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According to recent work [13, 14], the Neptune Adams ring main arc Fraternité is re-
garded as captured by the corotation elliptic resonance (CER) potential of Galatea. The
minor arcs Egalité (2,1), Liberté, and Courage are located at positions where the time
averaged forces, due to the 42-43 corotation-Lindblad resonances under the central field
of Neptune, vanish. With adequately chosen Fraternité mass and Galatea eccentricity,
this model gives minor arc locations compatible to observed positions, and allows a
dynamic transport of materials among arcs. To complement this model, the effect of
self-gravity of Fraternité, with a distributed mass, is evaluated together with the CER
potential to account for its 10o longitudinal span. Although self-gravity is the collective
action of all the particles in the arc, each individual particle will see the self-potential
with a central maximum as an external potential generated by other particles.

1 Introduction
From the very first observations of the Neptune Adams ring
arcs [6, 12], plus the subsequent observations [2, 11], the A-
dams arcs seemed to change in arc locations and in bright-
ness. More recently, these dynamic natures of the arcs, Fra-
ternité, Egalité (2,1), Liberté, and Courage, have been con-
firmed beyond any doubt in another ground observation [1].
Measuring from the center of the main arc Fraternité, they
extend a total of about 40o ahead of Fraternité. Occasion-
ally, some arcs flare up and others fade away. Furthermore,
the arc configuration appears to be changing in time as well.
The leading arc Courage appears to have leaped over to an-
other CER site recently [1]. Although the twin arc Egalité
(2,1) is small, it is a very bright arc. According to de Pater et
al [1], its relative intensity to Fraternité varied from 17 per-
cent higher in 2002 to seven percent lower in 2003 totaling
a 24 percent relative change over a short period of time. The
angular span of the twin arc Egalité appeared to be 30 percent
larger in 2005 and 1999 publications than in 1989 Voyager 2
results. This widening of Egalité was accompanied by a cor-
responding narrowing of Fraternité, which indicated a likely
exchange of material between the two. As for Liberté, 1999
data showed it was about 3o ahead of its position in Voyager 2
pictures. For the 2005 results, the 2002 data appeared to show
Liberté as a twin arc separated by about 4.5o with the leading
twin at the original Voyager 1989 location, while in 2003 it
returned again as one single arc at the Voyager location. With
respect to the normally low intensity arc Courage, it flared in
intensity to become as bright as Liberté in 1998 indicating a
possible exchange of material between the two arcs. Most in-
terestingly, it was observed in the 2005 data that Courage has
moved 8o ahead from 31.2o to 39.7o [1].

According to the prevailing theories, based on the restrict-
ed three-body framework (Neptune-Galatea-arcs) with a con-
servative disturbing potential, these arcs are radially and lon-

gitudinally confined by the corotation resonance potential of
the inner moon Galatea. In order to account for these arcs, the
84/86 corotation resonance due to the inclination of Galatea
(CIR) had been invoked to give a potential site of 4.18o [4].
Later on, because of its eccentricity (CER), the 42/43 reso-
nance was considered giving a resonant site of 8.37o on the
Adams ring arcs [3, 5, 10]. The arc particles librate about the
potential maximum imposed by the corotational resonance
satellite Galatea. Dissipated energy of the particle is replen-
ished by the Lindblad resonance. Nevertheless, well estab-
lished as it is, there are several difficulties. Firstly, with Fra-
ternité centered at the potential maximum spanning approxi-
mately 5o on each side, it crosses two unstable potential poi-
nts which ought to reduce the angular spread. Secondly, the
minor arcs leading ahead of Fraternité are mislocated with
the CIR or CER potential maxima. Furthermore, should the
arcs were confined by the corotation potential, there ought to
be arcs in other locations along the Adams ring distributed
randomly instead of clustered near Fraternité.

2 Time-dependent arcs

Recently, there is a model that considers Fraternité as being
captured by the CER potential of Galatea. With Fraternité
having a finite mass, the minor arcs are clustered at locations
along the Adams ring where the time averaged force vanishes
under the corotation-Lindblad resonances [13, 14]. The finite
mass of Fraternité has been suggested by Namouni [9] and
Porco [10] to pull on the pericenter precession of Galatea to
account for the mismatch between the CER pattern speed and
the mean motion of the arcs. The arc locations are determined
by the Lindblad resonance reaction of the arc itself. Because
the force vanishes only on a time averaged base, as compar-
ing to the stationary CER potential in the rotating frame, the
arc material could migrate on a long time scale from one site
to another leading to flaring of some arcs and fading of oth-
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ers. This could also generate twin arcs (Egalité, Liberté) and
displace Courage from 31.2o to 39.7o (resonant jump) [1], as
required by observations. Although there are only arcs in the
leading positions ahead, arcs in the trailing positions behind
could be allowed in this model. According to this Lindblad
reaction model, only Fraternité f is confined by the externally
imposed CER potential of Galatea x which reads

Φc =
Gmx

ax

1
2

(
2n + ax

∂

∂ax

)
1
ax

b(n)
1/2(α) ex cos φ f x, (1)

where ~rx = (rx, θx) and ~r = (r, θ) are the position vectors of
Galatea x and Fraternité mass distribution, ax and a are the
respective semi-major axes, φx and ex are the arguments of
perihelion and eccentricity of x, φ f x = (nθ − (n − 1)θx − φx)
is the corotation resonance variable, b(n)

1/2(α) is the Laplace
coefficient, α = ax/a < 1, and n = 43. With ax = 61952.60
km, a = 62932.85 km, and α = 0.98444 [2, 11], the CER
potential is

Φc =
Gmx

ax
34 ex cos φ f x. (2)

To complement this model, we consider the self-gravity of
Fraternité, which has a distributed mass, on the CER potential
to account for its longitudinal 10o arc span. We first consider
a qualitative spherical self-gravity physical model to grasp the
10o arc span. We begin with the Gauss law of the gravitational
field

∇ · ~g(~r) = −4πGρ(~r), (3)

~g = +∇Φ. (4)

Under a qualitative physical model of arc span, we take a
spherical uniform mass distribution of radius r0. Solving for
the potential Φ(r∗) inside the sphere with ρ(~r) = ρ0 and out-
side the sphere with ρ(~r) = 0 respectively, where r∗ is mea-
sured from the center of Fraternité, and matching the potential
and the gravitational field across the boundary, we get
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This potential shows a normal 1/r∗ decaying form for r0 < r∗,
but a r2

∗ form for r∗ < r0. Writing in terms of ax and mx, we
have for 0 < r∗ < r0, δθ < δθ0,
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and for r0 < r∗ < ∞, δθ0 < δθ,

Φ f = +
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Fig. 1: The CER sinusoidal potential of Galatea in thick line, the
self-potential of Fraternité with spherical model in thin line, and the
sum of the two in thick line are plotted in units of Gmx/ax.

where r∗ is now taken on the longitudinal direction along the
arc, so that we can write r∗ = aδθ and r0 = aδθ0 with δθ as the
angular span in radian. Taking m f /mx = 10−3, ex = 10−4, and
δθ0 = 5o = 0.087 rad, which are within the estimates of the
arc parameters [9], we have plotted in Fig. 1 the sinusoidal
CER potential in thick line with a minimum around δθ = 4o

and the self-potential in thin line in units of Gmx/ax. The su-
perposition of the two in thick line is also shown in the same
figure. The superimposed potential has a maximum at the
center and a minimum around δθ = 5o. Although self-gravity
is resulted from all the particles of the arc, each individual
particle will see the self-potential as an external potential.
The particles will girate in stable orbit about the central maxi-
mum of the superpositioned CER potential and self-potential.

3 Self-gravity

We now present an elongated ellipsoid model of self-gravity.
For an ellipsoidal mass distribution with uniform density ρ0
over a volume

(
x
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)2

+

(
y
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)2

+

(
z
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)2

= 1 , (9)

where a1 > a2 > a3, the potential in space for the gravita-
tional field ~g(~r) have been addressed in honorable treatises
such as Kellogg [7] and Landau and Lifshitz [8]. Here, we
follow the celebrated original work of Kellogg [7] especially
in Section 6 of Chapter 7. The potential in space of this ho-
mogeneous ellipsoid is given by

Φ f (x, y, z) = G ρ0 π a1a2a3 ×
∫ ∞
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, (11)
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Volume 3 PROGRESS IN PHYSICS July, 2013

and where λ parameterizes a family of ellipsoids. Consider a
prolate ellipsoid with a1 > a2 = a3. This ellipsoid has a cir-
cular cross section on the y-z plane and an axis of symmetry
in x. The y-z plane of x = 0 is the equatorial plane. In this
prolate case, the self-potential inside and outside the ellipsoid
is given respectively by [7, Exercise 6, p.196]
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4π
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where (
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2,

r2 = y2 + z2,

f is the distance between the two foci, r is the perpendicular
distance to the axis of symmetry, s is the sum of distances
from the two foci to the point of interest ~r. The inside po-
tential can be obtained from the outside potential by using
s = 2a1. To evaluate the potential on the axis of symmetry,
we take r = 0. Denoting m f = ρ0(4π/3)a1a2a3 and consider-
ing a1 � a2, we get
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for the self-potential inside and outside the ellipsoid respec-
tively. Taking again m f /mx = 10−3, with ax = 61952.60 km
for Galatea, and semi-major axes a1 = 5500 km and a2 =

55 km, the CER potenial, the self-potential, and the superpo-
sition of the two with a minimum around δθ = 5o are shown
in Fig. 2.

0 2 4 6 8
-0.01

0.00

0.01

0.02

0.03
 

 

P
ot

en
tia

ls

δθ

Fig. 2: The CER sinusoidal potential of Galatea in thick line, the
self-potential of Fraternité with ellipsoidal model in thin line, and
the sum of the two in thick line are plotted in units of Gmx/ax.

With Fraternité 1 × 10−3 of the mass of Galatea, the self-
potential actually exceeds the CER potential in magnitude, as
shown in Fig. 2. Each test mass would be librating around
the potential maximum, dominated by the self-gravity of the
collective mass distribution. Should Fraternité be elongated
further while maintaining the total mass, it would increase the
semi-major axis a1 of the ellipsoid. This would reduce the
amplitude of the self-potential of (14) through the (ax/4a1)
factor in the constant term, and weaken the self-potential. The
elongation would feed the minor arcs. With this self-gravity
model, not just the minor arcs are dynamically changing [1],
the main arc Fraternité could be under a dynamical process as
well.

4 Conclusions
In order to explain the 10o arc span of Fraternité, we draw
attention to the fact that Fraternité, as an arc, has a significant
mass. This mass is a distributed mass, instead of a point-like
mass, such that its self-gravity should be taken into consid-
erations to account for its angular span. We have used two
models to evaluate the self-potential in the longitudinal direc-
tion. First is the tutorial spherical model, as a proof of prin-
ciple study, with a uniform mass distribution over a sphere
of radius r0. Second is the elongated ellipsoidal model for a
more realistic evaluation. Using the accepted range of Fra-
ternité parameters, the ellipsoid model shows that the self-
potential of the arc could be the cause of its angular span. For
a longer arc, the ellipsoid gets longer and the ratio a1/a2 be-
comes larger. Eventually, for a complete ring, the ellipsoid
is infinitely long and the self-potential in the longitudinal di-
rection becomes constant. The effects of self-gravity are felt
only in the transverse direction for a planetary ring.
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