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The values of the potential energy surface (PES) for the even-even isotopic chains of
Nd/Sm/Gd/Dy are studied systematically using the simplified form of interacting boson
model (IBM) with intrinsic coherent state. The critical points have been determined
for each isotope chain. The phase diagrams exhibits first-order shape phase transition
from spherical U(5) to deformed axial symmetric prolate SU(3) when moving from
light isotopes to heavy ones.

1 Introduction

We note that in the interacting boson model-1 (IBM-1) [1, 2]
one describes an even-even nucleus as a system of N bosons
able to occupy two levels, one with angular momentum re-
stricted to zero (s boson) and one with angular momentum 2
(d boson).

The bosons are assumed to interact via a two-body resid-
ual interaction. Denoting by bi (i=1,...,6) the creation (anni-
hilation) operators for bosons (b1 = s, b2,...,6 = d) it is easy
to see that the 36 operators Gii− = b†i bi− close under the Lie
algebra of U(6). This simple model allows the utilization of
algebraic symmetric for approaching different type of nuclear
spectra, known as dynamical symmetries and corresponding
to un-harmonic vibrator (U(5) Symmetry) [3], rigid deforma-
tions (SU(3) Symmetry) [4] and γ-instability (O(6) Symme-
try) [5]. In these special cases it is possible to find analytical
solutions of the boson Hamiltonian and deal with small de-
viations from these symmetries using different perturbation
methods.

However, real nuclei may deviate considerably from the
simple dynamical limits. This is represented in the Casten
triangle [1–6] with vertices corresponding to the standard dy-
namical symmetries and the sides of the triangle represent
direct transition between the limiting cases, whereas all com-
plex transition regions are contained in the area. Phase tran-
sitions between these shapes were studied, and it is known
that the phase transition from U(5) to O(6) is second order,
while any other transitions within the Casten triangle from a
spherical to deformed shape is first order [7–23].

Now, there is a class of symmetries that are formulated
in terms of the Bohr Hamiltonian and that can be applied to
critical point situation [24–26]. In particular, at the critical
point from spherical to γ-unstable shapes, called E(5) [24], at
the critical point from spherical to axially deformed shapes,
called X(5) [25] and the critical point from axially deformed
shapes to triaxial shapes, called Y(5) [26]. Since the intro-
duction of these limits many theoretical [27–32] and experi-
mental [33–39] studies have been presented in order to look

for nuclei that exhibit the properties of critically and to clas-
sify the corresponding phase transitions. Many studies have
extended these original models to more complex situations
[40–44].

The relation between the Bohr-Mottelson collective
model [45] and the IBM was established [46, 47] on the ba-
sis of an intrinsic (or coherent) state for the IBM. Via this
coherent state formalism, a potential energy surface (PES)
E(β, γ) in the quadruple deformation variables β and γ can
be derived for any IBM Hamiltonian and the equilibrium de-
formation parameters β0 and γ0 are then found by minimizing
E(β, γ). The deformation parameter β measures the axial de-
viation from sphericity, while the angle variable γ controls
the departure from axial symmetry.

In the present work, we investigate shape phase transition
within the IBM-1 using coherent state formalism for various
rare earth isotopic chains. The paper is organized as follows.
First the IBM and the symmetry triangle used in the present
work is briefly described in section 2. In this variation of the
IBM, the coherent state approach is treated to produce PES’s
in section 3. The location of the critical point in the shape
transition is identified in section 4. We review the concept of
dynamical symmetry in section 5. In section 6 a systematic
study of isotopic chains on Nd/Sm/Gd/Dy related to the U(5)-
SU(3) shape transition is given and main conclusions arising
from the present results are discussed.

2 The IBM-1 Hamiltonian and Coherent State

Denoting by Cn[G] the nth-order Casmir operator of the Lie
group G, the general sd-IBM Hamiltonian with up to two-
body interactions can be written in the following form:

H = ϵC1[U(5)] + k1C2[U(5)]
+ k2C2[O(5)] + k3C2[O(3)] (1)
+ k4C2[S U(3)] + k5[O(6)]

The Casmir operators are defined by the following equations

C1[U(5)] = n̂d (2)
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C2[U(5)] = n̂d(n̂d + 4) (3)

C2[O(5)] = 4
[

1
10

(L̂.L̂ + T̂3.T̂3)
]

(4)

C2[O(3)] = 2(L̂.L̂) (5)

C2[S U(3)] =
2
3

[
2(Q̂.Q̂) +

3
4

(L̂.L̂)
]

(6)

C2[O(6)] = 2
[
N(N + 4) − 4(P̂.P̂)

]
(7)

where n̂d, P̂, L̂, Q̂ and T̂3 are the boson number, pairing, an-
gular momentum, quadruple and octuple operators defined as

n̂d = (d†d̃)(0) (8)

P̂ =
1
2

(d̃d̃) − 1
2

(s̃s̃) (9)

Q̂[χ] = [d† s̃ + s†d̃]2 + χ[d†xd̃](2) (10)

L̂ =
√

10[d†xd̃](1) (11)

T̂3 = [d†xd̃](3) (12)

where s†(s) and d†(d) are monopole and quadruple boson
creation (annihilation) operators respectively. The study of
shape phase transition in even-even nuclei can be well done
from the simple two parameter IBM Hamiltonian, the well
known consistent-Q Hamiltonian

H = εn̂d − kQ̂(χ) · Q̂(χ). (13)

The symbol (·) represents the scalar product and the scaler
product of two operators with angular momentum L is defined
as T̂L.T̂L = ΣM(−1)MT̂LMT̂L−M where T̂LM corresponds to the
M component of the operator T̂L.

The Hamiltonian of equation (13) describes the main fea-
tures of collective nuclei, it contains the dynamical symme-
tries of the IBM for spherical choices of the coefficients ε, k
and χ, and allows to describe the transitional regions between
any of symmetry limits as well. In discussing phase transi-
tions, it is convenient to introduce the control parameter η,
such as:

η

1 − η =
1
N
ε

k
(14)

where N is the total number of boson. Hamiltonian(1) can be
written in the second form

H = C
[
ηn̂d −

1 − η
N

Q̂(χ).Q̂(χ)
]
. (15)

With
C = ε + Nk, η =

ε/k
N + ε/k

. (16)

The second form equation (15) avoids the infinities inher-
ent in the use of the ratio of ε/k as η varies from 0 to 1. The
factor C in equation (15) is only a scale factor and η and χ
are therefore the two parameters that determine the structure.
The values of the control parameter η ranges from 0 to 1 and
χ is located in the interval of −

√
7/2 (-1.32) to

√
7/2 (+1.32).

Let us consider the Hamiltonian of equation (5) and the
effects of its two parameters η and χ. Clearly, one of the most
important features of the IBM is the existence of three dis-
tinct dynamical symmetries (DS), each representing a well
defined phase of nuclear collective motion. The three DS
are: the U(5) symmetry for spherical vibrational nuclei (η=1),
the SU(3) symmetry for prolate deformed nuclei (η=0, χ=
−
√

7/2) and the O(6) symmetry for γ-unstable deformed nu-
clei (η=0, χ=0), the SU(3) symmetry for oblate deformed nu-
clei corresponding to (η=0, χ=+

√
7/2). For intermediate val-

ues of the control parameters η and χ, the potential energy
surface (PES) function will describe a certain point on the
IBM symmetry triangle located between the three limits.

Comparing the simplified Hamiltonian equation (15) with
equation (1) we see that only two terms of the general form
are considered. Rewriting equation (15) in the form of equa-
tion (1), we get:

H =

η + 2
7N

(1 − η)χ
χ + √7

2

C1[U(5)]

+
2

7N
(1 − η)χ

χ + √7
2

C2[U(5)]

+
1
N

(η − 1)
(
1 +

3
√

7
χ +

2
7
χ2

)
C2[O(5)]

+
1

14N
(1 − η)χ

(
χ + 2

√
7
)
C2[0(3)]

+
1
√

7N
(η − 1)χC2[S U(3)]

+
1
N

(1 − η)
1 + 2

√
7χ

C2[O(6)].

(17)

In IBM-1, the intrinsic coherent normalized state of a nu-
cleus with N valence bosons outside the doubly-closed shell
state is given by:

|Nβγ⟩ = 1
√

N!
(Γ†C)N |0⟩ (18)

where |0⟩ denotes the boson vacuum, and

Γ
†
C =

1√
1 + β2

[
s† + β cos γd†0 +

1
√

2
βsinγ(d†2 + d†−2)

]
. (19)

Here β ≥ 0 and 0 ≤ γ ≤ π/3 are intrinsic shape parame-
ters. We get the PES by calculating the expectation value of
Hamiltonian (17) on the boson condensate equation (18). The
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corresponding PES as a function of the deformations β and γ
is given by:

E(N, η, χ, β, γ) =

= −5(1 − η) + 1
(1 + β2)2{ [

Nη − (1 − η)
(
4N + χ2 − 8

)]
β2

+

[
Nη − (1 − η)

(
(2N + 5)

7
χ2 − 4

)]
β4

+4N(1 − η)
√

2
7χβ

3 cos 3γ
}

(20)

3 Location of the Critical Symmetries

Minimization of the PES equation (20) with respect to β for
given values of the control parameters η and χ, gives the equi-
librium value βe. The phase transition is signaled by the con-
dition at β = 0

d2E
dβ2 = 0, (21)

which fixes the critical value of the control parameter η. The
critical point in the above equation (20) is given by the value
of η where the coefficient at β2 vanishes, i.e.

ηcritical =
4N + χ2 − 8
5N + χ2 − 8

. (22)

At this value, the second β derivative for β = 0 changes
its sign, which means that β = 0 maximum becomes a local
minimum. Note that the critical point (22) depends on χ, it
changes between: η(−

√
7/2) = (16N − 25)/(20N − 25) at

U(S)-SU(3) side if the symmetry triangle, and η(0) = (16N −
32)/(20N − 32) at the U(5)-O(6) side, condition (12) gives in
the case of large-N limit the value 4/5.

If we ignore the contribution of one-body term of the
quadruple-quadruple interaction and in large N limit (N-1≃N)
and γ = 0, equation (20) takes the form

E(N, η, χ, β) =
Nβ2

(1 + β2)2

5η−4 + 4

√
2
7
βχ(1−η)

+β2
(
η − 2

7
χ2(1−η)

)]
.

(23)

The deformation parameter β = 0 is always a stationary
point. For η < 4/5, β = 0 is a maximum, while for η > 4/5,
it becomes a minimum. In the case of η = 4/5, β = 0 is an
inflection point. The η = 4/5 is the point at which a mini-
mum at β = 0 starts to develop and defines the antispinodal
line. For χ , 0, there exists a region, where two minima, one
spherical and one deformed, coexist. This region is defined by
the point at which the β = 0 minimum appears (antispinodal
point) and the point at which the β , 0 minimum appears
(spinodal point). For η = 1, the system is in the symmetry

Fig. 1: Potential energy surface (PES) equation (3) for N=10 cal-
culated with IBM without normalization along the axial trajectory
γ = 0◦, 60◦ as a function of the shape parameter β. The curves
describe the first order shape phase transition between spherical to
prolate deformed U(5)-SU(3) for control parameter η: η = 0.900,
η = 0.820 (spinodal), η = 0.818 (critical point), η = 0.800 (antispin-
odal) and η = 0.750.

Fig. 2: For two cases in the coexistence region η = 0.817 and
η = 0.819.

phase since the PES has a unique minimum at β = 0. When
η decreases, one reaches the spinodal point η = 0.820361 for
χ = −

√
7/2 as illustrated in Fig. (1) for boson number N=10.
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Fig. 3: For χ = 0.

In the coexistence region, the critical point is at the situa-
tion in which both minima of spherical point is at the situation
in which both minima of spherical and deformed are degen-
erate. At the critical point, the two degenerated minima are
at β0 = 0 and β0 = −

√
7/4 and their energy is equal to zero.

The critical point line is at ηc = (4 + 2/7χ2)/(5 + 2/7χ2).
The χ = −

√
7/2 provides ηc = 9/11 (0.818181). Ac-

cording to the previous analysis, a first order phase transition
appears for η , 0, χ , 0, while for χ = 0 there is an iso-
lated point of second order phase transition as a function of
η. Spinodal, antispinodal and critical point coincide at the
critical value η = 4/5.

We show in Figures (1,2,3) a sketch at this evolution for
the special case χ = −

√
7/2, the two cases in the coexistence

region and for χ = 0. From Figure (3), we observe the evo-
lution from the spherical potential η = 0.9, whose minima
is found at β = 0 to potentials with well-deformed minima
η = 0.75. For intermediate η values one finds a set of po-
tential energy curves which are practically degenerated along
the prolate axis in the interval [0, 0.4]. These curves show two
minima, on spherical and a prolate deformed one. In partic-
ular, for η = 0.81818, the spherical and the prolate deformed
minima are degenerate and this condition defines precisely
the critical point of the first order phase transition where the

order parameter is the deformation β.
For η = 1,the Hamiltonian H of equation (15) reduces to

the U(5) limit of the IBM corresponds to a spherical shape
with vibration

H(U(S )) = n̂d. (24)

The PES of H is given by:

E(U(5)) =
Nβ2

1 + β2 . (25)

The equilibrium value of the deformation parameter β is eas-
ily obtained by solving ∂E/∂β = 0 to give βe = 0 which
corresponds to a spherical shape.

For η = 0 and χ = ∓
√

7/2, the schematic Hamiltonian
of equation (15) reproduces the SU(3) Limit corresponds to a
shape of ellipsoid with rotation (or axial rotation)

H((S U(3)) = − 1
N

Q̂(χ).Q̂(χ). (26)

If we eliminate the contributions of the one-body terms of
quadruple-quadruple interaction, for this case the PES of H is
given by:

E((S U(3)) = − (N − 1)
(1 + β2)2 (4β2 +

1
2
β4 ± 2

√
2β3cos3γ). (27)

The equilibrium values are given by solving dE
dβ =

∂E
∂γ
= 0

to give βe =
√

2 and γe = 0 for χ = −
√

7/2 and by βe =
√

2
and γe = π/3 for χ =

√
7/2 corresponding to prolate and

oblate deformed shape respectively.
For η = 0 and χ = 0, one recovers the O(6) limit corre-

sponds to γ-unstable

H(O(6)) = − 1
N

Q̂(χ = 0).Q̂(χ = 0). (28)

Eliminating the one-body terms, the PES depends only on β

E(O(6)) = − (N − 1)
(1 + β2)2 4β2. (29)

The equilibrium value is given by βe = 1, corresponding to
a γ-unstable deformed shape. For intermediate values of the
control parameters η and χ, the PES function will describe a
certain point on the IBM symmetry triangle, located between
the three limits.

4 First-Order U(5)-SU(3) Phase Transition in Nd/Sm/
Gd/Dy Rare Earth Nuclei

In a first order phase transition, the state of the rearrangement
happens, which means that there involves an irregularity at
the critical point.

The study is carried out considering specific isotopic
chains of even-even rare earth nuclei 60Nd, 62Sm, 64Gd and
66Dy displaying first order phase transition from sphericity to
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Fig. 4: PES for first order shape phase transition between spheri-
cal to prolate deformed U(5)-SU(3) for Neodymium isotope chain
144−154

60Nd (with Nπ = 5 proton bosons and Nν = 1 − 6 neutron
bosons).

axial symmetric deformed U(S)-SU(3). That is for the nuclei
included in this study; all chains begin as vibrational with en-
ergy ratio R(4/2) = E(4+1 )/E(2+1 ) near 2.0 and move towards
rotational R(4/2) = 3.33 as neutron number is increased. For
control parameter η = 1, we get the U(5) limit and for η = 0
and χ = −

√
7/2 the SU(3) limit. For intermediate values

of the control parameters η and χ, the PES function will de-
scribe a certain point on the IBM symmetry triangle, located
between the U(5) and SU(3) limits. To describe a phase tran-
sition, one has to establish the values of the control parameter
for each nucleus.

For our rare- earth nuclei, we keep χ at the fixed value
χ = −

√
7/2, because some Gd isotopes clearly exhibit the

character of the SU(3) dynamical symmetry. This assumption

Fig. 5: The same as Fig. (4) but for Samarium isotope chain
146−160

62Sm (with Nπ = 6 proton bosons and Nγ = 1–8 neutron
bosons).

is very successful in describing the Sm nuclei which form
neighboring nuclei.

The system passes from the U(5) to the SU(3) limit when
the number of bosons is increasing from N=6 towards N=17.
The values of the control parameter η is adjusted for each nu-
cleus by using a computer simulated search program in order
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Fig. 6: The same as Fig. (4) but for Gadolinium isotope chain
148−162

64Gd (with Nπ = 7 proton bosons and Nγ = 1–9 neutron
bosons).

to describe the gradual change in the structure as boson num-
ber is varied and to reproduce the properties of the selected
states of positive parity excitation (2+1 , 4

+
1 , 6

+
1 , 8

+
1 , 0

+
2 , 2

+
3 , 4

+
3 ,

2+2 , 3
+
1 and 4+2 ) and the two neutron separation energies of all

isotopes in each isotopic chain. Typically, η decreasing from
1 to 0 as boson number increases and the nuclei evolve from
vibrational to rotational as expected. This trend is observed
for the studied isotopic chains and illustrated in figures (4-7)
by plotting the PES from Hamiltonian (12) as a function of
quadruple deformation parameter β for different values of the

Fig. 7: The same as Fig. (4) but for Dysprosium isotope chain
150−166

66Dy (with Nπ = 8 proton bosons and Nγ = 1–9 neutron
bosons).
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Fig. 8: Position of the absolute minima βmin versus the total number
of bosons N from N = 6 to N = 17.

Table 1: Neutron Number.

Nucleus η/Ncrit

66Dy 0.08183 0.07339 0.04166 0.00993
64Gd 0.08183 0.07339 0.04166 0.00993
62Sm 0.0982 0.08807 0.5 0.01192
60Nd 0.10911 0.09786 0.55555 0.01324

N 84 86 88 90

Nucleus η/Ncrit

66Dy 0.00149 0.0002 0.0000 0.0000
64Gd 0.00149 0.0002 0.0000 0.0000
62Sm 0.00179 0.00024 0.00003 0.0000
60Nd 0.00199 0.00027

N 92 94 96 98

the control parameter η and varying boson number N.

Here, we observe that the transition from spherical to pro-
late deformed occurs between N=9 and N=12. In the
144−154Nd, the nuclei 146−150Nd are transitional isotopes be-
tween the spherical nucleus 144Nd and the well prolate de-
formed nuclei 152−154Nd. The 150Gd nucleus still shows a vi-
brational structure while 156−162Gd are considered as rather
good SU(3) example.

The 158−162Gd are corresponds to η = 0. One can observe
a sudden transition in the Gd isotopes from a vibrational re-
gion into the rotational SU(3) limit. The control parameter
η for each nucleus is shown in Table (1). The position of the
absolute minimum βmin(N) of the different PES’s is illustrated
in Figure (8).

Table (1) lists values of the control parameter η/Ncrit for
each Nd/Sm/Gd/Dy isotopic chain as a function of the neu-
tron number.

5 Conclusion

In the present paper we have analyzed systematically the
PES ′s for the even-even Nd/Sm/Gd/Dy isotopes using the
simplified form of IBM in its sd-boson interaction. We have
analyzed the critical points of the shape phase transitional re-
gion U(5)-SU(3) in the space of two control parameters η and
χ.

In all isotopic chains one observes a change from spher-
ical U(5) shape to axially symmetric deformed shape SU(3)
when moving from the lighter to the heavier isotopes.
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