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We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum
based on the identification of the theory’s antisymmetric rotation tensor with the elec-
tromagnetic field-strength tensor. The theory provides a physical explanation of the
electromagnetic potential, which arises from transverse (shearing) displacements of the
spacetime continuum, in contrast to mass which arises from longitudinal (dilatational)
displacements. In addition, the theory provides a physicalexplanation of the current
density four-vector, as the 4-gradient of the volume dilatation of the spacetime con-
tinuum. The Lorentz condition is obtained directly from thetheory. In addition, we
obtain a generalization of Electromagnetism for the situation where a volume force is
present, in the general non-macroscopic case. Maxwell’s equations are found to remain
unchanged, but the current density has an additional term proportional to the volume
force.

1 Introduction

Since Einstein first published his Theory of General Relativ-
ity in 1915, the problem of the unification of Gravitation and
Electromagnetism has been and remains the subject of contin-
uing investigation (see for example [1–9] for recent attempts).
The Elastodynamics of the Spacetime Continuum [10, 11]
is based on the application of a continuum mechanical ap-
proach to the spacetime continuum(STC). Electromagnetism
is found to come out naturally from the theory in a straight-
forward manner.

In this paper, we derive Electromagnetism from the Elas-
todynamics of the Spacetime Continuum (STCED). This the-
ory thus provides a unified description of the spacetime de-
formation processes underlying general relativistic Gravita-
tion [11] and Electromagnetism, in terms of spacetime con-
tinuum displacements resulting from the strains generatedby
the energy-momentum stress tensor.

1.1 A note on units and constants

In General Relativity and in Quantum Electrodynamics, it is
customary to use “geometrized units” and “natural units” re-
spectively, where the principal constants are set equal to 1.
The use of these units facilitates calculations since cumber-
some constants do not need to be carried throughout deriva-
tions. In this paper, all constants are retained in the deriva-
tions, to provide insight into the nature of the equations being
developed.

In addition, we use rationalized MKSA units for Electro-
magnetism, as the traditionally used Gaussian units are grad-
ually being replaced by rationalized MKSA units in more re-
cent textbooks (see for example [12]). Note that the electro-
magnetic permittivity of free spaceǫem, and the electromag-
netic permeability of free spaceµem are written with “em”
subscripts as the “0” subscripts are used inSTCED constants.

This allows us to differentiate between for exampleµem, the
electromagnetic permeability of free space, andµ0, the Lamé
elastic constant for the shear modulus of the spacetime con-
tinuum.

2 Theory of Electromagnetism fromSTCED

2.1 Electromagnetic field strength

In the Elastodynamics of the Spacetime Continuum, the anti-
symmetric rotation tensorωµν is given by [11]

ωµν =
1
2

(uµ;ν − uν;µ) (1)

whereuµ is the displacement of an infinitesimal element of
the spacetime continuum from its unstrained positionxµ. This
tensor has the same structure as the electromagnetic field-
strength tensorFµν defined as [13, see p. 550]:

Fµν = ∂µAν − ∂νAµ (2)

whereAµ is the electromagnetic potential four-vector (φ, ~A),
φ is the scalar potential and~A the vector potential.

Identifying the rotation tensorωµν with the electromag-
netic field-strength tensor according to

Fµν = ϕ0ω
µν (3)

leads to the relation

Aµ = −1
2
ϕ0uµ⊥ (4)

where the symbolic subscript⊥ of the displacementuµ in-
dicates that the relation holds for a transverse displacement
(perpendicular to the direction of motion) [11].

Due to the difference in the definition ofωµν andFµν with
respect to their indices, a negative sign is introduced, andis
attributed to (4). This relation provides a physical explanation
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for the electromagnetic potential: it arises from transverse
(shearing) displacements of the spacetime continuum, in con-
trast to mass which arises from longitudinal (dilatational) dis-
placements of the spacetime continuum [11]. Sheared space-
time is manifested as electromagnetic potentials and fields.

2.2 Maxwell’s equations and the current density four-
vector

Taking the divergence of the rotation tensor of (1), gives

ωµν ;µ =
1
2

(uµ;νµ − uν;µµ). (5)

Recalling (28) from Millette [11], viz.

µ0uν;µµ + (µ0 + λ0)uµ;µ
ν = −Xν (6)

whereXν is the volume force andλ0 andµ0 are the Lamé
elastic constants of the spacetime continuum, substituting for
uν;µµ from (6) into (5), interchanging the order of partial dif-
ferentiation inuµ;νµ in (5), and using the relationuµ;µ = ε

µ
µ =

ε from (19) of [11], we obtain

ωµν ;µ =
2µ0 + λ0

2µ0
ε;ν +

1
2µ0

Xν. (7)

As seen in [11], in the macroscopic local case, the volume
forceXν is set equal to zero to obtain the macroscopic relation

ωµν;µ =
2µ0 + λ0

2µ0
ε;ν (8)

Using (3) and comparing with the covariant form of Max-
well’s equations [14, see pp. 42–43]

Fµν;µ = µem jν (9)

where jν is the current density four-vector (c̺, ~j), ̺ is the
charge density scalar, and~j is the current density vector, we
obtain the relation

jν =
ϕ0

µem

2µ0 + λ0

2µ0
ε;ν. (10)

This relation provides a physical explanation of the cur-
rent density four-vector: it arises from the 4-gradient of the
volume dilatation of the spacetime continuum. A corollary of
this relation is that massless (transverse) waves cannot carry
an electric charge or produce a current.

Substituting forjν from (10) in the relation [15, see p. 94]

jν jν = ̺
2c2, (11)

we obtain the expression for the charge density

̺ =
1
2
ϕ0

µemc
2µ0 + λ0

2µ0

√

ε;νε;ν (12)

or, using the relationc = 1/
√
ǫemµem,

̺ =
1
2
ϕ0ǫemc

2µ0 + λ0

2µ0

√

ε;νε;ν. (13)

Up to now, our identification of the rotation tensorωµν of the
Elastodynamics of the Spacetime Continuum with the elec-
tromagnetic field-strength tensorFµν has generated consistent
results, with no contradictions.

2.3 The Lorentz condition

The Lorentz condition can be derived directly from the the-
ory. Taking the divergence of (4), we obtain

Aµ;µ = −
1
2
ϕ0u⊥

µ
;µ. (14)

From (23) of [11], viz.

ωµµ = u⊥
µ

;µ = 0, (15)

(14) simplifies to
Aµ;µ = 0. (16)

The Lorentz condition is thus obtained directly from the
theory. The reason for the value of zero is that transverse
displacements are massless because such displacements arise
from a change of shape (distortion) of the spacetime contin-
uum, not a change of volume (dilatation).

2.4 Four-vector potential

Substituting (4) into (5) and rearranging terms, we obtain the
equation

∇2Aν − Aµ;νµ = ϕ0ω
µν

;µ (17)

and, using (3) and (9), this equation becomes

∇2Aν − Aµ;νµ = µem jν. (18)

Interchanging the order of partial differentiation in the term
Aµ;νµ and using the Lorentz condition of (16), we obtain the
well-known wave equation for the four-vector potential [14,
see pp. 42–43]

∇2Aν = µem jν. (19)

The results we obtain are thus consistent with the macro-
scopic theory of Electromagnetism, with no contradictions.

3 Electromagnetism and the volume forceXν

We now investigate the impact of the volume forceXν on
the equations of Electromagnetism. Recalling (7), Maxwell’s
equation in terms of the rotation tensor is given by

ωµν;µ =
2µ0 + λ0

2µ0
ε;ν +

1
2µ0

Xν. (20)

Substituting forωµν from (3), this equation becomes

Fµν;µ = ϕ0
2µ0 + λ0

2µ0
ε;ν +

ϕ0

2µ0
Xν. (21)

The additionalXν term can be allocated in one of two ways:
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1. either jν remains unchanged as given by (10) and the
expression forFµν;µ has an additional term as devel-
oped in Section 3.1 below,

2. orFµν;µ remains unchanged as given by (9) and the ex-
pression forjν has an additional term as developed in
Section 3.2 below.

Option 2 is shown in the following derivation to be the logi-
cally consistent approach.

3.1 jν unchanged (contradiction)

Using (10) (jν unchanged) into (21), Maxwell’s equation be-
comes

Fµν;µ = µem jν +
ϕ0

2µ0
Xν. (22)

Using (20) into (17) and making use of the Lorentz condition,
the wave equation for the four-vector potential becomes

∇2Aν − ϕ0

2µ0
Xν = µem jν. (23)

In this case, the equations forFµν;µ andAν both contain an
additional term proportional toXν.

We show that this option is not logically consistent as fol-
lows. Using (10) into the continuity condition for the current
density [14]

∂ν jν = 0 (24)

yields the expression
∇2ε = 0. (25)

This equation is valid in the macroscopic case whereXν = 0,
but disagrees with the general case (non-zeroXν) given by
(35) of [11], viz.

(2µ0 + λ0)∇2ε = −Xν;ν. (26)

This analysis leads to a contradiction and consequently is not
valid.

3.2 Fµν;µ unchanged (logically consistent)

Proper treatment of the general case requires that the current
density four-vector be proportional to the RHS of (21) as fol-
lows (Fµν;µ unchanged):

µem jν = ϕ0
2µ0 + λ0

2µ0
ε;ν +

ϕ0

2µ0
Xν. (27)

This yields the following general form of the current density
four-vector:

jν =
1
2
ϕ0

µem µ0
[(2µ0 + λ0)ε;ν + Xν]. (28)

Using this expression in the continuity condition for the cur-
rent density given by (24) yields (26) as required.

Using (28) into (21) yields the same covariant form of the
Maxwell equations as in the macroscopic case:

Fµν;µ = µem jν (29)

and the same four-vector potential equation

∇2Aν = µem jν (30)

in the Lorentz gauge.

3.3 Homogeneous Maxwell equation

The validity of this analysis can be further demonstrated from
the homogeneous Maxwell equation [14]

∂αFβγ + ∂βFγα + ∂γFαβ = 0. (31)

Taking the divergence of this equation overα,

∂α∂
αFβγ + ∂α∂

βFγα + ∂α∂
γFαβ = 0. (32)

Interchanging the order of differentiation in the last two terms
and making use of (29) and the antisymmetry ofFµν, we ob-
tain

∇2Fβγ + µem( jβ;γ − jγ;β) = 0. (33)

Substituting forjν from (28),

∇2Fβγ = − ϕ0

2µ0
[(2µ0+ λ0)(ε;βγ − ε;γβ) + (Xβ;γ − Xγ;β)]. (34)

(42) of [11], viz.

µ0∇2εµν + (µ0 + λ0)ε;µν = −X(µ;ν) (35)

shows thatε;µν is a symmetrical tensor. Consequently the dif-
ference term (ε;βγ − ε;γβ) disappears and (34) becomes

∇2Fβγ = −
ϕ0

2µ0
(Xβ;γ − Xγ;β). (36)

ExpressingFµν in terms ofωµν using (3), the resulting equa-
tion is identical to (39) of [11], viz.

µ0∇2ωµν = −X[µ;ν] (37)

confirming the validity of this analysis of Electromagnetism
including the volume force.

(28) to (30) are the self-consistent electromagnetic equa-
tions derived from the Elastodynamics of the Spacetime Con-
tinuum with the volume force. In conclusion, Maxwell’s equ-
ations remain unchanged. The current density four-vector is
the only quantity affected by the volume force, with the addi-
tion of a second term proportional to the volume force. It is
interesting to note that the current density obtained from the
quantum mechanical Klein-Gordon equation with an electro-
magnetic field also consists of the sum of two terms [16, see
p. 35].
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4 Discussion and conclusion

In this paper, we have derived Electromagnetism from the
Elastodynamics of the Spacetime Continuum based on the
identification of the theory’s antisymmetric rotation tensor
ωµν with the electromagnetic field-strength tensorFµν.

The theory provides a physical explanation of the electro-
magnetic potential: it arises from transverse (shearing) dis-
placements of the spacetime continuum, in contrast to mass
which arises from longitudinal (dilatational) displacements of
the spacetime continuum. Hence sheared spacetime is mani-
fested as electromagnetic potentials and fields.

In addition, the theory provides a physical explanation of
the current density four-vector: it arises from the 4-gradient
of the volume dilatation of the spacetime continuum. A corol-
lary of this relation is that massless (transverse) waves cannot
carry an electric charge or produce a current.

The transverse mode of propagation involves no volume
dilatation and is thus massless. Transverse wave propagation
is associated with the distortion of the spacetime continuum.
Electromagnetic waves are transverse waves propagating in
theSTC itself, at the speed of light.

The Lorentz condition is obtained directly from the the-
ory. The reason for the value of zero is that transverse dis-
placements are massless because such displacements arise
from a change of shape (distortion) of the spacetime contin-
uum, not a change of volume (dilatation).

In addition, we have obtained a generalization of Electro-
magnetism for the situation where a volume force is present,
in the general non-macroscopic case. Maxwell’s equations
are found to remain unchanged, but the current density has an
additional term proportional to the volume forceXν.

The Elastodynamics of the Spacetime Continuum thus
provides a unified description of the spacetime deformation
processes underlying general relativistic Gravitation and Ele-
ctromagnetism, in terms of spacetime continuum displace-
ments resulting from the strains generated by the energy-mo-
mentum stress tensor.
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