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A model is proposed for the hydrogen atom in which the electron is an objectively real
particle orbiting at very near to light speed. The model is based on the postulate that
certain velocity terms associated with orbiting bodies can be considered as being af-
fected by relativity. This leads to a model for the atom in which the stable electron
orbits are associated with orbital velocities where Gamma isn/α, leading to the idea
that it is Gamma that is quantized and not angular momentum as in the Bohr and other
models. The model provides a mechanism which leads to quantization of energy levels
within the atom and also provides a simple mechanical explanation for the Fine Struc-
ture Constant. The mechanism is closely associated with the Sampling theorem and the
related phenomenon of aliasing developed in the mid-20th century by engineers at Bell
labs.

Since the emergence of quantum theory just over a cen-
tury ago every model that has been developed for the hy-
drogen atom incorporates the same basic assumption. From
Niels Bohr through de Broglie and Schrödinger up to and in-
cluding the Standard Model all such theories are based on an
assumption first put forward by John Nicholson.

Nicholson recognised that the units of Planck’s constant
are the same as those of angular momentum and so he rea-
soned that perhaps Planck’s constant was a measure of the
angular momentum of the orbiting electron. But Nicholson
went one step further and argued that Planck’s constant was
the fundamental unit or quantum of angular momentum and
therefore the angular momentum of the orbiting electron
could only take on values which were an integer multiple of
Planck’s constant. This allowed Bohr to develop a model in
which the energy levels of the hydrogen atom matched those
of the empirically developed Rydberg formula [1]. When
the Bohr model was superseded Nicholson’s assumption was
simply carried forward unchallenged into these later models.

Nicholson’s assumption however lacks any mathematical
rigour. It simply takes one variable, angular momentum, and
asserts that if we allow it to have this characteristic quantiza-
tion then we get energy levels which appear to be correct. In
so doing it fails to provide any sort of explanation as to just
why such a quantization should take place.

In the mid-20th century a branch of mathematics emerged
which straddles the boundary between continuous functions
and discrete solutions. It was developed by engineers at Bell
Labs to address problems of capacity in the telephone net-
work. While at first site there appears to be little to connect
problems of network capacity with electrons orbiting atomic
nuclei it is the application of these mathematical ideas which
holds the key to explaining quantization inside the atom.

In the 1930’s and 40’s telecommunications engineers
were concerned to increase the capacity of the telephone
network. One of the ideas that surfaced was called Time
Division Multiplexing. In this each of a number of incoming

telephone lines is sampled by means of a switch, the resulting
samples are sent over a trunk line and are decoded by a
similar switch at the receiving end before being sent on their
way. This allowed the trunk line to carry more telephone
traffic without the expense of increasing the number of cables
or individual lines. The question facing the engineers at the
time was to determine the minimum frequency at which the
incoming lines needed to be sampled in order that the tele-
phone signal can be correctly reconstructed at the receiving
end.

The solution to this problem was arrived at independently
by a number of investigators, but is now largely credited to
two engineers. The so called Nyquist-Shannon sampling the-
orem is named after Harry Nyquist [2] and Claude Shan-
non [3] who were both working at Bell Labs at the time. The
theorem states that in order to reproduce a signal with no loss
of information, then the sampling frequency must be at least
twice the highest frequency of interest in the signal itself. The
theorem forms the basis of modern information theory and
its range of applications extends well beyond transmission of
analogue telephone calls, it underpins much of the digital rev-
olution that has taken place in recent years.

What concerned Shannon and Nyquist was to sample a
signal and then to be able to reproduce that signal at some re-
mote location without any distortion, but a corollary to their
work is to ask what happens if the frequency of interest ex-
tends beyond this Shannon limit? In this condition, some-
times called under sampling, there are frequency components
in the sampled signal that extend beyond the Shannon limit
and maybe even beyond the sampling frequency itself.

A simple example can be used to illustrate the phe-
nomenon. Suppose there is a cannon on top of a hill, some
distance away is an observer equipped with a stopwatch.
The job of the observer is to calculate the distance from his
current location to the cannon. Sound travels in air at roughly
340 m/s. So it is simply a matter of the observer looking for
the flash as the cannon fires and timing the interval until he
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hears the bang. Multiplying the result by 340 will give the
distance to the cannon in metres, let’s call this distanceD.

This is fine if the cannon just fires a single shot, but sup-
pose the cannon is rigged to fire at regular intervals, sayT sec-
onds apart. For the sake of argument and to simplify things,
let’s makeT equal to 1. If the observer knows he is less than
340 m from the cannon there is no problem. He just makes
the measurement as before and calculates the distanceD. If
on the other hand he is free to move anywhere with no re-
striction placed on his distance to the cannon then there is
a problem. There is no way that the observer knows which
bang is associated with which flash, so he might be located
at any one of a number of different discrete distances from
the cannon. Not just any old distance will do however. The
observer must be at a distance ofD or D + 340 orD + 680
and so on, in generalD + 340n. The distance calculated as a
result of measuring the time interval between bang and flash
is ambiguous. In fact there are an infinite number of discrete
distances which could be the result of any particular mea-
sured value. This phenomenon is known as aliasing. The
term comes about because each actual distance is an alias for
the measured distance.

Restricting the observer to be within 340 m of the can-
non is simply a way of imposing Shannon’s sampling limit
and by removing this restriction we open up the possibility of
ambiguity in determining the position of the observer due to
aliasing.

Let’s turn the problem around a little. If instead of mea-
suring the distance to the cannon the position of the observer
is fixed. Once again to make things simpler, let’s choose a
distance of 340m. This time however we are able to adjust
the rate of fire of the cannon until the observer hears the bang
and sees the flash as occurring simultaneously. If the rate of
fire is one shot per second then the time taken for the slower
bang to reach the observer exactly matches the interval be-
tween shots and so the two events, the bang and the flash are
seen as being synchronous. Notice that the bang relates, not
to the current flash, but to the previous flash.

If the rate of fire is increased then at first, for a small in-
crement, the bang and the flash are no longer in sync. They
come back into sync however when the rate of fire is exactly
two shots per second, and again when the rate is three shots
per second. If we had a fast enough machine gun this se-
quence would extend to infinity for a rate of fire which is an
integer number of shots per second. Notice that now the bang
no longer relates to the previous flash, but to a previous flash.
It is interesting to note also that if the rate of fire is reduced
from once per second then the observer will never hear and
see the bang and the flash in sync with one another and so
once per second represents the minimum rate of fire which
will lead to a synchronous bang and flash. In fact what we
have here is a system that has as its solutions a base frequency
and an infinite set of harmonic frequencies.

Suppose now that there is some mechanism which feeds

back from the observer to the cannon to drive the rate of fire
such that bang and flash are in sync, and suppose that this
feedback mechanism is such as to always force the condition
to apply to the nearest rate of fire which produces synchroni-
sation.

We now have a system which can cause a variable, in this
case the rate of fire of the gun, to take on a series of discrete
values even though, in theory at least, the rate of fire can vary
continuously. Equally important is that if the feedback mech-
anism is capable of syncing the system to the lowest such
frequency then all the multiples of this frequency are also so-
lutions, in other words if the base frequency is a solution then
so are harmonics of the base frequency.

This idea that there are multiple discrete solutions which
are harmonics of a base frequency is an interesting one since
it couples the domains of the continuous and the discrete. Fur-
thermore what the example of the cannon shows us is that
any system which produces results which are a harmonic se-
quence must involve some sort of sampling process. This
becomes clear if we consider the Fourier representation of
a harmonic sequence. A harmonic sequence of the type de-
scribed consists of a number of discrete frequencies, spread-
ing up the spectrum and spaced equally in the frequency do-
main with each discrete frequency represented by a so called
Dirac function. Taken together they form what is described
as a Dirac comb, in this case in the frequency domain. The
inverse Fourier transform of such a Dirac comb is itself an-
other Dirac comb, only this time in the time domain, and a
Dirac comb in the time domain is a sampling signal [4].

This link between a Dirac comb in the frequency domain
and a corresponding Dirac comb in the time domain means
that if ever we observe a set of harmonics in some natural
process there must inevitably be some form of sampling pro-
cess taking place in the time domain and vice versa.

One such example, in which this relationship has seem-
ingly been overlooked, is found in the structure of the hydro-
gen atom.

By the beginning of the 20th century it was becoming
evident that the universe was composed of elements which
were not smooth and continuous but were somehow lumpy
or granular in nature. Matter was made up of atoms, atoms
themselves contained electrons and later it emerged that the
atomic nucleus was itself composed of protons and neutrons.

Perhaps even more surprising was that atoms could only
absorb or emit energy at certain discrete levels. These energy
levels are characteristic of the atom species and form the ba-
sis of modern spectroscopy. The issue facing the scientists
of the day was that this discrete behaviour is not associated
with the discrete nature of the structure of the atom; that can
easily be explained by asserting that any atom contains an in-
teger number of constituent particles. Where energy levels
are concerned, the quantization effects involve some sort of
process that is taking place inside the atom.

The atom with the simplest structure is that of hydrogen,
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comprising a single proton surrounded by an orbiting electron
and work began to investigate its structure and to understand
the mechanisms which gave it its characteristic properties.

The first such theoretical model was proposed by Niels
Bohr [5]. Bohr used simple classical mechanics to balance the
centrifugal force of the orbiting electron against the electro-
static force pulling it towards the atomic nucleus. He needed
a second equation in order to solve for the radius and veloc-
ity of the orbiting electron and came upon the idea proposed
by John Nicholson [6]. Nicholson reasoned that the units of
Planck’s constant matched those of angular momentum and
so he proposed that the angular momentum of the orbiting
electron could only take on values which were an integer mul-
tiple of was Planck’s constant.

Bohr’s equations worked, but they threw up a strange
anomaly. In Bohr’s model each energy level is represented
by the orbiting electron having a specific orbit with its own
particular orbital velocity and orbital radius. The really
strange thing was that in order to fit with the conservation
laws, transitions from one energy state to another had to take
place instantly and in such a way that the electron moved
from one orbit to another without ever occupying anywhere
in between, a sort of discontinuity of position. This ability to
jump instantaneously across space was quickly dubbed the
Quantum Leap in the popular media, a phrase which still has
resonance today.

Bohr reasoned that

l = mvnrn = n~ (1)

Kq2

~c
=

mv2n
rn

(2)

which means

vn =
Kq2

n~
(3)

rn =
n2~2

mKq2
. (4)

wherem is the rest mass of the electron,q is the charge on the
electron,rn is the orbital radius for the nth energy level,vn is
the orbital velocity for the nth energy level,l is the angular
momentum,K is the Coulomb force constant,~ is Planck’s
constant.

Equation 1 represents Nicholson’s assumption that angu-
lar momentum can only take on values which are integer mul-
tiples of Planck’s constant.

Equation 2 balances the centrifugal force against the elec-
trostatic force.

Equation 3 shows that the orbital velocity decreases with
increasing energy level.

Equation 4 shows that the orbital radius increases as the
square of the energy level and leads directly to the idea of the
Quantum Leap.

It was widely accepted that the Bohr model contained
substantial flaws. Not only did it throw up the quirky quan-
tum leap, but it took no account of special relativity, it failed
to explain why the electron orbit did not decay due to syn-
chrotron radiation but most important of all it failed to explain
the nature of the quantization of angular momentum∗. The
fact is that the assumption that angular momentum is quan-
tized lacks any mathematical rigour, the assumption is arbi-
trary and expedient and fails to address the underlying ques-
tion as to why and how such quantization occurs but merely
asserts that if we make the assumption then the numbers seem
to fit. Nevertheless, and despite this, the Bohr assumption has
continued to be accepted and forms an integral part of every
theory which has come along since.

In a paper published in 1905 Einstein had shown that
light, which had hitherto been considered a wave, was in fact
a particle [7]. In an effort to explain quantization the French
mathematician Louis de Broglie turned this idea on its head
and suggested that perhaps the electron was not a particle
but should be considered as a wave instead. He calculated
the wavelength of the electron, dividing Planck’s constant by
the electron’s linear momentum and found that when he did
so the orbital path of base energy state contained one wave-
length; that of the second energy state contained two wave-
lengths and so on, in what appeared at first site to be a series
of harmonics†.

On any other scale the wavelength of an object in orbit
is associated with the orbital path length or circumference of
the orbit and can be derived as a result of dividing the an-
gular momentum of the orbiting object by its linear momen-
tum. De Broglie instead chooses to associate the wavelength
of the particle with the value of Planck’s constant divided by
the linear momentum, while at the same time assuming that
the angular momentum of the particle was an integer multi-
ple of Planck’s constant. In choosing to substitute Planck’s
constant in this way instead of the angular momentum when
calculating the wavelength, what de Broglie is doing is to co-
erce the wavelength of the electron to be an integer fraction
of the orbital path length. Viewed in this light de Broglie’s
contribution can be seen as less of an insight and more of a
contrivance.

If you were to observe an object in orbit, say a moon or-
biting Jupiter or the proverbial conker‡ whirling on the end
of a string, what you see is a sine wave. The orbiting object

∗At first site it appears that the energy of the electron in the Bohr atom
decreases with increasing energy level. However since the radius changes
with energy level, the potential energy does also. When these two effects are
combined, the energy levels increase with increasing energy level.

†In fact they are not harmonics of a single fundamental frequency, but
instead each harmonic relates to a different base frequency and these two
effects combine in such a way that they form a sub harmonic or inverse har-
monic sequence

‡A conker is a horse chestnut on a string often used in a children’s game
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subtends a wave to an external observer of the form:

d = Rsin(ωt) (5)

or
d = Rsin(2πFt) . (6)

whered is the displacement about some mean
For such a body we can easily calculate the orbital radius

if we know the angular momentum and the linear momentum.

R=
l
p
=

mvr
mv
. (7)

Furthermore we can identify the wavelength of such a
wave with the orbital circumference which is simply.

λ = 2πR. (8)

This is true for all orbiting objects no matter whether they
are the size of a planet or the size of a conker.

By what rational then does de Broglie identify the wave-
length of the orbiting electron, not with the angular momen-
tum in this way, but with Planck’s constant, which he be-
lieves, according to Bohr’s assumption, to be an integer frac-
tion of the angular momentum?

The alignment of wavelength with Planck’s constant in
this way cannot be justified either mathematically or mechan-
ically. It is a contrivance which leads to the idea that there is
some sort of wavelength which is an integer fraction of the or-
bital circumference. This is no miraculous discovery, not an
insight into the workings of the atom, but an artificial device
which reinforces and sustains the Bohr assumption without
any basis in mechanics.

Other later models, such as that of Schrödinger, are based
directly on the work of de Broglie and therefore inherently
follow Bohr’s assumption, up to and including the currently
proposed Standard Model. Having been adopted by Bohr,
later theorists simply continued with this working assumption
and incorporated it into all subsequent models for the atom,
without ever bothering to go back and justify it, until now
it has become an item of received wisdom and an article of
faith.

The trouble with all of these models is that the assump-
tion proposed by Nicholson and adopted by Bohr is not based
on finding any mechanism that leads to angular momentum
being quantized in this way. The assumption was simply ex-
pedient — it just happens to give the values for the absorption
and emission spectra of the hydrogen atom which match those
of the Rydberg formula.

The year 1905 was an eventful one for Albert Einstein. In
that year, he not only published his paper on the discrete na-
ture of the photon but he also published two further seminal
works as well as submitting his Ph.D. thesis. The most fa-
mous of his other papers concerned the dynamics of moving
bodies [8]. This is the paper whose later editions contained

the equatione = mc2. The paper was based on a thought ex-
periment and concerned the perception of time, distance and
mass as experienced by two observers, one a stationary ob-
server and one moving relative to the stationary observer at
speeds approaching that of light.

What Einstein showed is that time elapses more slowly
for a moving observer, that distances measured by a moving
observer are foreshortened relative to those same distances
measured by a stationary observer and that a stationary ob-
server’s perception of the mass of a moving object is that it
has increased. All three effects occur to the same extent and
are governed by a factorγ (Gamma). The time between two
events observed by the stationary observer as timet is seen by
the moving observer as timeT = t/γ. Similarly the distance
between two point measured by the stationary observer as dis-
tanced is seen by the moving observer as distanceD = d/γ.
As far as the stationary observer is concerned the mass of the
moving object is seen to increase by this same factorγ.

Gamma is referred to as the Lorentz factor and is given
by the formula:

γ =
c

√
c2 − v2

=
1

√
1− v

2

c2

. (9)

Both observers agree on their relative velocity but go
about calculating it in different ways. For the stationary
observer the velocity of the moving observer is the distance
travelled divided by the time taken as measured in his sta-
tionary domain. For the stationary observer the velocity
is:-

v =
d
t
. (10)

For the moving observer the distance as measured in his
own domain is foreshortened by the factor Gamma, but the
time taken to cover that distance reduced by the same factor
Gamma.

v =
D
T

=

d
γ

t
γ

=
d
t
. (11)

There is a great deal of experimental evidence to support
Einstein’s Special Theory. One of the more convincing exper-
iments was carried out at CERN in 1977 and involved mea-
suring the lifetimes of particles called muons in an apparatus
called the muon storage ring [9]. The muon is an atomic par-
ticle which carries an electric charge, much like an electron,
only more massive. It has a short lifetime of around 2.2 mi-
croseconds before it decays into an electron and two neutri-
nos.

In the experiment muons are injected into a 14m diam-
eter ring at a speed close to that of light, in fact at 99.94%
of the speed of light where Gamma has a value of around
29.33. The muons, which should normally live for 2.2 mi-
croseconds, were seen to have an average lifetime of 64.5 mi-
croseconds; that is the lifetime of the muon was increased
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by a factor Gamma. This comes about because the processes
which take place inside the muon and which eventually lead
to its decay are taking place in an environment which is mov-
ing relative to us at 99.94% of the speed of light and in which
time, relative to us, is running 29.33 times slower. Hence the
muon, in its own domain, still has a lifetime of 2.2 microsec-
onds, it’s just that to us, who are not moving, this appears as
64.5 microseconds.

Travelling at almost the speed of light a muon would
normally be expected to cover a distance of 660 metres
or roughly 7.5 times around the CERN ring during its 2.2
microsecond lifetime, but in fact the muons travelled almost
20,000 metres or 220 times around the ring. This is because
distance in the domain of the muon is compressed so what
we stationary observers see as being 20,000 metres the muon
sees as being just 660 metres.

Both parties agree that during its lifetime the muon com-
pletes some 220 turns around the ring. We stationary ob-
servers see this as having taken place in some 64.5 microsec-
onds, corresponding to a frequency of 3.4 MHz, while the
muon sees these 220 turns as having been completed in just
2.2 microseconds, corresponding to a frequency of 100 Mhz.
Hence for the muon and indeed all objects orbiting at close to
light speed orbital frequency is multiplied by a factor Gamma
relative to that of a stationary observer and it is this multipli-
cation of orbital frequency which holds the key to the discrete
energy levels of the atom.

As well as this effect on orbital frequency the muon ring
experiment serves to show that considerations of special rel-
ativity can be applied to objects in orbit, this despite the fact
that object in orbit are subject to a constant acceleration to-
wards the orbital centre. However where the orbital velocity
is constant, it is reasonable and correct to apply considera-
tions of special relativity around the orbital path. In effect
what we are doing is to resolve the orbital velocity into two
components, one tangential component which has a constant
velocity and one radial where there is a constant acceleration.

We have seen that speed is invariant with respect to rel-
ativity. Both the moving object and the stationary observer
agree on their relative speed. This invariance of speed is cen-
tral to the derivation of special relativity and so is deemed to
be axiomatic. There is however one circumstance where it is
reasonable to suggest that this need not be the case. For a sta-
tionary observer we normally require the use of two clocks in
order to measure velocity; one at the point of departure and
one at the point of arrival (at least conceptually). An object
which is in orbit however returns once per cycle to its point of
departure and so we can measure the orbital period of such an
object with a single clock provided we do so over a complete
orbit.

Thus for an object in orbit it is possible to define two ve-
locity terms relating to the tangential or orbital velocity∗. The

∗In fact it is possible to define a further two velocity terms, the relativis-

first of these I have called the Actual Velocity and is sim-
ply the distance around the orbit divided by the orbital period
as measured by the stationary observer. The second veloc-
ity term is the distance around the orbit as measured by the
moving observer divided by the orbital period as measured
by the stationary observer. Such a velocity term straddles or
couples the two domains, that of the orbiting object and that
of the stationary observer and so could sensibly be called the
”Coupling Velocity” or possibly the ”Relativistic Velocity”.
A simple calculation shows that the Relativistic Velocity is
related to the Actual Velocity by the same factor Gamma an
hence:

vR =
D
t
=

d
tγ

=
v

γ
. (12)

Thus far Relativistic Velocity is only a definition. How-
ever there is one set of circumstances where such a velocity
term can indeed be justified and that is when dealing with the
equations of motion relating to objects in orbit. It is consid-
ered here to be meaningful to use this Relativistic Velocity
term when dealing with orbital velocities such as occur when
calculating angular momentum, centripetal and centrifugal
force and acceleration.

Nicholson had suggested that because Planck’s constant
has the units of angular momentum that it was somehow as-
sociated with the angular momentum of the orbiting electron.
Here we take up that idea and suggest that the angular mo-
mentum of the orbiting electron is equal to Planck’s constant,
but reject his other idea that angular momentum is quantized.
Instead we assume that orbital velocity is affected by rela-
tivity and use this to derive the equations of motion of the
orbiting electron.

Planck’s constant is then seen, not as a fundamental quan-
tum of angular momentum but instead as providing a limiting
value for angular momentum. The effect would not be signifi-
cant at low velocities, but if the electron orbiting the hydrogen
atom were to do so at close to light speed then:

l = ~ = (mγ) r

(
c
′

γ

)

. (13)

wherel is the angular momentum,~ is Planck’s constant,m is
the mass of the electron,r is the orbital radius of the electron,
c
′
is the orbital velocity of the electron and is very close toc,

the speed of light.
Both the mass term and the velocity term are affected by

relativity. The mass term because mass increases by factor
Gamma as the object’s velocity approaches the speed of light
and in this case the velocity term is affected because we are
dealing with an object in orbit and it is therefore appropriate

tic distance divided by the relativistic time and the actual distance divided
by the relativistic time. The first of these is the invariant velocity discussed
earlier. As a stationary observer we do not have any direct access to the mov-
ing clock and so these velocities can only be described mathematically and
appear to have no physical significance.
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to use Relativistic Velocity which is the Actual Velocity di-
vided by Gamma. However since we are concerned here with
an orbital velocity very close to the speed of light, to a first
approximation we can substitutec for c

′
in Equation 13.

l = ~ = (mγ) r

(
c
γ

)

. (14)

The two Gamma terms will cancel. The terms for rest mass,
Planck’s constant and the speed of light are all constants,
which must therefore mean that the orbital radius is also a
constant

R=
~

mc
. (15)

This not unfamiliar term is known as the Reduced Comp-
ton Wavelength although here it takes on a new and special
significance as the characteristic radius at which an electron
will orbit at or near light speed. This serves to explain why the
orbiting electron does not emit synchrotron radiation. It does
not do so because it is not driven to orbit the atomic nucleus
by virtue of being accelerated by forces towards the orbital
centre in the normal way, instead it is constrained to orbit at
this radius by the limiting effect of Planck’s constant. It is as
if the electron is orbiting on a very hard surface from which it
cannot depart and which it cannot penetrate. Equation 15 also
means that there is no need to introduce the idea of a quantum
leap or later equivalents. If the electron is constrained to al-
ways orbit at a fixed radius, then changes in energy level have
to take place as a result of changes in orbital velocity, with
no accompanying change of radius. Indeed this idea that the
electron orbits at constant radius is a necessary condition for
the electron to be considered objectively real.

Substituting Relativistic Velocity into the force balance
equation that Bohr himself used, but at an orbital velocity
very close to that of light yields another interesting result∗

Kq2

~c
=

(mγ)
r

(
c
γ

)2

. (16)

Which combines with Equation 15 and simplifies to give:

Kq2

~c
=

1
γ
. (17)

Readers may be familiar with the term on the left of this
equation which is known as the Fine Structure Constant often
written asα (Alpha). So for the base energy state of the atom

γ =
1
α
. (18)

α has a value of 7.2973525698× 10−3

∗Once again since the orbital velocity is very close to the speed of light
we can, to a first approximation, substitute c as the Actual Velocity

From this and Equation 9 we can easily calculate the cor-
responding orbital velocity and frequency as measured by the
stationary observer.

v

c
=
√

1− α2 = 0.999973371. (19)

The orbital velocity turns out to be 99.9973% of the speed
of light c, thus vindicating the first approximation made in
Equation 14 and the frequency (in the domain of the station-
ary observer)

ω1 =
v

R
= 7.76324511× 1020 . (20)

The physicist Richard Feynman [10] once said of Alpha
that:

”It has been a mystery ever since it was discovered more
than fifty years ago, and all good theoretical physicists put
this number up on their wall and worry about it. Immediately
you would like to know where this number for acoupling†

comes from: is it related to pi or perhaps to the base of natu-
ral logarithms? Nobody knows. It’s one of the greatest damn
mysteries of physics: a magic number that comes to us with
no understanding by man. You might say the ”hand of God”
wrote that number, and ”we don’t know how He pushed his
pencil.” We know what kind of a dance to do experimentally
to measure this number very accurately, but we don’t know
what kind of dance to do on the computer to make this num-
ber come out, without putting it in secretly!”

Equation 18 effectively solves the mystery, providing an
explanation for the physical significance of the Fine Structure
Constant. It is seen simply as the ratio of two velocities, the
Relativistic Velocity and the Actual Velocity of the orbiting
electron. Since these two velocities share the same orbital pe-
riod, it can also be seen as the ratio of two orbital path lengths,
the one traversed at non-relativistic speeds to that traversed
by the orbiting electron at near light speed. The Fine Struc-
ture Constant is seen to be dynamic in nature. Its value relies
on the fact that the electron is in motion, orbiting at near light
speed; it does so at a speed that is necessary to maintain struc-
tural equilibrium within the hydrogen atom, since it is only by
travelling at this speed that the structural integrity of the atom
can be maintained. In the world of the atom, where there is no
friction and in the absence of any sort of external input, the
atom remains stable and, unless disturbed in some way, the
electron will continue in this state indefinitely. In this sense it
defines the speed at which the electron has to travel in order
to achieve a stable orbit.

So far we have only considered the lowest or base energy
state of the atom. We have seen that one of the effects of
relativity is to multiply frequency in the domain of a mov-
ing object by Gamma. The frequency in the domain of the

†My emphasis — the term Coupling Velocity resonates with the idea of
Alpha as a coupling constant.
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electron which corresponds to this stable state is simply cal-
culated by multiplying by Gamma — equivalent to dividing
by Alpha – to give.

Ω =
ω1

γ
= 1.06378925× 1023 . (21)

But just as was the case with the observer and the cannon if
there is a frequencyΩ at which the atom is stable then fre-
quencies ofnΩ must also be stable for alln = integer which
in turn means that there are stable states for all

γn =
n
α

(22)

and so

rn = R=
~

mc
(23)

and
vn
c

=

√
n2 − α2

n2
. (24)

Equation 23 shows that the orbital radius remains the
same for all energy levels, while Equation 24 describes the
orbital velocity for the nth energy state∗. Table 1 shows the
resulting orbital velocities for the first 13 energy states and
the theoretically infinite state of the hydrogen atom and as
you might expect they match the absorption and emission
spectra of the hydrogen atom perfectly.

During the 1930’s and 40’s Einstein and Bohr disagreed
over the nature of reality, with Bohr arguing that the laws of
physics were different on the scale of the atom and that as
a consequence reality becomes subjective in nature. Parti-
cles are not considered to discrete point particles in the clas-
sical sense, but instead are considered to be nebulous wave-
particles which manifest themselves as either particles or as
waves when subjected to some sort of observing process. Ein-
stein on the other hand took the view that reality had to be
objective and that particles must therefore be discrete point
particles having deterministic position and velocity.

In the end the debate was largely resolved by default.
Bohr simply outlived Einstein and so his ideas prevailed and
form the basis of today’s Standard Model. Einstein is nowa-
days often described as being an old man, set in his ways and
unable to accept the new ways of thinking. But this is to mis-
construe Einstein’s position, which was one of principle.

Einstein had argued that the laws of physics are the same
for all reference frames, while Bohr reasoned that the laws
of physics are different on the scale of the atom. Einstein
was concerned with reference frames of comparable scale that
were in motion with respect to one another but it is logical to
extend his idea to reference frames of differing scales. If we
start from this position and pursue the idea that particles are

∗Notice that since the orbital radius remains substantially the same for
all energy levels, there is no change in potential energy between the various
different energy levels, only a change in kinetic energy.

objectively real and that the laws of physics are the same in-
dependent of scale then it is necessary to question our current
understanding of the laws of physics. They must be deficient
in some way and it is necessary to find a way in which the
laws must be modified to describe the atom but which does
not affect our understanding on all other scales.

The idea of relativistic velocity postulated here does just
that. It provides a model for the structure and dynamics of
the hydrogen atom which is consistent with particles which
are objectively real. At the same time it does what all pre-
vious models have failed to do and provides a mechanism to
explain exactly why the energy levels of the atom are quan-
tized without the need of resorting to arbitrary assumptions.
The idea of a Relativistic Velocity or Coupling Velocity, a ve-
locity term which is affected by relativity, solves all of the
problems that faced Niels Bohr with his model and produces
a model for the hydrogen atom which matches the emission
and absorption spectra of the atom.

Here quantization takes place with respect to the variable
Gamma as the orbital velocity of the electron gets ever closer
to the speed of light with increasing energy level, and not with
respect to angular momentum as postulated by Bohr. Angu-
lar momentum for the orbiting electron remains substantially
constant and equal to Planck’s constant over all of its energy
levels as the orbital velocity varies from 99.99733% ofc for
the base energy state upwards as energy levels increase, al-
though never quite achieving the theoretical limit of 100%,
while Gamma is constrained to take on values which are inte-
ger multiples of a base value, that value being the reciprocal
of the Fine Structure Constant. Planck’s constant takes on a
new and special significance, not as the quantum of angular
momentum of the existing models, but as a lower limit for
angular momentum below which it cannot exist.

The orbital radius of the electron remains substantially
constant irrespective of the energy level of the atom, a neces-
sary condition for an objectively real electron, and so transi-
tions from one energy state to another take place without the
need to introduce the idea of discontinuity of position, inher-
ent in the Bohr model, or its equivalent probability density
functions and wave particle duality found in other more re-
cent models. Such transitions are easily explained as simple
changes in the orbital velocity of the electron over a dynamic
range which lies very close to the speed of light. With no
changes in orbital radius, changes in energy level involve no
change in potential energy, only the kinetic energy of the or-
biting electron changes between energy states.

Thus the morphology of the atom remains substantially
unaltered for all energy levels. This is consistent with the
atom having the same physical and chemical properties irre-
spective of energy level. The Bohr model, and indeed the
standard model, would have us believe that the morphology
of the atom changes substantially with energy level, with the
orbital radius increasing as the square of the energy level with
no theoretical upper limit. Such changes are difficult to rec-
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n vn/c 1/γn Energy eV ΔEnergy eV
1 0.999973371 0.007297559 7.76324511E+20 255485.925 13.607
2 0.999993343 0.003648853 7.76340016E+20 255496.130 3.402
3 0.999997041 0.002432577 7.76342887E+20 255498.020 1.512
4 0.999998336 0.001824435 7.76343892E+20 255498.682 0.850
5 0.999998935 0.001459549 7.76344357E+20 255498.988 0.544
6 0.999999260 0.001216291 7.76344610E+20 255499.154 0.378
7 0.999999457 0.001042536 7.76344762E+20 255499.255 0.278
8 0.999999584 0.000912219 7.76344861E+20 255499.320 0.213
9 0.999999671 0.000810861 7.76344929E+20 255499.364 0.168

10 0.999999734 0.000729775 7.76344977E+20 255499.396 0.136
11 0.999999780 0.000663432 7.76345013E+20 255499.420 0.112
12 0.999999815 0.000608146 7.76345040E+20 255499.438 0.094
13 0.999999842 0.000561366 7.76345061E+20 255499.452 0.081

∞ 1.000000000 0.000000000 7.76345184E+20 255499.532 0.000

Table 1:

oncile with an atom who’s physical and chemical properties
remain the same for all energy levels.

The model explains all of the shortcomings found in the
Bohr model, the absence of orbital decay due to synchrotron
radiation and the need for a quantum leap. Bohr had ignored
the effects of special relativity on the energy levels of the
atom, even though they should have been small but signifi-
cant at the velocities predicted by his model. Here they are
fully integrated into the model.

The model sheds a new light on the nature of the wave
particle duality. The electron is seen as a point particle in the
classical sense, having deterministic position and velocity∗.
Electrons are thus objectively real. The electron has wave-
like properties, but these derive from the orbital motion of an
objectively real particle. The waves are seen as the projec-
tion of the circular orbit of the objectively real electron onto
an external observer, in much the same way that we can de-
scribe the orbit of the moons of distant planets as having a
wavelike nature. There is no need to invent the ether or what
has more recently passed for the ether, the so called fabric of
space time, as a medium in which these waves exist. In the fi-
nal analysis where vacuum contains absolutely nothing, there
is nothing to wave except the particle and that is precisely
what the model provides.

The introduction of Relativistic Velocity has another ma-
jor implication. It extends the laws of physics down to the
scale of the atom and possibly beyond. With its introduction
the same set of physical laws extends from a scale of approx-
imately 10−20 m to 1020 m thus doing away with the notion
that a different set of physical law applies on the scale of the
atom. It is quite likely therefore that a single set of physical

∗This is not to say that uncertainty does not exist, it does, but it is seen
as a practical issue of measurement when the scale of the measurement tools
is similar to that of the measured object and not as being an intrinsic property
of the particle.

laws exists for all scales and throughout the universe.
Finally it provides a simple mechanical explanation for

the existence and the value of the hitherto mysterious Fine
Structure Constant.

Appendix 1 Derivation of Centripetal Acceleration under
relativistic conditions

The idea that orbital velocity is affected by relativity is central
to the theory presented here, so it is perhaps worthwhile ex-
amining this idea in a little more detail. Before doing so how-
ever it is necessary to restate that the use of Special Relativity
in dealing with objects which have constant orbital velocity is
entirely appropriate, this despite the fact that such objects are
subject to acceleration. The velocity of an object which is in
orbit can be considered as having two components, a tangen-
tial component and a radial component. For constant orbital
velocity, the tangential component is itself constant and there-
fore can be dealt with using Special Relativity which affects
the time and distance measured along the orbital path. Direct
evidence to support this comes in the form of the Muon ring
experiment described earlier.

Such an orbiting object is subject to constant acceleration
towards the orbital centre and it is this acceleration which in
effect maintains the circular path. Conventional wisdom has
it that this centripetal acceleration is not affected by relativity,
since it acts in a direction which is normal to the velocity of
the object. Here it is argued that this cannot be the case since
the distances involved in calculating centripetal acceleration
derive directly from the distances travelled around the orbital
path and that these distances are themselves affected by rel-
ativity. It can then be shown that this is equivalent to substi-
tuting Relativistic Velocity in place of Actual Velocity in the
standard formula for calculating centripetal acceleration.

Einstein showed that objects which are travelling at close
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to light speed are affected in three ways, time in the domain
of the moving observer advances at a slower rate than it does
for a stationary observer, distance for the moving object is
foreshortened in the direction of travel relative to that same
distance as measured by the stationary observer. The mass of
a moving object appears increased as far as the stationary ob-
server is concerned. All three effects occur to the same extent
by the factor Gamma (γ). Gamma is named after the Dutch
physicist Hendrik Antoon Lorentz (1853 — 1928). Gamma
is given by the formula

γ =
1

√
1− v

2

c2

. (25)

Examination of the effect of relativity on an object mov-
ing at close to the speed of light however reveals that both
time and distance are scaled by a factor 1/γ and so from
Equation 25

1
γ
=

√

1−
v2

c2
. (26)

It can be seen that this is the equation of a circle, more
specifically a quadrant of a unit circle, sincev is constrained
to lie between 0 andc as shown in Figure 1.

Fig. 1:

If the object under consideration is in circular orbit, then
this quadrant can be superimposed on the orbital path to form
a hemisphere. Objects orbiting at non-relativistic speeds see
the path length around the orbit as being equal in length to
the equator, while objects orbiting at higher speeds follow a
path length described by a line of latitude on the hemisphere.
An object orbiting at the theoretical maximum speed of light
would then be pirouetting at the pole. We can consider the
length of the orbital path as being represented by the line
of latitude formed by a slicing plane which cuts through the
hemisphere parallel to the equatorial plane. In Figure this is
at approximately 15% of the speed of lightc and so the orbital

path length is just a little less than the equatorial path length,
around 99%.

Fig. 2:

In Figure 3 the orbital velocity is approximately 80% of
the speed of light and so the orbital path length as seen by
the moving object is approximately 60% that for an object
moving at non-relativistic speed

Fig. 3:

In Figure 4 the orbital velocity is around 98% of the speed
of light and the corresponding orbital path length is approxi-
mately 20% of that for non-relativistic motion.

Fig. 4:

This hemispheric model of the motion of an orbiting ob-
ject is useful because it allows us to visualise the orbital path
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length as being foreshortened by relativity while at the same
time the radius of the orbit is unaffected by relativity. The or-
bital geometry is non-Euclidean and in reality all takes place
in just one plane. The introduction of this third dimension is
just a device to allow us to visualise what is going on. The
orbiting object sees the distance it travels around one orbit as
being reduced by a factor Gamma, but nevertheless sees the
orbital radius as being unaffected by relativity since this is at
right angles to the direction of travel. Thus we can represent
the radius of the orbit as being the distance from a point on
the relativistic orbit to the centre of the hemisphere.

The term Actual Velocity has been adopted to describe the
velocity of the orbiting object as seen by a stationary observer.
This is easily calculated as the circumference of the orbital
path, the equator of the hemisphere (d), divided by the orbital
period (t), both measured by the stationary observer.

The theory postulates that there is a velocity term which
is affected by Gamma. This is termed the Relativistic Veloc-
ity, but only becomes significant when the Actual Velocity
is close to the speed of light. This velocity term can be cal-
culated by taking the foreshortened distance around the line
of latitude, which represents the orbital path as seen by the
moving observer, divided by the orbital period as measured
by a stationary observer. The foreshortened distance around
the orbit is calculated asd/γ and the orbital period remains
the same as for Actual Velocity (t) and hence this Relativistic
Velocity is then easily calculated asvR = d/tγ.

We can use this term directly in calculating the angular
momentum of the orbiting object. This is simply a restate-
ment of the argument used earlier. Angular momentum is the
product of the mass, the velocity and the radius of an orbiting
point object. However the mass of the object is affected by
relativity, appearing to increase the mass by a factor Gamma
(γ) and so:

l = (mγ) r

(
vR
γ

)

. (27)

However since for Gamma to take on a significant valuevR
must be very close toc, the speed of light and so we can sub-
stitutec for vR. Also since the angular momentum of an elec-
tron in orbit around an atomic nucleus is given by Planck’s
constant we can substitute this forl in Equation 27 to give:

l = ~ = mcr . (28)

In effect we are simply substituting Relativistic Velocity
for Actual Velocity in the standard textbook formula for cal-
culating angular momentum. This is recognising that the or-
bital velocity is the distance around the orbit as measured by
the moving object divided by the orbital period as measured
by a stationary observer.

We can of course use this same argument to substitute
Relativistic Velocity for Actual Velocity in the formula for
centripetal acceleration and hence derive expressions for cen-
tripetal and centrifugal forces. However in the case of cen-

Fig. 5:

tripetal acceleration it is also useful to derive an expression
for the relativistic case from first principles.

The formula for centripetal force was first derived by
Christian Huygens in 1659 and describes a constant force
acting on a body in circular motion towards the centre of
the circle. When combined with Newton’s second law this
leads to the idea that a body in circular motion is subject to
a constant acceleration towards the centre called centripetal
acceleration.

It is customary when deriving the formula for centripetal
acceleration to use velocity vectors directly. Here we take
a slightly different approach and use the distance vectors in-
stead. This is because in the proposed theory only the dis-
tance component of velocity is affected by relativity and not
the time component. In other respects the derivation is the
same as that found in many standard texts.

Consider an object in orbit around a point C at radius R.
At a particular instantt the object is at point A and some short
interval of time laterΔt it is at point P, having moved through
an angle subtended at the centre of the circle ofΔθ.

The vector representing the distance moved in timeΔt is
AB and has lengthd and is tangential to the circle, hence CAB
is a right angle. Att + Δt the object is at P and has a distance
vector PQ, also of lengthd. We can translate the vector PQ
to A forming AD. The vector BD then represents the distance
moved towards the centre of the circle in timeΔt. Note that
for asΔθ tends to 0 the line BD tends to a straight line.

Then
d = RΔθ . (29)

Since APC and ABD are similar triangles (for smallΔθ)

e= dΔθ (30)

and the acceleration towards the centre of the circle is

a =
e
Δt2
. (31)

50 Norman Graves. Sampling the Hydrogen Atom



January, 2013 PROGRESS IN PHYSICS Volume 1

Fig. 6:

Therefore

a =
RΔθ2

Δt2
. (32)

Multiplying both top and bottom byRgives

a =
R2Δθ2

RΔt2
. (33)

But since

v =
d
Δt

=
RΔθ
Δt
. (34)

Then

a =
v2

R
. (35)

When we take into consideration the effects of special rel-
ativity, the situation becomes a little more complicated. Al-
though the orbital path is foreshortened, as represented by
the line of latitude in Figure 6, and hence the circumference
of this circle is reduced by a factor Gamma, the radius of
the circle is not affected and remains the same as that for the
equatorial orbital path.

Figure 6 attempts to show this by introducing a third di-
mension and using the hemispherical representation devel-
oped above. In reality however the radius and the orbital path
are co-planar. It can be seen from Figure 6 that the angle
subtended by a short segment of the circumference is less for
the relativistic path than for the non-relativistic path. From
Figure 6 it is evident that

Δφ =
Δθ

γ
(36)

and

RΔφ =
RΔθ
γ
. (37)

Figure 7 shows the foreshortened orbital path in plan
view. The dashed circle represents the non-relativistic orbital

Fig. 7:

path while the radii are shown dotted to indicate that they are
not to scale in this representation.

The distance travelled during timeΔt is foreshortened by
relativity, instead of travelling a distance AB the object only
travels a distance A’B’=D in Figure 7.

D = RΔφ . (38)

Once again the triangles CA’B’ and A’B’D’ are similar
and so the distance travelled towards the centre of the orbit E
is

E = DΔφ . (39)

Once again the triangles CA’B’ and A’B’D’ are similar
and so the distance travelled towards the centre of the orbit E
is

A =
E
Δt2
. (40)

Which is also

A =
RΔφ2

Δt2
(41)

Again we can multiply both denominator and numerator
by R to give

A =
R2Δφ2

RΔt2
. (42)

Which gives

A =
R2Δθ2

RΔt2γ2
(43)

and so

A =
v2

Rγ2
. (44)

Equation 44 represents a more general case for calculat-
ing centripetal acceleration. When the orbital velocity is low,
under non-relativistic conditions, the value of Gamma is unity
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and the formula can be simplified to the more familiar one
shown in Equation 35. Effectively therefore the formula for
centripetal acceleration under relativity substitutes Relativis-
tic Velocity for Actual Velocity in the standard textbook for-
mula.

It is the geometry of the triangle AB’D’ which lies at the
heart of the argument. Here it is argued that the length B’D’
is affected by relativity even though it is measured in a di-
rection at right angles to the direction of travel. This comes
about because the lengths of the two sides AB’ and AD’ are
both themselves affected by relativity and the triangle must
have geometric integrity and so B’D’ must also be scaled by
relativity. If it was not then the triangle AB’D’ would be a
very strange triangle indeed. It would have to be an isosceles
triangle in which the third side could be longer than the sum
of the two other sides. The direction of the vectors AB’ and
AD’ could not be preserved. Even in non-Euclidian geome-
try such a triangle would not be possible and so B’D’ must be
scaled by Gamma.

The measurement of time on the other hand can only take
place in the domain of the observer, so the moving observer
sees his time in his own domain and the stationary observer
sees time in his domain. The two domains are related by a fac-
tor Gamma, but from the point of view of direct measurement
this is a theoretical connection. In other words the stationary
observer has no direct access to the moving clock and, vice
versa, the moving observer has no direct access to the station-
ary clock.

Appendix 2 An Analytical Method for calculating Actual
Velocity

A more analytical approach for calculating the value for c’
can be found without the first approximation used above:

The equation for the value of gamma

γ =
1

√
1− v

2

c2

. (45)

From which

v = c

√
γ2 − 1
γ2

. (46)

Substituting this into the force balance equation gives

m0c2(γ2 − 1)
Rγ3

=
Kq2

R2
. (47)

Recognising that~ = m0Rcand simplifying gives

γ2 − 1
γ3

=
Kq2

~c
. (48)

The term on the right hand side is the Fine Structure Con-
stant which is denoted byα. Substituting and rearranging
gives the following equation forγ.

αγ3 − γ2 + 1 = 0 . (49)

The numerical value forα∗ is 7.2973525698×10−3. Sub-
stituting this and calculating the three roots gives:
γ = 137.028700944403
γ = −0.996384222264
γ = 1.0036823521665
Only the first of these three values is significant. This cu-

bic equation gives a more precise value for Gamma. By rec-
ognizing thatv is very close toc in the force balance equation
the value of Gamma can be calculated as:

Substituting in the equation forγ gives a value forv:

v = c

√
γ2 − 1
γ2

= 0.999973371c . (50)

v is the Actual Velocity of the electron around its orbit and
as can be seen it is very close toc, the velocity of light, be-
ing some 99.9973371% ofc, which is in agreement with the
method of first approximation to the first 8 significant figures.

Appendix 3 The Rydberg Formula

Joseph Jakob Balmer (1825–1898) was a Swiss mathemati-
cian and numerologist who, after his studies in Germany, took
up a post teaching mathematics at a girls’ school in Basel. A
colleague in Basel suggested that he take a look at the spectral
lines of hydrogen to see if he could find a mathematical re-
lationship between them. Eventually Balmer did find a com-
mon factor† h = 3.6456× 10−7 which led him to a formula
for the wavelength of the various spectral lines.

λ =
hm2

m2 − 4
, (51)

wherem is an integer with value 3 or higher.
Balmer originally matched his formula form = 3,4,5,6

and based on this he predicted an absorption line form = 7.
Balmer’s seventh line was subsequently found to match a new
line in the hydrogen spectrum that had been discovered by
Ångstr̈om.

Balmer’s formula dealt with a particular set of spectral
lines in the hydrogen atom and was later found to be a special
case of a more general result which was formulated by the
Swedish physicist Johannes Rydberg.

1
λ
= RH




1

n2
1

−
1

n2
2


 , (52)

whereλ is the wavelength of the spectral line,RH is the Ryd-
berg constant for hydrogen,n1 andn2 are integers andn1< n2.

By settingn1 to 1 and allowingn2 to take on values of
2,3,4 . . .∞ the lines take in a series of values known as the
Lyman series. Balmer’s series is obtained by settingn1 = 2
and allowingn2 to take on values of 3,4,5 . . .∞. Similarly
for other values ofn1 series of spectral lines have been named
according to the person who first discovered them and so:

∗CODATA - http://physics.nist.gov/cgi-bin/cuu/Value?alph
†h here is not to be confused with Planck’s constant.
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n1 n2 Series

1 2. . .∞ Lyman series
2 3. . .∞ Balmer series
3 4. . .∞ Paschen series
4 5. . .∞ Brackett series
5 6. . .∞ Pfund series
6 7. . .∞ Humfreys series

Other series beyond these do exist, but they are not
named.

By substituting different values forR, it was found that
Rydberg’s formula worked for all so calledhydrogenic∗

atoms.
The value ofRH can be found by considering the case

wheren1 = 1 andn2 = ∞, a condition which represents the
maximum possible change in energy level within the hydro-
gen atom.RH is then the wavelength of the absorption line
associated with such an energy change and was calculated to
have a value of 1.097× 107

This was subsequently found to be given by the formula:

RH =
1
4π

m0cα2

~
. (53)

The highest possible energy level for the atom occurs
when n, the energy level, equals the theoretical value of
infinity. The corresponding value for the Actual Velocity
would then bec, the speed of light.

The equation for the energy of an orbiting body of mass
m with velocity v is easily obtained in any standard text and
is given by:

e=
1
2

mv2 . (54)

If we assume that the electron is orbiting at near light
speed then the maximum possible energy† of an electron or-
biting the hydrogen nucleus where the orbital velocity has a
theoretical value ofc, the speed of light and the mass of the
electron ism0 is

e=
1
2

m0c2 . (55)

The energy potential for a hydrogen atom in any arbitrary
energy staten is the difference between this maximum energy
value and the energy of thenth state

en =
1
2

m0c2 −
1
2

m0v
2
n =

1
2

m0(c2 − v2n) . (56)

∗A hydrogenic atom is one which is ionized such that it has only one
orbiting electron. In theory, at least, any atom can be ionized so as to become
hydrogenic.

†Note that the electron is orbiting at the same radius for all energy lev-
els, the potential energy of the electron therefore remains the same and all
changes in energy level which are then associated with changes in kinetic
energy and hence with the velocity of the electron.

We saw earlier that gamma could be expressed in terms
of c, the velocity of light andv, the Actual Velocity using
Einstein’s equation for special relativity and thatγn = nγ0

γn =
c

√
c2 − v2n

. (57)

This is easily rearranged to give an expression forc2 − v2

c2 − v2n =
c2

γ2
n

(58)

In the base energy staten = 0 andγ0 = 1/α

c2 − v20 = c2α2 (59)

Hence the maximum energy potential for the atom is

ep =
1
2

m0c2α2 . (60)

Substituting numerical values form0, c andα gives the
maximum energy potential of the atom as
ep = 2.18009839× 1018 Joules
or
ep = 13.6071 eV.

The energy potential for any arbitrary energy leveln is
given by

epn =
1
2

m0c2α2

n2
. (61)

Hence the difference between any two energy levelsn and
m is

en,m =
1
2

m0c2α2

(
1
n2
−

1
m2

)

. (62)

and the difference in orbital frequency is

ωn,m =
1
2

m0cα2

~

(
1
n2
−

1
m2

)

(63)

This can be expressed in terms of wavelength, similar to
the Rydberg formula, by dividing both sides by 2π to give

1
λn,m

=
1
4π

m0cα2

~

(
1
n2
−

1
m2

)

(64)

and

RH =
1
4π

m0cα2

~
. (65)
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