −61.52960
148−162Gd 11.30175 −75.1195 −37.13441 −75.61475
150−166Dy 9.66275 −73.8775 −38.57408 −81.01053

13. Arima A. and Iachello F. Interacting Boson Model of Collective States
I. The Vibrational Limit.Annals of Physics, 1976, (N.Y.) v. 99, 253–
317; Arima A. and Iachello F. Interacting Boson Model of Collective
States II. The Rotational Limit.Annals of Physics, 1978, (N.Y.) v. 111,
201–238.

14. Iachello F. Analytic Prescription of Critical Point Nuclei in a Spheri-
cal Axially Deformed Shape Phase Transtion.Physical Review Letters,
2001, v. 87, 052502–052506.

15. Iachello F. Dynamic Symmetrcies at the Critical Point.Physical Review
Letters, 2000 v. 85, 3580–3583.

16. Leviatan A. and Ginocchio J.N. Critical Point Symmetry in a Finite
System.Physical Review Letters, 2005, v. 90, 212501–212505.

17. Casten R.F. and Zamfir N.V. Evidence for a Possible E(5) Symmetry
in 134Ba.Physical Review Letters, 2000 v. 85, 3584–3586, Casten R.F.
and Zamfir N.V. Empirical Realization of a Critical Point Description
in Atomic Nuclei.Physical Reviw Letters, 2001 v. 87, 052503–052507.

18. Iachello F. Phase Transition an Angle Variables.Physical Review Let-
ters, 2003, v. 91, 132502–132507.

19. Bohr A. and Mottelson, Nuclear Structure, Benjamin, New York, 1975,
Vol. II.

20. Dieperink A.E.L., Scholten O. and Iachello F. Classical Limit of the
Interacting Boson Model.Physical Reviw Letters, 1980, v. 44, 1747–
1750.

21. Dieperink A.E.L and Scholten O. On Shapes and Shase Transition in
the Interacting Boson Model.Nuclear Physics, 1980, v. A346, 125–
138.

A. M. Khalaf and T. M. Awwad. A Theoretical Description of U(5)-SU(3) Nuclear Shape Transitions in the Interacting Boson Model 11


