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The problem of cosmological distances is approached usimgthod based on the
propagation of light in an expanding Universe. From the geaof measure between
Light Travel Time and Euclidean Distances, a formula is\@&tito compute distances
as a function of redshift. This formula is identical to Mgt formula (withgy = 1/2)
which is based on Friedmann’s equations of general refativi

1 Introduction of LTDs, see (1). If we did not compute the scale factor on
Euclidean Distances were introduced in [1], and it was suf e basis of metric distances, the equation would fail tolwor

gested that Euclidean Distances need to be used in orde %‘ cosmologlcgl .redsh|fts, Wh'.Ch area homothetic transf
derive the galactic density profile which is the evolution gpation f_or describing the e\_/olutlon of light vyave!ength.
galactic density over time. The LTD (Light Travel Distance The mstantaneous_Euc.Ildean Hubblemnt 1S defmed.

is the distance traversed by a photon between the time i f‘sth? rqte of expansion n Euchdean_ metrics at any given
emitted and the time it reaches the observer, which may nt in time along the trajectory of a light ray reaching the
also referred to as the Light Travel Time. We define the Eposerver.

clidean distance as the equivalent distance that woulddaeih As space between the photon and the observer expands,

versed by a photon between the time it is emitted and the ti 1 €xpansion IS added to the overall distance the photsn ha

it reaches the observer if there were no expansion of the L}'Ti_travel in order to reach the observer; therefore, the Eu-

verse clidean Distance between the photon and the observer is de-
In the present study, a time-varying Hubble aéent fined by the following dfferential equations, respectively in

in the Euclidean framework is introduced assuming that tmae temporal and metric form:

Hubble law observed in the LTD framework is still applica- 1) In the LTD framework (the temporal form)
ble in the Euclidean framework. The model provides a “kine- dy
matic age of the Universe” which is purely mathematical as at —C+HoCT, ()
it is a result of the change of measure between LTDs and Eu-
clidean Distances. A proofis made that a flat Hubble constant
in the LTD framework (i.e that does not vary with LTD) is
equivalent to a second order forward time-varying Euclidea
Hubble codicient in the Euclidean framework.

where:y is the Euclidean Distance between the photon
and the observeT, the LTD between the observer and
the photong the celerity of light, andHg the Hubble
constant as of today;

2) Inthe Euclidean framework (the metric form)

2 Foundations of the theory % =—-c+Hi(t) y, 3)

The observed Hubble constant that is commonly referred to wherey is the Euclidean Distance between the photon

in the literature is a measure of space expansion with réspec and the observer, the celerity of light, ancH;(t) the
to LTDs. The Euclidean Hubble cfiesient is being defined Euclidean time-varying Hubble céigient.

as the space expansion with respect to Euclidean Distances, . .

This is a change of measure considering that the Euclidean':Or the purpose (.)f convenience Igt us con5|der'§he follow-
Hubble codficient varies with time such that the Hubble laA"¥ form for the Euclidean time-varying Hubble dbeient

is still applicable in the Euclidean framework. This leads t Hi(t) = E’ ()
the following equation t

a whereH;(t) is the Euclidean time-varying Hubble d&eient,

Hi(t) = 3 (1) nthe order of the time-varying Euclidean Hubble, arttie

time from the hypothetical big bang for which time was set to
whereH; is the instantaneous Euclidean HubblefGo®nt,a zero.
is the Universe expansion velocity aadhe scale factor Note that in the present study both the Hubble constant
The main postulate of the present study is that the Eand the Euclidean Hubble cieient are expressed in units
clidean Hubble coficient needs to be used in order to conef [time™1] by converting all distances into Light Travel Time,
pute the scale factor in metric distances and not on the basid with the celeritg = 1.
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3 Proof that a flat Hubble constant in the LTD frame- photon
work is time varying of order two in the Euclidean Hisy o observer
framework -,

First, let us solve the élierential equation for the propagation * ¢
of light in the LTD framework assuming a flat Hubble con- t=Tb-T t=Tb
stant (i.e. that does not vary with LTD). Let us considerFailg 1: Schema to represent the propagation of light in armesp
(r;Egg?\r;el?gr?clilyr:(;t\lljii;egtaéeallelfilé/lq:;dtiin dﬁleséz(r)y;ﬁ:)ﬁ?etgi_ ing space in the Euclidean framework. Whérés the L.ight Trgvel

; . Distance between the observer and the source of lighs, the kine-
server. Let us say Is the.'n't'al LTD between the phOt.Onmatic age of the Universe, amdhe order of the time-varying Hub-
and the observer, and define the Hubble constant functiony@fcogficient (time zero set at time, from today).
LTDs.

The diferential equation describing the propagation of

light in the LTD framework is described by (2). By settinggy substitution ofy from (8), we get
time zero at a referench, in the past, we have= T, - T;
thereforedt = —dT. Hence, (2) becomes N i (n—1)T-Ho ~ Ho. (12)
To  To0(Tp-T-TF"(Tp-T)"

dy
— =C—HpcCT, ) ) ) )
dT Therefore, the “kinematic age of the Universe” is
with boundary conditiong(T) = yo, andy(0) = 0. n
By integration from O tdT, the following relationship re- Tp = A’ (13)
lating Euclidean Distancegto Light Travel Distanced is 0
obtained ) with Hp the Hubble constant as of today.
y=cT- CH;T . 6) By substitution ofTy, = & into (9), we get
Now let us derive the dlierential equation for the propa- cHp T2
gation of lightin the Euclidean framework assuming the time y=cT- 2 (14)

varying Hubble cofficient from (4) (see Figure 1). From the o ) ) )
differential equation describing the propagation of light i tH his solution is identical to (6) relating LTDs to Euclidean

Euclidean framework (3), we get Distances for the flat Hubble constant in the LTD framework.
This is the proof that a flat Hubble constantin the LTD frame-

% - _c+ n y. @) work is equivalent to a time-varying Hubble dheient of or-

dt t der two in the Euclidean framework. The equatitit) = 2/t

By integrating this first order non-homogeneougatiential S the connection between (2) and (3). _
equation betweeff, — T and Ty, the following solution is ~ We can easily show that the recession speed with the sec-
obtained which describes the relationship between Etatid@nd order time-varying Hubble cfiient in the Euclidean

Distances and LTDs framework is the same as the recession speed in the LTD
c . framework. The calculations are as follow
y=——(Tb-T-Tb"(Tb-T)"). (8)
-1l ) Hi) y = 2y = =28 (T - H°T2) (15)
By settingn equal to 2 in (8) for a second order time-varying WY =1v= Tp-T 2 )

Hubble codicient, we get o ) )
By substitution ofTy, from (13) (with a second order time-

T2 . . . -
y = C(T ~ T_). ©) varying Hubble cofficient) into (15), we obtain
b
H|(t)y = HOcT, (16)
Based on the recession speed, the relationship between the
Hubble constant defined function of LTDs, and the EuclideashereT is the LTD between the observer and the source of
Hubble, forT small is as follows light, andy the Euclidean Distance.

HocT = (10) 4 Evolutionary model of the scale factor

_n
(Th-T) v
The diferential equation describing the evolution of the scale

" . . L
Hence,r is obtained by computing the following limit factora s as follows, identical to (1),

n . HocT
T = I|m( 0 ) (11) % = Hi(t) a. a7)
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As Hi(t) = 2, we get 7 Discussion
20 1 T o Based on the change of measure between LTD and Euclidean
f —da = f —dt. (18) Distances, a formula that expresses distances versusftedsh
a @ To-T is obtained. From the change of framework between LTD
By integrating (18) , we obtain and Euclidean distances, it has been proved that a flat Hub-
ble constant (that does not vary with LTD) is equivalent to a
n (@) _5 In( Th ) (19) time-varying Euclidean Hubble cfiient of order two. Fi-
ay To-T) nally, the evolutionary model of the scale factor is derived

and matched to the cosmological redshift equation in order
to obtain the LTD versus redshift equation. This equation is
2 T, \ identical to Mattig’s formula (withgp = 1/2) which is based
= (Tb - T) (20) on Friedmann’s equations of general relativity. The Eggdia
Hubble codicient was used in order to derive the evolution
of the scale factor in metric distances; otherwise, the cos-

which is equivalent to

a

5 Expression of distances versus redshifts mological redshift equation would not be applicable to figh
From cosmological redshifts, we have wavelengths. This study proposes a hew approach to compute
cosmological distances which is based on the introduction o
1+7 = &Y , (21) Euclidean Distances in addition to Light Travel Distanaes i
& an expanding Universe, and a change of measure. The cal-
Whereao is the present scale factm the scale factor at red-CUlationS involved are qUite Simple and our definition of Eu-
shift z clidean Distances may be used as a source of inspiration to
Combining (20) and (21), we get develop future cosmological models.
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6 Comparison with the equation of Mattig 111,

The equation of Mattig [2] is as follows
1
—— X
Hog3(1 + 2)
x (qoz+ (G0 — D)(V1+200z— 1)), (24)

rRy =

wherer is the distanceg is the deceleration paramet&;
the present scale factar,the redshift,Hp the present scale
factor.

For comparison purpose with the equation of the present
study, we should sefp equal to 12 (flat matter dominated
Universe), andR, to 1. Therefore, we obtain

r 2(1— ! ) (25)

_H_o 1+z

This formula is identical to (23). We have just shown that
the solution to our problem is identical to Mattig formula fo
Jo equal to 12.

Yuri Heymann. Change of Measure between Light Travel TimeEBmnclidean Distances 19



