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We apply a natural decomposition of tensor fields, in terms of dilatations and distor-
tions, to the Ricci tensor. We show that this results in a separation of the field equations
of General Relativity into a dilatation relation and a distortion relation. We evaluate
these equations in the weak field approximation to show that the longitudinal dilatation
mass relation leads to Poisson’s equation for a newtonian gravitational potential, and
that the transverse distortion wave relation leads to the linearized field equation of grav-
ity in the Transverse Traceless gauge. The results obtained are in agreement with the
Elastodynamics of the Spacetime Continuum.

1 Introduction

In a previous paper [1], we proposed a natural decomposition
of spacetime continuum tensor fields, based on the continuum
mechanical decomposition of tensors in terms of dilatations
and distortions. In this paper, we apply this natural decom-
position to the Ricci tensor Rµν of General Relativity within
the framework of the Elastodynamics of the Spacetime Con-
tinuum (STCED) [2].

2 Decomposition of the Ricci tensor

As shown in [1], the stress tensor T µν of General Relativity
can be separated into a stress deviation tensor tµν and a scalar
ts according to

T µν = tµν + ts g
µν (1)

where
tµν = T µ

ν − ts δ
µ
ν (2)

ts =
1
4

Tα
α =

1
4

T. (3)

The Ricci curvature tensor Rµν can also be separated into a
curvature deviation tensor rµν (corresponding to a distortion)
and a scalar rs (corresponding to a dilatation) according to

Rµν = rµν + rs g
µν (4)

where similarly
rµν = Rµ

ν − rs δ
µ
ν (5)

rs =
1
4

Rα
α =

1
4

R (6)

where R is the contracted Ricci curvature tensor.
Using (1) to (6) into the field equations of General Rela-

tivity [3, see p. 72],

Rµν − 1
2
gµνR = −κT µν (7)

where κ = 8πG/c4 and G is the gravitational constant, we
obtain a separation of the field equations of General Relativity
into dilatation and distortion relations respectively:

dilatation : rs = −κts

distortion : rµν = κtµν.
(8)

The dilatation relation of (8) can also be expressed as

R = −κT. (9)

The distortion-dilatation separation of tensor fields is thus
also applicable to the field equations of General Relativity,
resulting in separated dilatation and distortion relations. This
result follows from the geometry of the spacetime continuum
(STC) used in General Relativity being generated by the com-
bination of all deformations present in the STC [2].

3 Weak field approximation

We evaluate these separated field equations (8) in the weak
field approximation to show that these relations satisfy the
massive longitudinal dilatation and massless transverse dis-
tortion results of STCED [2].

In the weak field approximation [4, see pp. 435–441], the
metric tensor gµν is written as gµν = ηµν + hµν where ηµν is the
flat spacetime diagonal metric with signature (− + + +) and
|hµν| � 1. The connection coefficients are then given by

Γµαβ =
1
2
ηµν(hαν,β + hβν,α − hαβ,ν) (10)

or, after raising the indices,

Γµαβ =
1
2

(hαµ,β + hβµ,α − hαβ,µ). (11)

The Ricci tensor is also linearized to give

Rµν = Γαµν,α − Γαµα,ν (12)

which becomes

Rµν =
1
2

(hµα,να + hνα,µα − hµν,αα − hαα,µν). (13)

The contracted Ricci tensor

R = gµνRµν ' ηµνRµν (14)

then becomes

R =
1
2
ηµν(hµα,να + hνα,µα − hµν,αα − hαα,µν) (15)

which, after raising the indices and re-arranging the dummy
indices, simplifies to

R = hαβ,αβ − hαα,ββ. (16)
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4 Dilatation (mass) relation

Making use of (16) and (6) into the dilatation relation (9), we
obtain the longitudinal dilatation mass relation

hαα,ββ − hαβ,αβ = κT (17)

and, substituting for κ from (7) and T = ρc2 from (30) of [2],

∇2hαα − ∂α∂βhαβ =
8πG
c2 ρ (18)

where ρ is the rest-mass density. This equation is shown to
lead to Poisson’s equation for a newtonian gravitational po-
tential in the next section.

The second term of (18) would typically be set equal to
zero using a gauge condition analogous to the Lorentz gauge
[4, see p. 438]. However, the second term is a divergence
term, and it should not be set equal to zero in the general case
where sources may be present.

4.1 Static newtonian gravitational field

We consider the metric perturbation [4, see pp. 412–416]

h00 = −2Φ/c2

hii = 0, for i = 1, 2, 3
(19)

where Φ is a static (i.e. time independent) newtonian gravita-
tional field. Then the term

hαβ,αβ = h00
,00 = 0 (20)

and (17) becomes
∇2h0

0 = κT. (21)

Using h00 from (19) and κ from (7), (21) becomes

∇2Φ =
4πG
c2 T. (22)

Substituting for T = ρc2 from (30) of [2], we obtain

∇2Φ = 4πGρ (23)

where ρ is the mass density. This equation is Poisson’s equa-
tion for a newtonian gravitational potential.

5 Distortion (wave) relation

Combining (13) and (16) with (5) and (6) into the distortion
relation of (8), we obtain the transverse distortion wave rela-
tion

1
2

(hµα,να + hνα,µα − hµν,αα − hαα,µν)−

−1
4
ηµν(hαβ,αβ − hαα,ββ) = κtµν

(24)

where tµν is obtained from (2) and (3). This equation can be
shown to be equivalent to the equation derived by Misner et al

[4, see their Eq.(18.5)] from which they derive their linearized
field equation and transverse wave equation in the Transverse
Traceless gauge [4, see pp. 946–950]. This shows that this
equation of the linearized theory of gravity corresponds to a
transverse wave equation.

This result highlights the importance of carefully select-
ing the gauge transformation used to simplify calculations.
For example, the use of the Transverse Traceless gauge elim-
inates massive solutions which, as shown above and in [2],
are longitudinal in nature, while yielding only non-massive
(transverse) solutions for which the trace equals zero.

6 Discussion and conclusion

In this paper, we have applied a natural decomposition of ten-
sor fields, in terms of dilatations and distortions, to the Ricci
tensor. We have shown that this results in a separation of the
field equations of General Relativity into a dilatation relation
and a distortion relation. We have evaluated these equations
in the weak field approximation to show that the longitudi-
nal dilatation mass relation leads to Poisson’s equation for a
newtonian gravitational potential, and that the transverse dis-
tortion wave relation leads to the linearized field equation of
gravity in the Transverse Traceless gauge. The results ob-
tained are thus found to be in accord with the Elastodynamics
of the Spacetime Continuum.
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