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Hierarchical relationships between physical theories are discussed. It is explained how
a lower rank theory imposes constraints on an acceptable structure of its higher rank
theory. This principle is applied to the case of quantum mechanics and quantum field
theory of massive particles. It is proved that the Dirac equation is consistent with these
constraints whereas the Klein-Gordon equation, as well as all other second order quan-
tum equations are inconsistent with the Schrödinger equation. This series of arguments
undermines the theoretical structure of the Standard Model.

1 Introduction

The equations of motion are regarded as the basis of a physi-
cal theory. A mathematical analysis of these equations yields
the complete form of a given theory and of its details. The
validity of a mathematically correct physical theory should
be consistent with two kinds of tests. Thus, it must agree
with relevant experimental data and it must also be consis-
tent with well established physical principles. (Evidently, the
latter represent many experimental data in a concise form.)
The following simple example illustrates the latter point. A
new theory is unacceptable if its final results are inconsistent
with the law of energy conservation. This point shows the
significance of physical constraints that restrict the number
of acceptable physical theories and guide theoretical and ex-
perimental efforts to take promising directions.

The definition of a domain of validity is an important ele-
ment of a theory. For example, mechanics is the science used
for predicting the motion of bodies. It is very successful in
the case of the motion of planets moving around the sun. On
the other hand, it cannot predict the motion of an eagle flying
in the sky. This example does not mean that mechanics is in-
correct. It means that mechanics is a very satisfactory science
for a set of experiments. For example, Newtonian mechanics
is acceptable for cases where the following conditions hold:
the velocity is much smaller than the speed of light, the clas-
sical limit of quantum mechanics holds, and the force can be
calculated in terms of position, time and velocity. The set of
experiments where a given theory is successful is called the
theory’s domain of validity. This issue is used in the rest of
this work.

The definition of the domain of validity illustrates an im-
portant aspect of the correctness of a physical theory. Indeed,
this notion should be regarded in a relative sense. Thus, many
measurements are given together with experimental error. For
this reason, even if we know that a given theory is not perfect,
it still can be regarded as a correct theory for cases where the
theory’s errors are smaller than the experimental errors.

In this work units where ℏ = c = 1 are used. In this system
of units one kind of dimension applies and here it is the length
[L]. Thus, the dimension of every physical quantity takes

an appropriate power of [L]. For example, mass, energy and
momentum take the dimension [L−1]. The metric is diagonal
and its entries are (1,−1,−1,−1). Greek indices run from 0 to
3. The subscript symbol ,µ denotes the partial differentiation
with respect to xµ.

2 The dimensions of quantum fields

Consider the two sets of experiments S A and S B defining the
domains of validity of the physical theories A and B, respec-
tively.

Fig. 1 illustrates the hierarchical relationships between
theories A and B. Here the sets S A and S B consist of all ex-
periments that are described correctly by theory A and B, re-
spectively. The set S A is a subset of S B. This relationship
means that all experiments that are described successfully by
theory A are also described successfully by theory B, but not
vice versa. For this reason it can be stated that theory B has
a more profound meaning because it is also valid for cases
where theory A is useless. However, this fact does not mean
that theory A is wrong, simply because this theory can be
used successfully for all cases that belong to its domain of
validity S A.

This kind of relationships between theories has been rec-
ognized a long time ago. For example, A. Einstein men-
tions special relativity and general relativity and explains why
special relativity should not be regarded as a wrong theory.
The reason is that special relativity holds in cases where a
flat space-time can be regarded as a good description of the

Fig. 1: Domains of validity of two theories (see text).
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physical conditions. Similarly, considering electrostatics and
Maxwellian electrodynamics, he explains why electrostatics
is a good theory for cases where the charge carriers can be
regarded as motionless objects (see [1], pp. 85, 86).

The issue of hierarchical relationships between theories is
also discussed in Rohrlich’s book (see [2], pp. 1–6). Here one
can find explanation showing the hierarchical relationships
between several pairs of theories. This discussion provides
the reader with a broader overview of the structure of existing
physical theories and of their hierarchical relationships.

As pointed out above, a physical theory that takes a higher
hierarchical position has a more profound meaning. The rest
of this work relies on another result obtained from these re-
lationships. Thus, a well established physical theory imposes
constraints on appropriate limits of a higher rank theory. For
example, this requirement is satisfied by relativistic mechan-
ics, whose low velocity limit agrees with Newtonian mechan-
ics (see [3], pp. 26–30). Similarly, the classical limit of
quantum mechanics agrees with classical physics (see [4], pp.
19–21 and [5], pp. 133–141). Below, this principle is called
constraints imposed by a lower rank theory. It is shown in
this work that this principle provides powerful constraints on
the acceptability of physical theories.

3 Hierarchical Relationships Between Quantum Theo-
ries

Let us discuss the hierarchical relationships between three
quantum theories of massive particles: non-relativistic quan-
tum mechanics (QM), relativistic quantum mechanics (RQM)
and quantum field theory (QFT) (see fig. 2). Thus, QM takes
the lowest hierarchical rank because it is valid for cases where
the absolute value of the momentum’s expectation value is
much smaller than the particle’s self-mass. RQM is valid for
cases where the number of particles can be regarded as a con-
stant of the motion. QFT is a more general theory and RQM
is its appropriate limit. The inherent relationships between
these theories are well documented in the literature. Thus,
S. Weinberg makes the following statement. “First, some
good news: quantum field theory is based on the same quan-
tum mechanics that was invented by Schrödinger, Heisen-
berg, Pauli, Born, and others in 1925-1926, and has been used
ever since in atomic, molecular, nuclear and condense matter
physics” (see [6], p. 49).

The Schrödinger equation takes the following form

i
∂ψ

∂t
= − 1

2m
∆ψ + Uψ. (1)

An analysis of this equation yields an expression for a
conserved current whose density is (see e.g. [4], pp. 53–55)

ρ = ψ∗ψ. (2)

Relation (2) proves that the dimension of the Schrödinger
function is

[ψ] = [L−3/2]. (3)

Fig. 2: Hierarchical relationships between three quantum theories
(see text).

Here the expression for density depends only on the wave
function and contains no derivatives. The form of the density
(2) is an important element of the theory because it enables a
construction of a Hilbert space of the time-independent func-
tions which belong to the Heisenberg picture.

Let us examine the structure of QFT. The vital role of
the Lagrangian density in QFT can be briefly described as
follows. The phase is an indispensable element of quantum
theories. Being an argument of an exponent which can be ex-
panded in a power series, the phase must be a dimensionless
Lorentz scalar. Thus, the phase is defined as a Lorentz scalar
action (divided by ℏ). The following expression shows how
the action is obtained from a given Lagrangian density L

S =
∫
L d4x. (4)

This expression proves that a dimensionless Lorentz
scalar action is obtained from a Lagrangian density that is
a Lorentz scalar whose dimension is [L−4].

This property of the Lagrangian density is used in an ex-
amination of two kinds of QFT theories. Let us begin with the
first order Lagrangian density of a free Dirac field ψD (see [7],
p. 54)

LD = ψ̄D[γµi∂µ − m]ψD. (5)

Now, the dimension [L−4] of the Lagrangian density and
the dimension [L−1] of the operators ∂µ and m prove that the
dimension of the Dirac field ψD is [L−3/2]. This value agrees
with that of the Schrödinger function (3). It means that the
Dirac field theory satisfies the dimension constraints imposed
by the lower rank theory of QM.

A different result is obtained from the second order com-
plex Klein-Gordon (KG) equation. The Lagrangian density
of this equation is (see [7], p. 38)

LKG = g
µνϕ∗,µϕ,ν − m2ϕ∗ϕ. (6)

Here the dimension of the operators is [L−2]. Using the
dimension [L−4] of the Lagrangian density, one infers that the
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dimension of the KG function ϕ is [L−1]. On the other hand,
it is shown in (3) that the dimension of the Schrödinger wave
function is [L−3/2]. This outcome means that the complex
KG function ϕ violates a constraint imposed by a lower rank
theory.

It turns out that this inconsistency holds for other quantum
equations where the dimension of their field function is [L−1].
Thus, a dimension [L−1] is a property of the following field:
the Yukawa particle (see [8], p. 211), the electroweak W±,Z
bosons (see [9], p. 307) and the Higgs boson (see [10], p.
715). For this reason, quantum theories of all these particles
are inconsistent with the dimensional constraint imposed by
the Schrödinger equation.

One can also see immediately that the Yukawa and the Z
fields introduce to the Lagrangian density an interaction term
with a fermion ψ which takes the form

LInt = gψ̄ϕψ. (7)

This kind of interaction means that the field ϕ of each
of these particles is a real field (in a mathematical sense).
This conclusion stems from the facts that the action and the
integration factor d4x are real. These properties mean that all
terms of a Lagrangian density must be real. Now, since g and
the product ψ̄ψ are real, one finds that ϕ is real. Evidently, a
theory of a real field is inconsistent with another constraint of
QM. Indeed, QM uses a complex wave function and for this
reason the non-relativistic limits of the real field of Yukawa
and of Z particles also violate a second kind of constraint.

4 Concluding Remarks

It is explained in this work how hierarchical relationships
between physical theories can be used for deriving neces-
sary conditions that an acceptable higher rank theory must
satisfy. This issue is applied to QFT theories and the non-
relativistic limit of their field function is compared with prop-
erties of non-relativistic quantum mechanics. It is explained
how such a comparison provides a powerful criterion for the
acceptability of physical theories. The discussion examines
the dimension of quantum functions of several specific theo-
ries and compares the dimension of QFT theories with that of
the lower rank non-relativistic Schrödinger theory. It turns
out that the Dirac field satisfies this criterion whereas the
Klein-Gordon and the Yukawa theories as well as those of
the W±, Z and the Higgs boson fail to satisfy this criterion.

An important evaluation of a theoretical idea is a compar-
ison of its outcome with experimental results. Referring to
this issue, one should note that a field function ψ(xµ) which is
used in QM, RQM and QFT depends on a single set of four
space-time coordinates xµ. For this reason, ψ(xµ) describes
an elementary point-like particle. The following example il-
lustrates this matter. A pion consists of a quark-antiquark
pair of the u, d flavor and each quark is described by a func-
tion that depends on its own 4-coordinates xµ. Hence, a pion

cannot be described by a function ψ(xµ), simply because this
function has a smaller number of independent coordinates.
It turns out that experimental data of all spin-1/2 Dirac par-
ticles, namely, leptons and quarks, are consistent with their
pointlike attribute. On the other hand the pion, which was
the original KG candidate is not pointlike and the π± mesons
have a charge radius which is not much smaller than that of
the proton [11]. There is still no experimental data concern-
ing pointlike properties of the W±,Z and the Higgs boson.

As is well known, the W±,Z and the Higgs bosons are cor-
nerstones of the Standard Model. It means that the series of
arguments presented in this work undermines the theoretical
structure of the Standard Model. Evidently, a physical the-
ory that has an inconsistent structure is unacceptable. Hence,
people who still adhere to the Standard Model must show why
the arguments presented above are incorrect. It is also inter-
esting to note that the results of this work are consistent with
Dirac’s lifelong objection to the second order KG equation of
a spin-0 boson (see [12], pp. 3, 4).
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