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A New Model of Black Hole Formation
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The formation of a black hole and its event horizon are described. Conclusions, which
are the result of a thought experiment, show that Schwarzschild [1] was correct: A
singularity develops at the event horizon of a newly-formed black hole. The intense
gravitational field that forms near the event horizon results in the mass-energy of the
black hole accumulating in a layer just inside the event horizon, rather than collapsing
into a central singularity.

1 Introduction

This article describes the formation of a black hole and the
physics of event horizon formation. In early 1916, a Ger-
man physicist, Karl Schwarzschild, published a short paper in
which he gave a solution to Einstein’s general relativity field
equations for spherically symmetric objects. Schwarzschild’s
solution “contains a coordinate singularity on a surface that
is now named after him. In Schwarzschild coordinates, this
singularity lies on the sphere of points at a particular radius,
called the Schwarzschild radius” [1] (emphasis added). The
significance of this paper has not been generally appreciated,
although it led physicists eventually to accept black holes as
real physical objects. Many black holes have been detected
in recent years using astronomical techniques. But physicists
in general have concluded that the singularity lies at the cen-
ter of the black hole rather than on its event horizon. They
have mostly ignored the results of Schwarzschild, who found
that the singularity occurred at the event horizon itself rather
than at the center of the spherical space enclosed by the event
horizon. In this article I show by means of a suitably chosen
thought experiment that Schwarzschild was correct.

2 A collapsing star

Following the occurrence of a Type 1a supernova, a neutron
star is usually formed. For neutron stars with a mass greater
than the Tolman-Oppenheimer-Volkoff limit (about 3 to 4 so-
lar masses), the star will collapse to form a black hole. We
need to follow the history of some points on and within the
collapsing star in order to find out what really happens when a
black hole is formed. To establish some boundary conditions,
note that a point at the center of the collapsing star will not
move with respect to a coordinate system centered on the star;
the center of the system does not participate in the collapse.
Of more interest is a point on the surface of the collapsing
star. This point will have a velocity vector directed toward
the center of the star with a speed that depends on the time
from the initiation of collapse until the formation of the event
horizon, at which time its speed is assumed to be the speed of
light, c. Assume that a point halfway between the surface and
the center will also have an inwardly directed velocity with
half the speed of the surface point. In other words, the con-

Fig. 1: Radial velocities in a collapsing star.

traction is radially linear. Some departure from this linearity
will not severely affect my conclusions.

Figure 1 shows qualitatively what these radial velocities
look like. The size of the star in the illustration is assumed
to be approaching the Schwarzschild radius. The black colors
indicate high radial velocity and white indicates small or zero
velocities. The figure was constructed using the gradient tool
in Photoshop and is linear in value from the center to the outer
boundary. In reality, the darkest black should be confined to
the very outer edges of the star and most of the interior should
be either white or light gray. Nevertheless, the picture does
give a good idea of the kind of radial velocities one would
find in the cross-section of a collapsing star.

Figure 2 shows the situation at the moment when the event
horizon forms. Note that the points at 0.995 Rs, where Rs

is the Schwarzschild radius, have 10 times their normal, or
rest, mass. The asymptote on the right goes to infinity at the
Schwarzschild radius, R = 1.0 in the illustration. This is the
singularity that Karl Schwarzschild discovered when he
solved Einstein’s field equations for a symmetrical, non-
rotating body. The equation used to plot the points for the
mass as a function of the radius is:

m
m0

=
1√

1 − v2/c2
≡ 1√

1 − R2
, 0 5 R < 1. (1)

The validity of this special relativity equation under the
conditions in the formation of an event horizon is unsure, but
since a singularity is a singularity, and this equation defines
one for v = c, it is likely as good as some other measure.
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Fig. 2: Mass distribution in a newly-formed black hole. Drawing by
the author.

The essential point is that most of the mass will be con-
centrated near the event horizon as soon as it forms. Thus the
gravitational field will be quickly reversed, and with it, the
velocity field inside the event horizon. Particles in the interior
of the new black hole will be strongly attracted to the event
horizon, since that is where most of the mass is located. This
implies that the entire mass of the collapsed star could end
up in a shallow region just inside the event horizon. There
is no way to determine from the outside whether or not this
happens.

In this scenario, the mass M is contained in a very thin
layer at the radius R and the interior is empty. But how does it
get there? According to Susskind [2, see p. 238] anything that
impacts the event horizon of a black hole is absorbed by it,
spreading over the entire extent of the event horizon the way
a drop of ink dissolves rapidly in a basin of warm water. What
if the event horizon itself comprises all of the mass contained
in the black hole, held in a layer perhaps one Planck length in
thickness? (Admittedly, that’s a guess on my part.) From the
outside, it would still behave like a black hole. All differences
would be on the inside.

In my model the material of a collapsing star would, as
soon as it has compacted enough to form a black hole, begin
to migrate to the event horizon, like iron filings attracted to
a magnet. The only place where the gravity of the material
comprising the event horizon layer is neutral would be the
exact, precise center of the black hole. But even so small a
particle as a hadron would, sooner or later, wander off center
— if for no other reason, because of the Heisenberg uncer-
tainty principle. It would then be instantly attracted to the
event horizon and would stick there like a bug on fly pa-
per. Eventually the entire inside of the black hole would be
empty. The layer comprising the event horizon layer may be
extremely thin, but it is most definitely not a singularity, a
mere mathematical point.

I recently discarded this possibility, but it appears that I
may have been too hasty in doing so.

3 What happens to the matter in a black hole?

In this reconsidered theory, the singularity at the event hori-
zon is only mathematical, not real. The mass of the collapsed
star is contained in a thin layer just inside the event horizon,
perhaps only a single Planck length thick. There is an external
complement to this idea. Leonard Susskind [2, see pp. 233–
234] writes:

The only [solution] consistent with the laws of
physics would be to assume that some kind of
super-heated layer exists just above the horizon,
perhaps no more than a Planck length thick. . .
the layer must be composed of tiny objects, very
likely no bigger than the Planck length. The hot
layer would absorb anything that fell onto the
horizon, just like drops of ink dissolving in wa-
ter. . . This hot layer of stuff needed a name. As-
trophysicists had already coined the name that I
eventually settled on. . . They had used the idea
of an imaginary membrane covering the black
hole just above its horizon to analyze certain
electrical properties of black holes. [They] had
called this imaginary surface the stretched hori-
zon, but I was proposing a real layer of stuff, lo-
cated a Planck length above the horizon, not an
imaginary surface.
I liked the sound of “stretched horizon” and
adopted it for my own purposes. Today the
stretched horizon is a standard concept in black
hole physics. It means the thin layer of hot micro-
scopic “degrees of freedom” located about one
Planck distance above the horizon.

I propose the name “Shell Theory” for my explanation of
black hole formation.∗ This theory posits a one-to-one cor-
respondence between the bits of entropy on the surface of the
event horizon of a black hole and the particles of the collapsed
star in the shell layer just inside the event horizon. The grav-
itational field and other external properties of the black hole
will be exactly the same as if an infinite singularity existed at
the center, because the amount of mass-energy in each case
will be identical. All that is necessary for this condition to be
true is that the distribution of mass inside the event horizon is
spherically symmetrical. The shell theory has the same spher-
ical symmetry as conventional theory with a singularity at the
center of the black hole.

In the shell theory evolution of a black hole, the collaps-
ing of the remnant star must stop as soon as the event horizon
is formed. The reversal would start at a time somewhat prior
to the formation of the event horizon. In figure 1 it is apparent
that even before the outer layer of particles achieves a veloc-
ity magnitude equal to the speed of light, the distribution of

∗For the purposes of this article, a “shell” is defined as the volume en-
closed between concentric spheres of different radii.
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mass within the collapsing object would favor the outer lay-
ers over the inner layers. This differential in the gravitational
field would build up rapidly as the size of the collapsing star
approached the Schwarzschild limit, so it would not be an in-
stantaneous reversal.

The mass of a differential shell from the collapsing star as
a function of the radius, assuming that the radial velocity of a
point inside the object is a linear function of the radius up to
the limit of v = c, at R = Rs, is:

d
m
m0

= 4πR2 m
m0

dR , (2)

where
m
m0

=
1√

1 − R2
. (3)

Therefore the total relative mass of a spherical shell is given
by the integral:

m
m0

=

∫
4πR2dR√

1 − R2
= 4π

[
1
2

sin−1(R) − 1
2

R
√

1 − R2

]
. (4)

This result must be evaluated at three points: R = 0; R = R;
and R = Rs. The result for R = 0 is simple: 0. For R = Rs the
term (1 − R2) becomes zero, and sin−1(1) is π

2 ; so the result
for R = Rs is π

4 (× 4π). Subtracting the two solutions from
each other (ignoring the common factor of 4π) and setting
the results equal to each other — so that we obtain the radius
within which and without which there is equal mass — we
have, after rearranging terms, the equation:

sin−1(R) =
π

4
+ R
√

1 − R2. (5)

This equation, (5), is difficult to evaluate in closed form, but
the result can be obtained easily through the process of suc-
cessive iterations. The solution is approximately R = 0.915
(the difference between the two sides of the equation is
9 × 10−4 out of 1.155), meaning that the outer 8.5% of the
sphere contains as much relativistic mass as the entire inner
91.5%.∗ This amply demonstrates that what was initially the
inward implosion of a neutron star will now be a radially out-
ward “explosion” within the confines of the event horizon —
the surface implied by Schwarzschild’s results.

4 Results and discussion

The likely end result will be that all of the mass-energy of a
collapsed star ends up confined to a very thin layer — prob-
ably only one Planck length thick — just inside the event
horizon. There may be a “ black hole” there, but its matter
will not be located in an infinitely dense singularity at the
center point.

Also notice that for a solid body of uniform density, the
gravitational field outside the surface is inversely proportional

∗A more precise result is 0.914554 ± 2 × 10−6.

to the square of the distance from the center of the body, but
for points inside the body the gravitational field is linear, di-
minishing to zero at the center. This reinforces the assumption
that the collapse of the neutron star should be linear in nature.
The effect as the radius of the shrinking star approaches and
attains the Schwarzschild radius is to change this linear gravi-
tational potential into a hyperbolic gravitational field, asymp-
totic to infinity at Rs.

The singularity at the Schwarzschild radius, or event
horizon, is mathematical only and does not affect any real
particles. The event horizon is described by a metric of points
distributed over a spherical manifold, and the term “point
mass” is an oxymoron since a point cannot have mass or any
other physical property. It is nothing more than a mathemati-
cal position in space-time. In this context, note that the inte-
gration in equation (4) does not diverge at R = Rs, as it would
if there were a true infinity at that point.

Where I have written the word “point” or “points”, this
term should not be taken literally. The reader should imag-
ine a tiny amount of matter, perhaps a cubic Planck length
(Planck volume) in size, located at a particular point in space-
time. An actual point has no dimensions and therefore cannot
have mass or any other physical property. The Planck volume
is believed by many to be a quantum unit of space.
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