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Further Problems with Integral Spin Charged Particles
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The structure of the Lagrangian density of quantum theories of electrically charged
particles is analyzed. It is pointed out that a well known and self-consistent expression
exists for the electromagnetic interactions of a spin-1/2 Dirac particle. On the other
hand, using the Noether theorem, it is shown that no such expression exists for the spin-0
Klein-Gordon charged particle as well as for the W± spin-1 particle. It is also explained
why effective expressions used in practical analysis of collider data cannot be a part of
a self-consistent theory. The results cast doubt on the validity of the electroweak theory.

1 Introduction

Since its very beginning, quantum theory has provided ex-
pressions describing electromagnetic interactions. In partic-
ular, the Dirac equation of spin-1/2 charged particle takes a
covariant form [1, see pp. 16–24]. As is well known, elec-
tromagnetic interactions of a Dirac particle have an extraor-
dinary experimental support. Later, a quantum theory of a
spin-0 Klein-Gordon (KG) charged particle was published [2,
see pp. 188–205]. In the electroweak theory which was con-
structed several decades later, the W± spin-1 charged boson
plays a cardinal role. The discussion presented in this work
examines the Lagrangian density of quantum theories. As
is well known, the electromagnetic interaction term of these
theories depends on a contraction of the charged particle’s 4-
current and the external 4-potential jµAµ. Thus, the Noether
theorem is used for deriving expressions for the charged par-
ticle’s 4-current. In this way the analysis proves that electro-
magnetic theories of spin-0 and spin-1 particles contain in-
herent contradictions.

Units where ~ = c = 1 are used in this work. Hence,
only one dimension is required and it is the length, denoted
by [L]. For example, mass, energy and momentum have the
dimension [L−1], etc. Greek indices run from 0 to 3 and the
diagonal metric used is gµν = (1,−1,−1,−1). The symbol
,ν denotes the partial differentiation with respect to xν. The
summation convention is used for Greek indices. The second
section presents theoretical elements that are used in the dis-
cussion. The third section contains a proof showing that elec-
tromagnetic interactions cannot be a part of a self-consistent
theory of spin-0 and of spin-1 quantum particles. Concluding
remarks can be found in the last section.

2 The theoretical basis of the analysis

The following discussion examines the structure of a quan-
tum theory of an electrically charged particle and its interac-
tion with electromagnetic fields. The need for a Lagrangian
density as basis for a relativistic quantum theory has become
a common practice. This issue can be derived from the fact
that the phase is an argument of an exponent. Thus, the power
series expansion of the argument proves that the phase must

be a dimensionless Lorentz scalar. This requirement is sat-
isfied if the action (divided by ~) is used for the phase and
the Lagrangian density is a Lorentz scalar whose dimension
is [L−4]. Indeed, in this case, the action

S =

∫
L d4x (1)

is a dimensionless Lorentz scalar.
The form of the required Lagrangian density is

L (Φ†,Φ†,µ,Φ,Φ,µ, Aµ, Fµν), (2)

where Φ denotes the function of the charged quantum par-
ticle and Aµ, Fµν denote the electromagnetic 4-potential and
its fields, respectively. In the discussion presented herein the
quantum function Φ represents either scalar, spinor or vec-
tor particle. In specific cases the notation φ represents a KG
charged particle, ψ denotes a Dirac particle and Wµ denotes
the W± particles. Evidently, (1) and (2) prove that the func-
tion Φ has dimension.

Maxwellian electrodynamics is derived from the follow-
ing Lagrangian density [3, see pp. 71–81]

L = − 1
16π

FµνFµν − jµAµ, (3)

where jµ denotes the charge’s 4-current and the last term of
(3) represents the electromagnetic interaction.

This expression demonstrates the crucial role of the 4-
current in a self-consistent theory of an electrically charged
particle. As is well known, the charge 4-current must satisfy
the continuity equation

jµ, µ = 0. (4)

The standard method used for constructing such a 4-current
relies on Noether’s theorem [4, see p. 20]. Thus, in the present
case, the expression for the 4-current boils down to the fol-
lowing form

jµ = i
∂L
∂Φ
†
, µ

Φ† − i
∂L
∂Φ, µ

Φ. (5)

(Note that due to the opposite phase sign of Φ† and Φ, cor-
responding terms derived from these functions have opposite
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sign.) Thus, in the case of a charged particle, the Noether 4-
current (5) is multiplied by the electric charge e. Relying on
(5), one concludes that the 4-current is derived from terms of
the Lagrangian density that contain a derivative of the field
function with respect to the coordinates xµ. The 0-component
of (5) represents the particle’s density. Hence, the dimension
of jµ is [L−3].

A standard method used for the introduction of electro-
magnetic interaction is to substitute the following transforma-
tion in the free Lagrangian density of the particle (see e.g. [1,
p. 10])

−i
∂

∂xµ
→ −i

∂

∂xµ
− eAµ(xν). (6)

Later, this substitution is called the standard form of elec-
tromagnetic interaction. This form as well as other forms of
electromagnetic interactions are discussed in the next section.

3 Quantum charged particles

The Dirac Lagrangian density of a free spin-1/2 particle is [4,
see p. 54]

L = ψ̄ [γµi∂µ − m]ψ. (7)

This expression is linear in the mass. Hence, the dimension
[L−4] of the Lagrangian density means that the dimension of
the Dirac function ψ is [L−3/2]. An application of the Noether
relation (5) for a construction of the 4-current yields the well
known Dirac expression [1, see pp. 23–24] which is written
below in the standard notation

jµ = e ψ̄γµψ. (8)

The dimension [L−3/2] of the Dirac function ψ shows that (8)
has the required dimension.

The case of the KG and of the W Lagrangian density is
different. Here the mass term takes the form (see [4, p. 26]
and [5, p. 309], respectively)

−m2Φ†Φ. (9)

Different numerical factors of (9) are not mentioned and the
same is true for the contraction of the 4 components of the
W function. Relationship (9) means that the dimension of the
KG and of the W functions is [L−1]. Thus, in order to sat-
isfy the [L−4] dimension of the Lagrangian density of these
particle, it must contain terms that are bilinear in derivatives
with respect to the space-time coordinates xµ. Applying the
Noether relation for the 4-current (5), one finds that the 4-
current of the KG and of the W particles contains a derivative
with respect to xµ. This property means that utilizing of the
standard form of the introduction of electromagnetic interac-
tions (6), one finds that the 4-current of the KG and of the
W particles depends linearly on the 4-potential of the elec-
tromagnetic fields. (This is certainly inconsistent with gauge
invariance, because here a gauge transformation alters charge
density and the associated field values as well. However, this

matter is not discussed in the present work.) The dependence
of the charged KG 4-current on the external electromagnetic
4-potential has already been shown a long time ago [2, see
p. 199].

Let us turn to the electromagnetic fields. The interaction
term of the Maxwellian Lagrangian density (3) is jµAµ. Now,
if the 4-current jµ of the KG and of the W particles depends
linearly on the 4-potential of electromagnetic fields then there
is a quadratic term of the 4-potential in the expression for the
interaction term in the Maxwellian Lagrangian density (3).
This is a contradiction because in Maxwellian electrodynam-
ics the interaction term must be linear in the 4-potential [3, see
pp. 78–79].

The foregoing discussion proves that there is no theoreti-
cally valid expression for the electromagnetic interaction of a
KG particle and of the W boson as well. Thus, in the case of
the W boson people resort to a phenomenological expression
that goes by the name effective Lagrangian density [6,7]. Us-
ing standard notation for the W field, one of the nonvanishing
electromagnetic interaction terms of the effective Lagrangian
density is

Lint = −ie (W†µνW
µAν −W†µWµνAν). (10)

The articles [6,7] have been cited many times and (10) is still
used in a collider data analysis [8, see eq. (1)] [9, see eq. (3)].

The following argument proves that (10) is indeed an ef-
fective expression which cannot be justified theoretically. Let
us assume that (10) is a term in a theoretically justifiable La-
grangian density. In this case the following expression

jν = −ie (W†ν
µ Wµ −W†

µWµν) (11)

represents the electric 4-current of the W boson. But (11) con-
tains the factors W†µν and Wµν, and by the definition Wµν =

∂µWν − ∂νWµ, each of which is a derivative with respect to
xµ. Therefore, due to the Noether theorem (5), the interaction
term (10) alters the 4-current of the W boson and adds to it a
troublesome term that is proportional the the external electro-
magnetic 4-potential Aµ. Hence, contrary to the assumption
examined herein, (11) does not represent the 4-current of the
W boson. This contradiction substantiates the proof.

A second electromagnetic term which is introduced into
the effective Lagrangian density of the W is [6–9]

Lint = ie W†
µWνFµν. (12)

This term is certainly inconsistent with electromagnetic in-
teractions because these interactions are proportional to the
4-current of the charged particle and the dimension of the 4-
current is [L−3]. On the other hand, it is proved above that
the dimension of the W function is [L−1] and that of W†

µWν is
[L−2]. Therefore, (12) cannot represent a consistent electro-
magnetic interaction.
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4 Conclusions

The solid mathematical structure of the spin-1/2 Dirac equa-
tion and its successful experimental status are pointed out
above. Here a self-consistent relativistically covariant elec-
tromagnetic interaction exists. Thus, nobody finds the need
to resort to “effective Lagrangian density”.

A different situation holds for the cases of spin-0 and spin-
1 elementary particles. It is proved in this work that for these
particles the standard methods used for constructing electro-
magnetic interactions fail. Furthermore, it is proved above
that the authors of [6, 7] are right in their description of the
W boson electromagnetic interaction (10) as an effective ex-
pression. However, a proof presented in the previous sec-
tion shows that (10) cannot be a part of a theoretically self-
consistent Lagrangian density. This outcome means that the
W boson cannot carry an electric charge. Now, the W boson
takes a vital part in the unification of electrodynamics with
weak interaction which is called electroweak theory. There-
fore, the results cast doubt on the validity of the electroweak
theory.

Another result of the discussion presented above is that
the experimentally detected W boson cannot be an elemen-
tary particle described by a field function that takes the form
W±µ(xν). Indeed, a dependence on a single set of space-time
coordinates xµ is a property of a structureless pointlike ele-
mentary particle like the electron etc. Thus, the actual W±

particles must be composite particles and it looks plausible to
regard them as a combination of mesons of the top quark and
either of the d, s, b antiquarks or vice versa. It turns out that
the conclusions of this work provide an independent support
to similar conclusions that have been published earlier [10].
It should also be noted that the results of this work are consis-
tent with Dirac’s lifelong objection to the KG equation [11].
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