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To give the characteristics of the evolution of the collectivity in even-even nuclei, we
studied the behavior of the energy ratios R(4/2) and R(6/4). All chains of lanthanides
begins as vibrational with R(4/2) near 2.0 and move towards rotational (R(4/2) −→
3.33) as neutron number increases. A rabid jump in R(4/2) near N=90 was seen. The
plot of R(4/2) against Z shows not only the existence of a shape transitions but also the
change in curvature in the data for N=88 and 90, concave to convex. For intermedi-
ate structure the slopes in E-GOS (Eγ over spin) plots range between the vibrator and
rotor extremes. The abnormal behavior of the two-neutron separation energies of our
lanthanide nuclei as a function of neutron number around neutron number 90 is cal-
culated. Nonlinear behavior is observed which indicate that shape phase transition is
occurred in this region. The calculated reduced B(E2) transition probabilities of the low
states of the ground state band in the nuclei 150Nd/152Sm/154Gd/156Dy are analyzed and
compared to the prediction of vibrational U(5) and rotational SU(3) limits of interacting
boson model calculations.

1 Introduction

The interacting boson model (IBM) [1, 2] and the geomet-
ric collective model (GCM) [3–5] represent two major phe-
nomenological approaches that successfully describe nuclear
collectivity. While the IBM model is purely algebraic, based
on a bosonized form of the many-body problem with even
numbers of fermions, the GCM model follows from a geo-
metric description of nuclei using the Bohr-Mottelson (BM)
Hamiltonian [6].

Quantum phase transitions are of great interest in many
areas of physics, and their manifestations vary significantly
in different systems. For nuclear systems, the IBM reveals
rich features of their shape phase transitions [7–16]. Three
dynamical symmetries in the IBM were shown to correspond
to three typical shape phase of nuclei, known as the spher-
ical U(5) symmetry, axially deformed SU(3) symmetry and
γ-soft deformed O(6) symmetry shapes. It is also known that
phase transitions coincide with transitions between dynami-
cal symmetries, with a first order phase transition taking place
in the U(5)-SU(3) transition, and a second order phase transi-
tion happening in the U(5)-O(6).

A new class of symmetries that applies to systems local-
ized at the critical points was proposed. In particular the criti-
cal symmetry E(5) [17] has been suggested to describe critical
points in the phase transition from spherical vibrator U(5) to
γ-unstable rotor O(6) shapes, while X(5) [18] is designed to
describe systems lying at the critical point in the transition
from spherical to axially deformed systems. These are based
originally on particular solutions of the Bohr-Mottelson dif-
ferential equations, but are usually applied in the context of
the IBM [1], since the IBM provides a simple but detailed
framework in which first and second order phase transitions
can be studied. In the IBM language, the symmetry E(5) cor-

responds to the critical point between U(5) and O(6) sym-
metry limits, while X(5) symmetry should describe the phase
transition region between the U(5) and the SU(3) dynamical
symmetries.

The purpose of this paper is to disuse the main concepts
of the rapid changes in structure of lanthanide and actinide
nuclei by using some good indicators like energy ratios, two-
neutron separation energies and reduced electric quadruple
transition probabilities.

2 Energy Ratios and Nuclear Shape Transition

Nuclear shape phases are the manifestation of the collective
motion modes of nuclei. One of the best signatures of shape
transition is the behavior of the ratio between the energies of
the first 4+ and 2+ states

R(4/2) =
E(4+1 )
E(2+1 )

(1)

along the isotopic chain. The members of vibrational nuclei
have excitation energies

E(I) = C(I), (2)

where C is the vibrational constant. So that the energy ratios
are

R((I + 2)/I)vib =
I + 2

I
. (3)

The yrast energies of the harmonic vibrator can be written
as

E(I) = nE(2+1 ), (4)

where n is the phonon number. The γ-ray energies within the
yrast band are given by

Eγ(I) = E(I) − E(I − 2)
= E(2+1 ). (5)
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It is interesting to discuss the energy levels by plotting the
ratio of Eγ(I) to spin I (E-Gamma Over Spin) (E-GOS) [19]
against spin I. This is not helpful to identify the structure of
the nucleus, but also to discern changes as a function of spin.
Therefore, the E-GOS for vibrational nuclei can be written as

(Eγ/I)vib = E(2+1 )/I (6)

which decreases hyperbolically from E(2+1 )/2 to zero. In the
rigid rotor, the energies of the yrast states are:

E(I) = AI(I + 1), (7)

where A is the rotational parameter (A = ℏ2/2J, where J rep-
resents the moment of inertia), so that the energy ratios are

R((I + 2/I))rot =
(I + 2)(I + 3)

I(I + 1)
. (8)

Then The γ-ray energies within the yrast band are given
by

Eγ(I) = A(4I − 2) (9)

and so the E-GOS is

(Eγ/I)rot = A
(
4 − 2

I

)
=

E(2+1 )
3

(
2 − 1

I

)
.

(10)

In units of A, this evolves from 3 for I=2 up to 4 for high
I, and so gradually increasing and asymptotic function of I.
Also E-GOS for γ-unstable nuclei is given by

(Eγ/I)γ−so f t =
E(2+1 )

4

(
1 +

2
I

)
. (11)

The R(4/2) varies from the value which correspond to vi-
brations around a spherical shape of vibrational nuclide
R(4/2)=2 to the characteristic value for excitations of well-
deformed rotor R(4/2)=3.33. That is, the energy ratio R(4/2)
exhibits sharp change in rapid transitional region. Even-even
nuclei can be classified roughly according to ratios R(4/2) as:

1.0 < R(4/2) < 2.0 for magic nuclei,
2.0 < R(4/2) < 2.4 for vibrational nuclei,
2.4 < R(4/2) < 2.7 for γ-unstable nuclei,
2.7 < R(4/2) < 3.0 for transitional nuclei,

3.00 < R(4/2) < 3.33 for rotational nuclei.
To give the characteristics of the evolution of the col-

lectivity in even-even nuclei, we study the behavior of the
energy ratios R(4/2) and R(6/4). For the nuclei included in
our study, all chains of lanthanides begins as vibrational with
R(4/2) near 2.0 and move towards rotational (R(4/2)−→3.33)
as neutron number increases. For intermediate structure the
slopes in E-GOS plots range between the vibrator and rotor
extremes. One particular case of interest is R(4/2)=3.0 which

traditionally marks the boundary where axial rotation begins
to set in. A very general phenomenological model is that of
the an harmonic vibrator (AHV) [20]. In this model the yrast
energies are given by

E(I = 2n) = nE(2+1 )
n(n − 1)

2
ϵ4, (12)

where
ϵ4 = E(4+1 ) − 2E(2+1 ) (13)

is the an harmonically of the 4+ state, that is, its deviation in
energy from twice the 2+ energy, and n = I/2, n is the phonon
number in a vibrational nucleus. For ϵ4 = 0 equation (12)
gives the harmonic vibrator

E(I) =
1
2

E(2+1 )I (R(4/2) = 2). (14)

For ϵ4 = (4/3)E(2+1 ), it gives the rigid rotor expression

E(I) =
1
6

E(2+1 )I(I + 1) (R(4/2) = 10/3). (15)

For ϵ4 = E(2+1 ), it gives

E(I) =
1
8

E(2+1 )I(I + 2) (R(4/2) = 3.0). (16)

E(I)/I is constant and that the E-GOS plots is flat. So,
interestingly the phase transition point (R(4/2) 3.0) roughly
serves to section E-GOS plots into two classes of increasing
and decreasing with I, so that nuclei on the vibrator side of
the phase transition are down-sloping while these to the rotor
side are up-sloping.

The systematics of energy ratios of successive levels of
collective bands in medium and heavy mass even-even nu-
clei were studied [21]. A measure of their deviation from the
vibrational and rotational limiting value was found to have
different magnitude and spin dependence in vibrational, rota-
tional and γ-unstable nuclei. For a given band for each spin I,
the following ratios were constructed to define the symmetry
for the excited band of even-even nuclei

r((I + 2)/I) =
R((I + 2)/I)exp − R((I + 2)/I)vib
R((I + 2)/I)rot − R((I + 2)/I)vib

=
R((I + 2)/I)exp − (I + 2)/I

2(I + 2)
I(I + 1)

,
(17)

where R((I + 2)/I)exp is the experimental value of the ratio.
In equation (17), the value of energy ratios, r have changed
between 0.1 and 1 for yrast bands of even-even nuclei. The
ratio r should be close to one for a rotational nucleus and
close to zero for a vibrational nucleus, while it should have
intermediate values for γ-unstable nuclei:

0.10 ≤ r ≤ 0.35 for vibrational nuclei,
0.4 ≤ r ≤ 0.6 for transitional nuclei,
0.6 ≤ r ≤ 1.0 for rotational nuclei.
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3 Electromagnetic Transition Strengths

When the nucleus is deformed it acquires an electric-multiple
moment. Consequently as it oscillates, in λµ mode, it emits
electric λµ radiation. Now to calculate the radiative transition
rates between vibrational states, we need the nuclear electric
multiple operator M̂. This is given by

M̂(Eλ, µ) =
∫
τ

dτρc(r)rλYλµ(θ, ϕ), (18)

ρc(r) is the charge density of the nucleus. The electric multi-
pole moment is defined by Q̂λ

Q̂λ =
(

16π
2λ + 1

)1/2

M(Eλ, 0). (19)

We now discuss the electric quadruple moment (λ = 2) in
more detail because the electric quadruple moment Q2 of a
nucleus is a measure of the deviation of the charge distribu-
tion from spherical symmetry. We define the reduced transi-
tion probability as:

B(E2, Ii −→ I f ) =
∑

M f |⟨IiMi|Q2|I f M f ⟩|2

= 1
2Ii+1 |⟨Ii||Q2||I f ⟩|2,

(20)

where |⟨Ii||Q2||I f ⟩| is a reduced matrix element defined by the
Wigner-Eckart theorem

⟨IiMi|M(Eλ, µ)|I f M f ⟩| = ⟨IiMiλµ|I f M f ⟩
|⟨Ii||M(Eλ)||I f ⟩|

(2Ii + 1)1/2 .

The reduced transition probability B(E2, IiK −→ I f K)
for an electric quadruple transition between two members of
same rotational band with quantum number K is:

B(E2, IiK −→ I f K) =
5

16π
e2Q2

0⟨IiK20|I f K⟩2, (21)

where Q0 is the transition intrinsic quadruple moment and we
have used ∑

m1m2,m

|⟨I1m1I2m2|Im⟩|2 = 2I + 1. (22)

For even-even nuclei, K = 0 and when Ii = I and I f =

I −2, we get the familiar relations between B(E2, I −→ I −2)
and the intrinsic quadruple moment Q0 are:

B(E2, I −→ I − 2) =
5

16π
e2Q2

0
3
2

I(I − 1)
2(2I − 1)(2I + 1)

. (23)

As a special case for the transition 2+ −→ 0+, yields

B(E2, 2+ −→ 0+) =
5

16π
e2Q2

0. (24)

For the transition Ii = I and I f = I + 2, yields

B(E2, I −→ I + 2) =
5

16π
e2Q2

0
3
2

(I + 2)(I + 1)
2(2I + 1)(2I + 2)

(25)

and for special case for the transition 0+ −→ 2+, yields

B(E2, 0+ −→ 2+) =
5

16π
e2Q2

0. (26)

That is

B(E2, 2+ −→ 0+) = 0.2 B(E2, 0+ −→ 2+). (27)

From equation (21), the intrinsic quadruple moment Q0
for a K = 0 band of an axially symmetric rotor is extracted.
For the special transition 0+ −→ 2+, we get

eQ0 =

[
16π

5
B(E2, 0+ −→ 2+)

]1/2

(28)

in units of 10−24 cm2.
The electric reduced transition probability B(Eλ) can be

obtained from the transition probability per unit time for emis-
sion of photon of energy ℏω, angular momentum λ and of
electric type with the nucleus going from a state i to a state f
defined by

T (Eλ) =
8π(λ + 1)
λ[(2λ + 1)!!]2

1
ℏ

(
Eγ
ℏc

)(2λ+1)

. (29)

T (Eλ) for electric quadruple has the from

T (E2) =
4π
75

1
ℏ

(
Eγ
ℏc

)5

B(E2). (30)

For the quadruple transition T (E2) can be derived exper-
imentally from the relation

T (E2, 2+ −→ 0+) =
ln2

(1 + α)τ1/2
, (31)

where α is the total conversion coefficient taken from the tab-
ulated values given by Rose [22] and τ1/2 is the half life time.
From equations (30) and (31), one can find B(E2):

B(E2, 2+ −→ 0+) =
75ℏ
4π

(
ℏc
E2+

)5 ln2
(1 + α)τ1/2

= 0.565502
(

100
E2+

)5 1
(1 + α)τ1/2

,

(32)

where B(E2) is in units of e2b2 when E2+ is in units of MeV
and τ1/2 in units of nanosecond.

4 The two–neutron Separation Energies

The energy required to remove a neutron from a nucleus with
Z proton and N neutron is called separation energy and is
defined as:

S n(Z,N) = [M(Z,N − 1) + Mn − M(Z,N)]C2. (33)
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Fig. 1: Systematics of low-lying yrast level energies in even-even
lanthanides Nd/Sm/Gd/Dy isotopes. The 2+, 4+, . . . , 10+ level ener-
gies are plotted. The states are labeled by Iπ.

This expression can be rewritten in the form of binding
energy as:

S n(Z,N) = B(Z,N) − B(Z,N − 1). (34)

The definition of the two-neutron separation energies is the
following:

S 2n = B(N) − B(N − 1), (35)

where N denotes the number of valence nucleon pairs and it
is assumed that we are treating nuclei belonging to the first
half of the neutron shell (50 - 82) filling up with increasing
mass number.

5 Numerical Calculations and Discussions

The systematics of the excitation energies of the low-lying
states as a function of neutron number changing from 84 to
100 in the even-even lanthanides Nd/Sm/Gd/Dy isotopes in
the mass region 144–166 and the actinide Th/U isotopes in
the mass region 224–238 are presented in Figures (1,2). Only
the yrast state of positive parity and spin Iπ = 2+, 4+, 6+, 8+

and 10+ has been included.
The trend of increasing excitation energy of 2+ state with

decreasing neutron number, implying a corresponding fall in
deformation as the N = 82 shell closure is approached. The
energies of the 4+ and 6+ states also display the same trend.
For lanthanides isotopes we can see that the energy values
for each spin I states change almost linearly for N ≤ 88 and
become quite flat for N ≥ 90. This is consistent with the
onset of the Z = 64 sub-shell effect. Furthermore, the linear
falling of the energy value for each I state as N goes from
86 to 88 seems to justify the linear variation of the effective
proton-boson number in each isotope series.

As an example Figure (1) shows that the limits (spherical
shape and well deformed rotor) are fulfilled in the Neodymium
144Nd and 152−156Nd isotopes respectively, and also that there

Fig. 2: The same as Fig. (1) but for actinides Th/U isotopes.

is a smooth transition between them. The 148Nd isotopes
could be considered as a transitional nucleus in the calcula-
tions. A rapid rise in R(4/2) between N = 88 and 90 is shown,
where it increases from values of ≃2.3 typical of actual vibra-
tional nuclei to 3.0, the traditional borderline value separating
spherical from deformed nuclei to ≃3.3 the limiting value of
the axial rotor model. As a matter of fact, if we compare the
X(5) results (first order phase transition from a spherical vi-
brator to an axially deformed rotor is called X(5)) with the
energy levels in 148Nd, we find striking similarities, it sug-
gested that the nucleus 148Nd display the X(5) symmetry.

The nature of the low-lying states in our lanthanides and
actinides chains of isotopes can be illustrated in Figures (3,4)
by examining the ratios of the excitation energies R(4/2) and
R(6/4) as a function of neutron number. The limiting values
for R(4/2) and R(6/4) for harmonic vibrator are 2.0 and 1.5
and for rigid symmetric rotor are 0.33 and 2.1 respectively.

In lanthanides the calculated values increases gradually
from vibrational value to transitional value near N=90 to rotor

Fig. 3: Evolution of energy ratios R(4/2) and R(6/4) for lanthanides
Nd/Sm/Gd/Dy isotopes as function of increasing neutron number.
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Fig. 4: The same as Fig. (3) but for actinides Th/U isotopes.

Fig. 5: The plot of R(4/2) values in the Nd/Sm/Gd/Dy region against
Z. We see change in curvature in the data for N=88 and N=90 con-
cave to convex.

value in the heavier isotopes. The energy ratios R(4/2) and
R(6/4) for even A, N=88 isotopes are essentially constant for
Sm, Gd and Dy.

The same data for lanthanides is plotted between R(4/2)
against Z instead of N, see Figure (5). We see a rapid jump
in R(4/2) near N=90. Here, the plot of R(4/2) against Z
shows not only the existence of a shape transitions but also
the change in curvature in the data for N=88 and 90, concave
to convex. For Gd nuclei for N≤88 the behavior is typically
closed shell, while for N ≥ 90 the behavior appears to be near
mid shell.

The nuclei of lanthanides region would therefore be can-
didates for a shape transition from vibrator to axially rotator
and the N = 90 isotopes 150Nd, 152Sm, 154Gd and 156Dy are
ideal candidates for X(5). Historically, sensitive studies [23]
of the 152Sm level scheme led to a suggestion that this nucleus
gave evidence for a first order phase transition [24], its R(4/2)
value is intermediate between vibrator and rotor [25]. Addi-
tional X(5) candidate in the lanthanides region have subse-
quently been identified in 150Nd [26], 154Gd [27], 156Dy [28]

Fig. 6: Comparison of R(I/2) and E-GOS plots for three kinds of
collective modes vibrator, rotor and R(4/2)=3 modes.

Fig. 7: The r((I + 2)/I) energy ratios for the ground state bands
of even-even Lanthanides Nd/Sm/Gd/Dy isotopes as a function of
spin I.

and 162Yb [29]. Fig. (6) shows R(I/2) and E-GOS plots for a
vibrator, a rotor and R(4/2)=3 modes.

To investigate the dependence of energy ratios on the an-
gular momentum, the useful criterion r((I + 2)/I) are exam-
ined for distinguishing between different kinds of collective
behavior. In Figures (7,8) we show the results of our calcula-
tions for the ground state bands of the selected lanthanides
and actinides isotopes. The study supports the interpreta-
tion of 150Nd and 152Sm as a critical point nucleus. Hence,
the isotopes 150Nd and 152Sm are associated to X(5) sym-
metry. For the vibrational nuclei 152Gd and 154Dy, the ratios
r((I + 2)/I) start with a small value and then increases with I,
more rapidly in the beginning and slower at higher I’s. On the
other hand for rotational nucleus 162Dy the ratios r((I + 2)/I)
start with a value very close to one and then constantly de-
crease.

As an example, the abnormal behavior of the two-neutron
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Fig. 8: The same as Fig. (7) but for Actinides Th/U isotopes.

Fig. 9: Two-neutron separation energies S 2n for the chains
Nd/Sm/Gd/Dy isotopes as a function of the number of neutrons.

separation energies S 2n of nuclei Nd/Sm/Gd/Dy as a function
of neutron number around neutron number 90 is illustrated
in Fig. (9), the nonlinear behavior of S 2n indicates that shape
phase transition may occur in this region. It is commonly
assumed that the ratio of the B(E2) reduced transition proba-
bilities between the levels of the ground state band takes the
values between vibrational and rotational limits. In the inter-
acting boson model IBM [1] both these limits are corrected
because the number of the quadruple bosons cannot exceed
some maximum value N.

In the U(5) vibrational limit of IBM,

B(E2, I + 2→ I)
B(E2, 2+ → 0+)

=
1
2

(I + 2)
(
1 − 1

2N

)
and in the SU(3) rotational limit of IBM,

B(E2, I+2→ I)
B(E2, 2+ → 0+)

=
15
2

(
1− 1

2N

) (
1− 1

2N+3

)
(I+2)(I+1)

(2I+3)(2I+5)
.

Our GCM calculated values of these ratios are put be-
tween these limits, i.e., the IBM calculations can reproduce
the E2 transition probabilities.

Fig. 10: The ratio dB(E2,I+2−→I)
B(E2,2+−→0+ of reduced transition probabilities

between the levels of the ground state band of 150Nd, 152Sm, 154Gd
and 156Dy as compared to the U(5) and SU(3) of IBM calculations
(• for U(5), ◦ for SU(3) and x for present calculation).

Table 1: The GCM parameters as derived in fitting procedure used
in the calculation.

Nucleus I U(5) SU(3) Present
Vibrator Rotor calculations

150Nd (N=9) 0 0.94444 0.98941 0.75812
2 1.88888 1.41345 1.45375
4 2.63333 1.55677 1.71683
6 3.77777 1.62962 2.19186
8 4.72222 1.67381 2.46675

152Sm (N=10) 0 0.95 0.99130 0.68900
2 1.90 1.41614 1.45137
4 2.85 1.55973 1.71262
6 3.80 1.63272 1.98838
8 4.75 1.67700 2.23512

154Gd (N=11) 0 0.95454 0.99272 0.77300
2 1.90909 1.41818 1.52393
4 2.86363 1.56197 1.79560
6 3.81818 1.63507 1.97412
8 4.77272 1.67941 2.23803

156Dy (N=12) 0 0.95833 0.99382 0.87381
2 1.91666 1.41975 1.51345
4 2.87500 1.56370 1.92725
6 3.83333 1.63688 2.35673
8 4.79166 1.68127 2.53512

The calculated B(E2, I + 2 −→ I)/B(E2, 2+ −→ 0+) ra-
tios using GCM for the ground state bands of the low-lying
state are presented in Table (1) and Fig. (10) together with

Khalaf A.M. and Ismail A.M. Structure Shape Evolution in Lanthanide and Actinide Nuclei 103



Volume 2 PROGRESS IN PHYSICS April, 2013

the results for the vibrator and rotor limits of IBM for 150Nd,
152Sm, 154Gd and 156Dy.
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