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Change of Measure between Light Travel Time and Euclidean Distances
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The problem of cosmological distances is approached using amethod based on the
propagation of light in an expanding Universe. From the change of measure between
Light Travel Time and Euclidean Distances, a formula is derived to compute distances
as a function of redshift. This formula is identical to Mattig’s formula (withq0 = 1/2)
which is based on Friedmann’s equations of general relativity.

1 Introduction

Euclidean Distances were introduced in [1], and it was sug-
gested that Euclidean Distances need to be used in order to
derive the galactic density profile which is the evolution of
galactic density over time. The LTD (Light Travel Distance)
is the distance traversed by a photon between the time it is
emitted and the time it reaches the observer, which may be
also referred to as the Light Travel Time. We define the Eu-
clidean distance as the equivalent distance that would be tra-
versed by a photon between the time it is emitted and the time
it reaches the observer if there were no expansion of the Uni-
verse.

In the present study, a time-varying Hubble coefficient
in the Euclidean framework is introduced assuming that the
Hubble law observed in the LTD framework is still applica-
ble in the Euclidean framework. The model provides a “kine-
matic age of the Universe” which is purely mathematical as
it is a result of the change of measure between LTDs and Eu-
clidean Distances. A proof is made that a flat Hubble constant
in the LTD framework (i.e that does not vary with LTD) is
equivalent to a second order forward time-varying Euclidean
Hubble coefficient in the Euclidean framework.

2 Foundations of the theory

The observed Hubble constant that is commonly referred to
in the literature is a measure of space expansion with respect
to LTDs. The Euclidean Hubble coefficient is being defined
as the space expansion with respect to Euclidean Distances.
This is a change of measure considering that the Euclidean
Hubble coefficient varies with time such that the Hubble law
is still applicable in the Euclidean framework. This leads to
the following equation

Hi(t) =
ȧ
a
, (1)

whereHi is the instantaneous Euclidean Hubble coefficient,ȧ
is the Universe expansion velocity anda the scale factor

The main postulate of the present study is that the Eu-
clidean Hubble coefficient needs to be used in order to com-
pute the scale factor in metric distances and not on the basis

of LTDs, see (1). If we did not compute the scale factor on
the basis of metric distances, the equation would fail to work
with cosmological redshifts, which are a homothetic transfor-
mation for describing the evolution of light wavelength.

The instantaneous Euclidean Hubble coefficient is defined
as the rate of expansion in Euclidean metrics at any given
point in time along the trajectory of a light ray reaching the
observer.

As space between the photon and the observer expands,
this expansion is added to the overall distance the photon has
to travel in order to reach the observer; therefore, the Eu-
clidean Distance between the photon and the observer is de-
fined by the following differential equations, respectively in
the temporal and metric form:

1) In the LTD framework (the temporal form)

dy
dt
= −c + H0 c T, (2)

where:y is the Euclidean Distance between the photon
and the observer,T the LTD between the observer and
the photon,c the celerity of light, andH0 the Hubble
constant as of today;

2) In the Euclidean framework (the metric form)

dy
dt
= −c + Hi(t) y , (3)

wherey is the Euclidean Distance between the photon
and the observer,c the celerity of light, andHi(t) the
Euclidean time-varying Hubble coefficient.

For the purpose of convenience let us consider the follow-
ing form for the Euclidean time-varying Hubble coefficient

Hi(t) =
n
t
, (4)

whereHi(t) is the Euclidean time-varying Hubble coefficient,
n the order of the time-varying Euclidean Hubble, andt the
time from the hypothetical big bang for which time was set to
zero.

Note that in the present study both the Hubble constant
and the Euclidean Hubble coefficient are expressed in units
of [time−1] by converting all distances into Light Travel Time,
and with the celerityc = 1.

Yuri Heymann. Change of Measure between Light Travel Time and Euclidean Distances 17



Volume 2 PROGRESS IN PHYSICS April, 2013

3 Proof that a flat Hubble constant in the LTD frame-
work is time varying of order two in the Euclidean
framework

First, let us solve the differential equation for the propagation
of light in the LTD framework assuming a flat Hubble con-
stant (i.e. that does not vary with LTD). Let us consider a
photon initially situated at a Euclidean Distancey0 from the
observer and moving at celerityc in the direction of the ob-
server. Let us sayT is the initial LTD between the photon
and the observer, and define the Hubble constant function of
LTDs.

The differential equation describing the propagation of
light in the LTD framework is described by (2). By setting
time zero at a referenceTb in the past, we havet = Tb − T ;
therefore,dt = −dT . Hence, (2) becomes

dy
dT
= c − H0 c T , (5)

with boundary conditionsy(T ) = y0, andy(0) = 0.
By integration from 0 toT , the following relationship re-

lating Euclidean Distancesy to Light Travel DistancesT is
obtained

y = c T −
c H0 T 2

2
. (6)

Now let us derive the differential equation for the propa-
gation of light in the Euclidean framework assuming the time-
varying Hubble coefficient from (4) (see Figure 1). From the
differential equation describing the propagation of light in the
Euclidean framework (3), we get

dy
dt
= −c +

n
t
y . (7)

By integrating this first order non-homogeneous differential
equation betweenTb − T and Tb, the following solution is
obtained which describes the relationship between Euclidean
Distances and LTDs

y =
c

n − 1

(

Tb − T − Tb1−n (Tb − T )n
)

. (8)

By settingn equal to 2 in (8) for a second order time-varying
Hubble coefficient, we get

y = c

(

T −
T 2

Tb

)

. (9)

Based on the recession speed, the relationship between the
Hubble constant defined function of LTDs, and the Euclidean
Hubble, forT small is as follows

H0 c T =
n

(Tb − T )
y . (10)

Hence, n
Tb

is obtained by computing the following limit

n
Tb
= lim

T→0

(

H0 c T
y

)

. (11)

Fig. 1: Schema to represent the propagation of light in an expand-
ing space in the Euclidean framework. WhereT is the Light Travel
Distance between the observer and the source of light,Tb is the kine-
matic age of the Universe, andn the order of the time-varying Hub-
ble coefficient (time zero set at timeTb from today).

By substitution ofy from (8), we get

n
Tb
= lim

T→0













(n − 1)T · H0

Tb − T − T 1−n
b (Tb − T )n













= H0 . (12)

Therefore, the “kinematic age of the Universe” is

Tb =
n

H0
, (13)

with H0 the Hubble constant as of today.
By substitution ofTb =

2
H0

into (9), we get

y = c T −
c H0 T 2

2
. (14)

This solution is identical to (6) relating LTDs to Euclidean
Distances for the flat Hubble constant in the LTD framework.
This is the proof that a flat Hubble constant in the LTD frame-
work is equivalent to a time-varying Hubble coefficient of or-
der two in the Euclidean framework. The equationHi(t) = 2/t
is the connection between (2) and (3).

We can easily show that the recession speed with the sec-
ond order time-varying Hubble coefficient in the Euclidean
framework is the same as the recession speed in the LTD
framework. The calculations are as follow

Hi(t) y =
2
t
y =

2c
Tb − T

(

T −
H0 T 2

2

)

. (15)

By substitution ofTb from (13) (with a second order time-
varying Hubble coefficient) into (15), we obtain

Hi(t) y = H0 c T , (16)

whereT is the LTD between the observer and the source of
light, andy the Euclidean Distance.

4 Evolutionary model of the scale factor

The differential equation describing the evolution of the scale
factora is as follows, identical to (1),

da
dt
= Hi(t) a . (17)
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As Hi(t) = 2
t , we get

∫ a0

a1

1
a

da =
∫ Tb

Tb−T

2
t

dt . (18)

By integrating (18) , we obtain

ln

(

a0

a1

)

= 2 ln

(

Tb

Tb − T

)

, (19)

which is equivalent to

a0

a1
=

(

Tb

Tb − T

)2

. (20)

5 Expression of distances versus redshifts

From cosmological redshifts, we have

1+ z =
a0

a1
, (21)

wherea0 is the present scale factor,a1 the scale factor at red-
shift z.

Combining (20) and (21), we get

T = Tb

(

1−
1
√

1+ z

)

. (22)

By substitution ofTb from (13) for a second order time-
varying Hubble coefficient, we get the following equation re-
lating LTD to redshifts

T =
2

H0

(

1−
1
√

1+ z

)

. (23)

6 Comparison with the equation of Mattig

The equation of Mattig [2] is as follows

rR0 =
1

H0q2
0(1+ z)

×

×
(

q0z + (q0 − 1)(
√

1+ 2q0z − 1)
)

, (24)

wherer is the distance,q0 is the deceleration parameter,R0

the present scale factor,z the redshift,H0 the present scale
factor.

For comparison purpose with the equation of the present
study, we should setq0 equal to 1/2 (flat matter dominated
Universe), andR0 to 1. Therefore, we obtain

r =
2

H0

(

1−
1
√

1+ z

)

. (25)

This formula is identical to (23). We have just shown that
the solution to our problem is identical to Mattig formula for
q0 equal to 1/2.

7 Discussion

Based on the change of measure between LTD and Euclidean
Distances, a formula that expresses distances versus redshifts
is obtained. From the change of framework between LTD
and Euclidean distances, it has been proved that a flat Hub-
ble constant (that does not vary with LTD) is equivalent to a
time-varying Euclidean Hubble coefficient of order two. Fi-
nally, the evolutionary model of the scale factor is derived
and matched to the cosmological redshift equation in order
to obtain the LTD versus redshift equation. This equation is
identical to Mattig’s formula (withq0 = 1/2) which is based
on Friedmann’s equations of general relativity. The Euclidean
Hubble coefficient was used in order to derive the evolution
of the scale factor in metric distances; otherwise, the cos-
mological redshift equation would not be applicable to light
wavelengths. This study proposes a new approach to compute
cosmological distances which is based on the introduction of
Euclidean Distances in addition to Light Travel Distances in
an expanding Universe, and a change of measure. The cal-
culations involved are quite simple and our definition of Eu-
clidean Distances may be used as a source of inspiration to
develop future cosmological models.
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