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In the framework of the Geometric Collective Model (GCM), quantum phase transition
between spherical and deformed shapes of doubly even nuclei are investigated. The
validity of the model is examined for the case of lanthanide chains Nd/Sm and actinide
chains Th/U. The parameters of the model were obtained by performing a computer
simulated search program in order to obtain minimum root mean square deviations be-
tween the calculated and the experimental excitation energies. Calculated potential en-
ergy surfaces (PES’s) describing all deformation effects of each nucleus are extracted.
Our systematic studies on lanthanide and actinide chains have revealed a shape transi-
tion from spherical vibrator to axially deformed rotor when moving from the lighter to
the heavier isotopes.

1 Introduction
The nuclear shape transitions were studied within the nu-
clear interacting boson model (IBM) [1–3]. The IBM-1 de-
scribes a system of a fixed number N of spin zero and two
bosons (s and d bosons) subject to one- and two-body inter-
actions. The IBM-1 reveals a transparent algebraic structure
with U(6) as the dynamical group. Varying six free param-
eters of the model, one can reach three standard dynamical
symmetries U(5), SU(3) and O(6) and two additional ones
SU(3)∗ and O(6)∗ [2]. It turns out that these dynamical sym-
metries provide an appropriate framework for the description
of low-energy collective motions of real nuclei with certain
shape symmetries: The U(5) limit corresponds to spherical
nuclei, the SU(3) and SU(3)∗ limits to axially symmetric nu-
clei with quadruple deformation (prolate and oblate shapes)
and the O(6) and O(6)∗ limits to quadruply deformed nuclei
that are unstable against the axial symmetry breaking. This is
represented in the so called Casten triangle [2,4] with vertices
corresponding to the standard dynamical symmetries and the
other points to various transitional cases. Phase transitions
between these shapes were studied, and it is known that the
phase transition from U(5) to O(6) is second order, while any
other transition within the Casten triangle from a spherical to
a deformed shape is first order [5–15].

Alternative descriptions of nuclei at the critical point of
phase transitions from spherical vibrator to deformedγ soft
E(5) [16], and from spherical vibrator to deformed axially
symmetric rotor X(5) [17], were proposed. These analytic
solutions are obtained by introducing a square well potential
in the Bohr Hamiltonian and yield parameter free predictions
for both energies and electromagnetic transition probabilities.
Empirical examples were suggested for both the proposed
symmetries [18]. It was found [19, 20] that the X(5) predic-
tions cannot be exactly reproduced by any point in the two pa-
rameter space of the IBM, whereas best agreement is obtained

for parameters corresponding to a point close to, but outside,
the shape phase transition region of the IBM. Since the IBM
was formulated from the beginning in terms of creation and
annihilation boson operators, its geometric interpretation in
terms of shape variables is usually done by introducing a bo-
son condensate with two shape parametersβ andγ through
the intrinsic state formalism (coherent state) [21]. The pa-
rameterβ is related to the axial deformation of the system,
while γ measures the deviation from axial symmetry. The
equilibrium shape of the system is obtained by minimizing
the intrinsic state. It is well know that the dynamical sym-
metry associated with U(5) corresponds to a spherical shape
β = 0, the dynamical symmetry SU(3) is associated with an
axially deformed shapeβ , 0 andγ = 0, π/3 and the dynam-
ical symmetry O(6) is related to aγ-unstable deformed shape
β , 0 andγ-independent.

A very flexible and powerful approach to describe nu-
clear collective excitations which is an extension of the Bohr-
Mottelson vibrational Hamiltonian [22] is the GCM essen-
tially based on the quadruple degrees of freedom [23,24]. The
problem of nuclear collective motion is formulated by Bohr
and Mottelson from the beginning in terms of the intrinsic pa-
rametersβ, γ and the three Euler angelsωi that characterize
the orientation of a deformed nucleus.

The GCM is a macroscopic nuclear structure model in the
sense that it considers the nucleus as a charged liquid drop
with a definite surface, rather than a many-body system of
constituent particles.

Neodymium isotopes are the members of the chain of nu-
clei which represent an ideal case for studying the influence
of the shape transition from spherical to deformed nuclei.
Therefore, in the chart of nuclei there is a very important lan-
thanide Nd/Sm transition region which exhibit a rapid struc-
tural change from spherical to well deformed when moving
from the lighter to the heavier isotopes. Although this tran-
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sitional region has been studied extensively in the framework
of the IBM, the discussion of phase transitions has not always
been treated in a proper way.

In the present paper, we have analyzed systematically the
transitional region and phase transition in lanthanide and ac-
tinide chains of isotopes in the framework of GCM. For each
isotope chain a fitting procedure is performed to get the model
parameters. We have generated the PES to classify phase
transitions and to decide if a nucleus is close to criticality.
In these chains, nuclei evolve from spherical to deformed
shapes.

2 The GCM Hamiltonian and the PES’s

The Hamiltonian of the GCM [23] represents a concrete re-
alization of the general Bohr Hamiltonian [22] describing the
quadruple oscillations of the nuclear surface. The collective
Hamiltonian restricted to quadruple deformations can be writ-
ten in the notation of Rajah for tensor products of irreducible
tensor operators. Theα′s are the well known collective co-
ordinates, which are defined by the usual expansion of the
nuclear radius in terms of spherical harmonics. The ˆπ is the
covariant tensor of the canonically conjugate momenta. We
start by writing the GCM Hamiltonian as:

Ĥ = T̂ + V̂. (1)

The kinetic energŷT up to second order is given by [2].

T̂ =
1
B2

[π × π]0 +
P3

3

[
[π × α](2) × π̂

](0)
(2)

whereB2 is the common mass parameter andP3 is an enhar-
monic kinetic term which for simplicity, we set to zero here.
A transformation to the intrinsic body fixed system leads to
a formal separation of the rotational and vibrational variables
expressed by the Euler angles and the shape parametersβ and
γ respectively. The potential energyV is given by

V = C2[α × α](2) + C3

[
[α × α](2) × α

](0)
+

+C4[α × α](0)[α × α](0)+

+C5[α × α](0)
[
[α × α](2) × α

](0)
+

+C6

[
[α × α](2) × α

](0) [
[α × α](2) × α

](0)
+

+D6[α × α](0)[α × α](0)[α × α](0).

(3)

The six stiffness parametersC2,C3,C4,C5,C6 andD6 occur-
ring in the collective potential energy are constants for each
nucleus. They are treated as adjustable parameters which
have to be determined from the best fit to the experimental
data, level energies, B(E2) transition strengths and
quadruple moments. They depend however on the proton and
neutron numbers due to shell structure. The potential energy,

expressed in terms of the intrinsic variablesβ andγ, is

V(β, γ) = C2
1√
5
β2 −C3rub

√
2
35 β

3 cos(3γ)+

+C4
1
5 β

4 −C5

√
2

175 β
3 cos(3γ)+

+C6
2
35 β

6 cos2(3γ) + D6
1

5
√

5
β6

= Vs(β) + VPo(β, γ) + Vna(β, γ).

(4)

Roughly speaking theC2, C4 and D6 terms describe theγ-
independent features of the PES. They form the contribution
Vs(β). TheC3 andC5 terms are responsible for the prolate-
oblate energy differences in the PES and are represented by
Vpo(β, γ). The C6 term is symmetric about theγ = π/6
axis and therefore can be used for the generation of non ax-
ial shapeVna(β, γ). The selection of the eight parameters of
the GCM Hamiltonian is impractical and difficult, because
the available observation data are usually not sufficient to
establish the qualitative nature of the GCM potential. It is
therefore, often desirable to use a more tractable form of the
model. In practice simplification for the GCM is to use a
maximum of three parameters to describe all limits of nuclear
structure: vibrator, rotor andγ-soft nuclei and transition re-
gions in between. Then the potential energy up to the fourth
power ofβ is simplified to be:

V(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos(3γ) + C4

1
5
β4 (5)

whereβ ∈ [0,∞] andγ ∈ [0,2π/3].

3 Critical Point Symmetries

The equilibrium shape associated with the GCM Hamiltonian
can be obtained by determining the minimum of the energy
surface with respect to the geometric variablesβ andγ, i.e.
where the first derivative vanish.

Since the parameterC3 controls the steepness of the po-
tential, and therefore, the dynamical fluctuations inγ, it stron-
gly affects the energies of excited intrinsic states. The param-
eter C3 = 0 gives aγ-flat potential and an increase ofC3

introduces aγ-dependence in the potential with a minimum
atγ = 0. ChangingC3 will indeed induce aγ-unstable to the
symmetric rotor transition; it is best to simultaneously vary
C2 andC4 as well.

The shape transition from vibrator to rotors is achieved
by starting from the vibrator limit, loweringC2 from positive
to negative value, increasingC4 to large positive value, with
gradually increasingC3 (loweringC2 from positive to nega-
tive value, introducing a large positiveC4 and a positiveC3).

4 Numerical Results Applied to Lanthanide and Actin-
ide chains

The first nucleus to be identified as exhibiting transition from
spherical to axially deformed shapes was152Sm [18], fol-
lowed by150Nd [24]. Further work on152Sm [25] and150Nd
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[25,26] reinforced this conclusion. In our calculation we will
examine and systematically study the lanthanide144−154Nd
and 146−156Sm, isotopes and actinide224−234Th and230−238U
isotopes because of the richness of available experimental
data indicating a transition of nuclear shapes from spherical
to deformed form. The optimized model parameters for each

Table 1: The GCM parameters by (MeV) as derived in fitting proce-
dure used in the calculation.

Nucleus C2 C3 C4
144Nd 12.46084 1.06407 −26.29034
146Nd 7.98904 8.46249 −5.34827
148Nd −19.84450 41.41216 105.62500
150Nd −56.19267 83.37305 248.96600
152Nd −73.70551 104.57310 319.48270
154Nd −84.13947 118.02790 362.71460

146Sm 14.49576 1.27688 −30.52593
148Sm 8.89235 9.87290 −5.28215
150Sm −23.19850 47.32818 121.87500
152Sm −63.80397 93.79468 281.39990
154Sm −82.44842 116.19230 356.21830
156Sm −93.05583 129.83070 400.10950

224Th 0.55766 4.96951 6.10300
226Th −0.11521 6.38937 9.70762
228Th −0.83906 7.98671 13.68875
230Th −1.63871 9.76153 18.10188
232Th −2.59264 11.71384 23.12250

230U −1.67560 9.76153 18.18437
232U −2.63289 11.71384 23.21250
234U −3.77666 13.84363 28.92012
236U −4.90299 16.15090 34.85125
238U −6.23928 18.63565 41.51437

nucleus was adjusted by fitting procedure using a computer
simulated search program in order to describe the gradual
change in the structure as neutron number varied and to re-
produce the properties of the selected reliable state of positive
parity excitation (2+1 ,4

+
1 ,6

+
1 ,8

+
1 ,0

+
2 ,2

+
3 ,4

+
3 ,2

+
2 ,3

+
1 , and 4+2) and

the two neutron separation energies of all isotopes in each iso-
topic chain. The resulting parameters are listed explicitly in
Table 1. For the isotopic chains investigated here, the collec-
tive properties are illustrated by representing the calculated
PES describing all deformation effects of the nucleus. We in-
vestigated the change of nuclear structure within these chains
as illustrated in Figures 1-4. The PES’s versus the deforma-
tion parameterβ for lanthanide and actinide isotopic chains of
nuclei evolving from spherical to axially symmetric well de-
formed nuclei. We remark that for all mentioned nuclei, the
PES is not flat, exhibiting a deeper minimum in the prolate
(β > 0) region and a shallower minimum in the oblate (β < 0)

region. Relatively flat PES occur for the N= 86 nuclei146Nd
and148Sm. A first order shape phase transition with change in
number of neutrons when moving from the lighter to heavier
isotopes,i.eU(5) - SU(3) transitional region are observed.

Fig. 1: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Neodymium isotope chain144−154Nd.

The present results for146−156Sm is in good agreement
with Nilsson-Strutinsky (BCS)-calculations [26]. However,
the existence of a bump in the PES is related to the success of
the confinedβ-soft (BCS) rotor model, employing an infinite
square well potential displaced from zero, as well as to the
relevance of Davidson potentials [27, 28]. It also is related
to the significant five-dimensional centrifugal effect [28, 29].
The actinide228−234Th and234−238U are all well-deformed ro-
tors with energy ratioE(4+1)/E(2+1) close to (3.3).

5 Conclusion

A simple approach of the GCM is discussed which repro-
duces the basic features of the three limits of the nuclear
structure: spherical vibrator, axially symmetric rotor andγ-
soft rotor, as well as the three phase shape transition regions
linking them. The Hamiltonian is expressed as a series ex-
pansion in terms of surface deformation coordinates and a
conjugate momentum. We considered only the lowest kinetic
energy terms, so that the eigen problem for our Hamiltonian
reduces to Schrodinger equation in five dimensional spaces.
All calculations are performed for reference value of the com-
mon mass parameter, only a maximum of three parameters of
the truncated form of GCM potential instead of the six are
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Fig. 2: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Samarium isotope chain146−156Sm.

Fig. 3: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Thorium isotope chain224−234Th.

Fig. 4: PES calculated with GCM as a function of the shape param-
eterβ for shape phase transition from spherical to prolate deformed
for Uranium isotope chain230−238U.

used. The parameter values for the description of a particu-
lar nucleus have been found through automated fitting of the
nuclear energy levels.

The systematics of shape transitions versus neutron num-
ber is studied by the GCM. The capabilities of the model and
the illustrative way of representing the collective properties
by potential energy surfaces are demonstrated. For neutron
number N= 90, the nucleus has a substantial static deforma-
tion, but for N= 80 the nucleus is soft or transitional and
cannot be described as deformed.
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