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In this paper, we consider the Einstein field equations with the cosmological term. If we
assume that this term is slightly varying, it induces a vacuum background field filling the
space. In this case, inspection shows that the gravitational field is no longer represented
by a pseudo-tensor, but appears on the right hand side of the field equations as a true
tensor together with the bare mass tensor thus restoring thesame conservation condition
as obeyed by the Einstein tensor.

Introduction

Soon after his theory of General Relativity was published in
1916, Einstein rapidly turned to the unifying of the gravita-
tional field with electromagnetism (which at that time was
considered as the second fundamental field).

The quest for such an universal scheme ended in 1955
with the Einstein-Schrödinger theory (see for example [1])
definitely abandoned since as the quantum field theories
gained the increasing successes and have been long substan-
tiated by numerous experimental confirmations.

Basically, the unified principle adopted by the successive
authors (Kaluza-Klein, Weyl, Eddington, et al.) relied either
on extra dimensions, or on an extension of the Riemannian
theory with additional space-time curvatures introduced to
yield the electromagnetic field characteristics, and wherethe
stress-energy tensor regarded as provisional, will be eventu-
ally absent [2, 3, 4].

Total geometrization of matter and electromagnetism was
anyhow the original focus.

To understand this long period of research, one should re-
member that Einstein always claimed that the energy-
momentum tensor (s) which can appear in the right hand side
of his field equations, was “clumsy”; in short, he considered
this form as an unsatisfactory solution which had to fit differ-
ently in his equations.

Einstein’s argument is actually strongly supported by the
following fact: while his tensor exhibits aconceptuallycon-
served property, any corresponding stress energy-tensordoes
not, which leaves the theory with a major inconsistency.

When pure matter is the source, the problem has been
“cured” by introducing the so-called “pseudo-tensor” that
“conveniently” describes the gravitational field of this mass
so that the four-momentum of both matter and its gravity field
is conserved.

Unfortunately by essence this pseudo-tensor cannot ap-
pear in the field equations, and so the obvious physical defect
emphasized by Einstein, still remains to-day as a stumbling
block.

In this paper, we tackle this problems by proceeding as
follows: in contrast to the previous theories, the energy-
momentum tensor of the source is here strengthened,

although we restrict our study to neutral massive flow.
In this respect, it is shown that the gravitational field of a

massive body is no longer described by apseudo-tensor, but
appears as atrue tensorin the field equations as it should be,
in order to balance the conceptually conserved property of the
Einstein tensor.

To achieve this goal we do:

• We first formulate the field equations with a massive
source in density notation;

• We write the conservation law for the Einstein tensor
density derived from the Bianchi identities, which
cannot apply to the energy-momentum tensor density
as a source;

• We then include a variable term that supersedes the so-
called cosmological termΛgab in the field equations,
still complying with the conservation property of the
Einstein tensor density in GR;

• Under this latter assumption, we will then formally
show that the gravity field of a massive source is no
longer described by a vanishingpseudo tensorbut it
reduces to a true tensor describing apersistentvac-
uum background field resulting from the existence of
the variable term.

1 The field equations in General Relativity

1.1 The tensor representation

In the General Theory of Relativity (GR), it is well known
that by varying the action

S = LE d4x ,

where theLagrangian densityis given by

LE =
√
−gGab

({

e
ab

} {

d
de

}

+
{

d
ae

} {

e
bd

})

, (1.1)

g = det‖gab‖ (1.2)

one infers thesymmetric Einstein tensor

Gab = Rab−
1
2
gabR, (1.3)

62 Patrick Marquet. The Gravitational Field: A New Approach



July, 2013 PROGRESS IN PHYSICS Volume 3

where

Rbc = ∂a

{

a
bc

}

− ∂c

{

a
ba

}

+
{

d
bc

} {

a
da

}

−
{

d
ba

} {

a
dc

}

(1.4)

is theRicci tensorwith its contractionR, thecurvature scalar,
while

{

e
ab

}

denote the Christoffel Symbols of the second kind.
The 10source free field equationsare

Gab = 0. (1.5)

The second rank Einstein tensorGab is symmetric and is
only function of the metric tensor componentsgab and their
first and second order derivatives.

The relation
∇a Ga

b = 0 (1.6)

is the conservation identities provided that the tensorGab has
the form [5]

Gab = k

[

Rab −
1
2
gab(R− 2Λ)

]

, (1.7)

k is a constant, which is here taken 1, is usually named cos-
mological constantΛ.

When a source is present, the field equations become

Gab = Rab−
1
2
gabR− gabΛ = κTab, (1.8)

whereTab is the energy-momentum tensor of the source.

1.2 The tensor density representation

We first set
g

ab =
√−g gab (1.9)

and the Einstein tensor density is

Gab =
√−g Gab, Gc

a =
√−gGc

a , (1.10)

Rab =
√
−g Rab. (1.11)

In density notations, the field equations with the source
(1.8) will read

Gab = Rab − 1
2
gabR − gabζ = κTab. (1.12)

Here in place of the constant cosmological termΛ
which should be here represented byΛ

√−g, we have intro-
duced ascalar densitydenoted as

ζ = Ξ
√
−g. (1.13)

Unlike Λ, the scalarΞ is slightly variable and represents
theLagrangiancharacterizing a specificvacuum background
field as will be shown below.

2 The conservation identities

2.1 Tensor version for the Einstein tensor

From the Bianchi identities applied to the Riemann tensor

Rci··
··bc; i + Rci··

··ib ; c + Rci··
··ci ; b = 0 (2.1)

we infer the conservation conditions which apply to the Ein-
stein tensor withoutΞ, and hereinafter denoted by

◦Ga
b = Ra

b −
1
2
ga

bR. (2.2)

The Einstein tensor thus satisfies intrinsically the conser-
vation law:

∇a
◦Ga

b = 0. (2.3)

2.2 Tensor density version for the Einstein tensor

In the same way, we start with the Einstein tensor density
without the cosmological term

◦Gab = Rab − 1
2
gabR. (2.4)

With (2.3), let us write down

∇a
◦Ga

b = ∂a
◦Ga

b+
{

a
ca

}

◦Gc
b−

{

c
ba

}

◦Ga =
∂a
◦Ga

b√−g
−

{

c
ba

}

◦Ga
c = 0,

which is easily found to be

∂a
◦Ga

b√−g
− 1

2
◦Gea∂b gea = 0 (2.5)

usingdgai =−gabgicdgbc anddgai =−gabg icdgbc the formula
(2.5) can be also written as

∂a
◦Ga

b −
1
2

Gea∂b gea = 0. (2.6)

The latter equation is the conservation condition for◦Gab

which is equivalent to (2.3).

2.3 Conservation of the energy-momentum tensor

2.3.1 Problem statement

Let us consider the energy-momentum tensor for neutral mat-
ter densityρ:

Tab = ρua ub (2.7)

as the right hand side of the field equations

◦Gab = Rab−
1
2
gabR= κTab. (2.8)

The conservation condition for this tensor are written

∇aTa
b =

1
√−g

∂aTa
b −

1
2

Tac∂b gac = 0 (2.9)
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with the tensor density

Ta
b =
√
−g Ta

b . (2.10)

However, across a given hypersurfacedSb, the integral

Pa =

∫

Tab √−g dSb (2.11)

is conserved only when

∂aTa
b = 0. (2.12)

From (2.6) inspection still shows that

∂aTa
b =

1
2

Tcd ∂b gcd (2.13)

but here, unlike the Einstein tensor◦Gab which is conceptu-
ally conserved(∇a

◦Ga
b = 0), the conditions

∇aTa
b = 0

or
∂aTa

b = 0

are thus never satisfied in a general coordinates system.
Therefore, the Einstein tensor◦Gab which intrinsically

obeys a conservation condition, is related with a massive ten-
sorTab(ρ) which obviouslyfails to satisfy the same require-
ment:

◦Gab = κTab. (2.14)

As a matter of fact, a correct formulation would consist
of explicitly writing down the mass density with its gravity
field, i.e. with a pseudo-tensor (tab) f ield.

As is known, the namepseudo-tensoris chosen since this
quantity can be transformed away by a suitable choice of co-
ordinates.

Hence, we should write

Gab = κ
[

(Tab)matter+ (tab) f ield

]

. (2.15)

This is classically interpreted by requiring that thetotal
4-momentum vectorPa of matterwith its gravitational field

Pa =
[

(Tab)matter+ tab) f ield

] √
−g dSb (2.16)

must be together conserved∗

∗Some authors [8] state that integrating∇kTk
i = 0 yields a conservation

law for a vectorPa = TabKb when the metric admits a Killing vectorK:
Pa

;a = Tab
;a Kb + TabKb;a and sinceTab is symmetric, we have for the Lie

derivativeKb;a =
1
2 LKgab = 0, thenPa

;a = 0.

2.3.2 The gravity pseudo-tensor

In order to follow this way, Landau and Lifshitz [6] started
from the unsuitable tensor equation (2.9)

∇kT
k
i =

1
√−g

∂kTk
i −

1
2

Tkl ∂i gkl = 0.

They thus consider a special choice of a set of the coor-
dinates which cancels out all first derivatives of thegik at a
given 4-space-time point.

In this system, the energy-momentum tensor expression
is given by

T ik =
1
2κ
∂e(−g)−1

[

∂d (−g)
(

g ikged− g iegkd
)]

. (2.17)

As
{

i
ke

}

are postulated to be zero at the considered point,

we may extract the factor (−g)−1 from the derivative in the
latter equation, so

(−g) T ik = ∂eHike =
1
2κ
∂e

(

∂dHiked
)

.

The quantity

Hiked = (−g)
(

g ikged− g iegkd
)

(2.18)

can be regarded as a “double tensor density” and is often
referred to, as the “superpotential of Landau-Lifshitz” [7].
Now, in any other arbitrary system, generally

∂eHike− (−g) T ik
, 0,

and so, we will have to bring a small tensor correctiontikLL

(Landau-Lifshitz pseudo-tensor) which is accepted as repre-
senting the gravitational field of matter:

∂eHike = (−g)
(

T ik + tikLL

)

.

This equation implies the condition

∂k

[

(−g)
(

T ik + tikLL

)]

= 0, (2.19)

which is the conservation law for the classical total four-
momentum vector density of both matter and gravitational
field written as

Pi =

∫

[

(−g)
(

T ik + tikLL

)]

dSk, (2.20)

(compare with (2.11)).
After a tedious calculation, the final form of the symmet-

ric tensortikLL as a function of thegik, is found to be

(−g) t ik
LL =

1
2κ

[

g
ik
, l g

lm
,m − g il

, l g
km
,m +

1
2
g ikglm g

ln
, p g

pm
,n −

−
(

g ilgmng
kn
,p g

mp
,l + g

klgmng
in
,p g

mp
,l

)

+ glm g
np
g

il
,n g

km
, p +

+
1
8

(

2g ilgkm− g ikg lm
) (

2gnpgqr − gpqgnr

)

g
nr
,l g

pq
,m

]

. (2.21)
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Therefore, the Einstein field equations can be eventually
written in the form:

Hiked
····, kd = 2κ (−g)

(

T ie + tieLL

)

. (2.22)

Unfortunately, the quantitytieLL which now appears on the
right hand side of the field equations as it should be, is not a
true tensor.

Hence, we are once more faced with a contradiction: the
left hand side of the field equations for a massive source is a
true tensor, while the right hand side is not, which reveals a
major inconsistency within the theory.

2.4 Introduction of a background field tensor

Let us now try to remove this ambiguity.
We start by writing the global energy-momentum tensor

density of the massive source splitting up bare matter and
pure field:

Ta
b = (Ta

b)matter+ (ta
b) f ield. (2.23)

The field tensor density (ta
b) f ield is in turn composed of

two parts:gravity field+ vacuum background field

(ta
b) f ield = (ta

b)gravity + (ta
b)background f ield (2.24)

with

(tab)background f ield=
ς

2κ
gab =

Ξ
√−g
2κ

gab . (2.25)

According to the standard theory, we next re-formulate
the field equations with abaremassive source

Gab = Rab − 1
2
gabR − gabς = κ(Tab)matter (2.26)

under the form

Gab = Rab − 1
2
gabR = κ(Tab)matter+ g

abς. (2.27)

3 Expliciting the field equations in density notation

3.1 Taking account of the LagrangianΞ

Reverting to (2.13), we now write for thebarematter tensor
density

∂a(Ta
b)matter=

1
2

(Tcd)matter∂b gcd. (3.1)

Inspection then shows that

Ril dg il =
√
−g

[

−Rie +
1
2
g ieR

]

dgie =

= −κ(Tie)matterdgie. (3.2)

Taking now into account the Lagrangian formulation for
Ril , which is

Ril =
δLE

∂g il
= ∂k

∂LE

∂(∂kg il )
− ∂LE

∂g il
, (3.3)

we obtain

− κ(Til )matterdgil = ∂k
∂LE

∂(∂kg
il )
− ∂LE

∂g il
dg il =

= ∂k
∂LE dg il

∂(∂kg
il )
− ∂LE,

that is

− κ(Til )matter∂mgil = ∂k

[

∂LE∂m(∂g il )
∂(∂kg

il )
− δkm LE

]

=

= 2κ∂k(tk
m) f ield, (3.4)

where (tk
m) f ield denotes the field tensor density extracted from

2κ(tk
m) f ield =

∂LE∂m(∂g il )
∂(∂kg

il )
− δkmLE (3.5)

so, that we have the explicit canonical form

(tk
m) f ield =

1
2κ

[

∂LE∂m(∂g il )
∂(∂kg

il )
− δkmLE

]

(3.6)

and where

∂k(Tk
i )matter=

1
2

(Tek)matter∂kgei = −∂k(tk
i ) f ield.

that is, the required conservation relation

∂k

[

(Tk
i )matter+ (tk

i ) f ield

]

= 0. (3.7)

Then, re-instating the termζ according to (2.24) and
(2.25), the gravitational field tensor density now reads:

(tk
m)gravity =

1
2κ

[

∂LE∂m(∂g il )
∂(∂kg

il )

]

− δkm(LE − ζ). (3.8)

The presence of the scalar densityζ characterizing the
background field is here of central importance, as it means
that (tk

m)gravity can never be zero in contrast to the classical the-
ory, and as a result, it constitutes atrue tensor. Such a grav-
ity field never completely cancels out, but far from its matter
source, it sharply decreases down to the level of the back-
ground field described by the tensor density (tab)background f ield.

In addition, we clearly see thatζ represents thelagrang-
ian densitycharacterizing the background field, thus lending
support to our initial hypothesis regarding the lagrangianΞ.

In this picture, the vacuum is permanently filled with this
homogeneous background energy field ensuring a smooth
continuity with the gravitational field of a neighbouring mass.

3.2 Classical formulation

When the termΞ is kept constant like the cosmological term
Λ, the tensor density (3.8) reduces to

(tk
m)pseudogravity =

1
2κ

[

∂LE∂m(∂g il )
∂(∂kg

il )
− δkmLE

]

, (3.9)
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which is just the classicalgravity pseudo-tensor densitythat
may now vanish in a given space-time point.

In this case, expressed with the explicit form of the La-
grangian densityLE written in (1.1), the expression (3.9) be-
comes:

(tk
m)pseudogravity=

1
2κ

[{

k
i l

}

∂mg
il−

{

i
i l

}

∂mg
lk−δkmLE

]

. (3.10)

This is themixed Einstein-Dirac pseudo-tensor density
[9] which is not symmetric onk andm, and is therefore not
suitable for basing a definition of angular momentum on.

3.3 Field equations

The field equations with a massive source, which are

Gab = Rab− 1
2
gabR − gabζ = κ(Tab)matter, (3.11)

may be now eventually re-written

◦Gab = Rab− 1
2
gabR = κ

[

(Tab)matter+ (tab)gravity
]

(3.12)

with the explicit appearance of the gravity field as defined in
(3.8) and which is now represented by atrue tensor density.

Like we emphasized above, far from the mass, the ”source
free” field equations should always retain a non zero right
hand side

◦Gab = Rab − 1
2
gabR = κ(tab)background f ield, (3.13)

which are the analogue of (1.7):

Gab = Rab − 1
2
gabR − gabζ = 0. (3.14)

In this case, the conservation law applied to the right hand
side of the tensor field equations is straightforward:

∇a(tab)background f ield= ∇a

(

Ξ

2κ
δab

)

= 0, (3.15)

from which readily follows

∂a(ta
b)background f ield = ∂a

(

ζ

2κ
δab

)

= 0. (3.16)

3.4 Physical description

We would like now to give a simple but instructive picture
of the situation where a static mass is placed in the vacuum
background energy field. Let us write the energy-momentum
tensor for matter and its gravitational field as in (3.12):

Tab = (ρuaub)matter+ (tab)gravity. (3.17)

In virtue of the principle of equivalence, anybare mass
of volumeV together with its gravitational field, can be ex-
pressed through the time component of a 4-momentumPa

according to

P0 =

∫

(

T1
1 + T2

2 + T3
3 − T0

0

) √
−g dV, (3.18)

whereTa
a are the skew components of the energy-momentum

tensor (3.17), which implicitly contains the gravity field [10].
Now, we formulate (3.18) under the equivalent form:

P0 = P0 =

∫

(

T1
1 + T2

2 + T3
3 − T0

0

)

dV. (3.19)

In the immediate vicinity of the mass, it is easy, to show
that generalizing (3.19) leads to the 4-momentum vector that
includes the right hand side of (3.12):

Pa =

∫

[

(Tb
a)matter+ (tb

a)gravity
]

dSb. (3.20)

Far from the source, we have obviously

(Pa)background f ield=

∫

[

(tb
a)background f ield

]

dSb, (3.21)

where (tb
a)background f ield is a true tensor density, and the con-

servation law applied toPa holds for all configurations, in
accordance with (3.7) and (3.16).

4 Conclusions and outlook

In this short paper, we have sketched here a possible way out
of the gravitational field pseudo-tensor.

From the beginning of General Relativity, the cosmologi-
cal constantΛ has played an unsavory role. Einstein included
this constant in his theory, because he wanted to have a cos-
mological model of the Universe which he wrongly thought
static.

But to-day, a cosmological term seems to be badly needed
to explain some astronomical observed clues, within the basic
dynamical expanding model of Robertson-Walker [11], even
though its occurrence was never clearly explained.

However, there is no reasonà priori to consider this cos-
mological term as constant everywhere.

In this respect, the background field hypothesis is reward-
ing in terms of several physical advantages:

• The ill-defined gravitational pseudo-tensor is now
a true tensor, and it appears explicitly in the field equa-
tions with a massive source;

• The background persistent homogeneous energy field
is then formally shown to be a consequence of the
above derivation and it is actually regarded as the
(sharply decreasing) continuation of any mass gravity
field tensor;

• The inferred global energy-momentum tensor intrinsi-
cally satisfies the conservation law as well as the back-
ground field alone in the source free field equations,
without introducing any other arbitrary ingredients or
modification of the General Theory of Relativity.
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