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This article provides the basic design for a laboratory instrument that may detect the
Earth’s time-retarded transverse vector potential [Hafele J.C.Zelm. Jour., 2012, v.5,
134]. The instrument is based on the compound pendulum used by N.A. Kozyrev
to measure the change in weight of a suspended aircraft navigation gyroscope
[Kozyrev N.A. Zelm. Jour., 2012, v.5, 188]. If such an instrument is developed to mea-
sure the strength of the Earth’s vector potential with a precision of about 1 part in 1000,
the neoclassical causal theory can be worked backwards to calculate the speed of the
Earth’s gravitational field.

Introduction

A new causal version for Newtonian gravitational theory has
been shown to explain exactly the six Earth flyby anomalies
reported by NASA in 2008, and also explain exactly an over-
looked lunar orbit anomaly [1, 2]. The new causal theory,
which retains the traditional acausal radial component, re-
quires in addition a small time-retarded transverse component
for the Earth’s gravitational field. The new transverse compo-
nent is orthogonal to the traditional radial component and is
directed along the east-west direction. It is well-known that
the traditional radial component can be derived from the gra-
dient of a scalar potential. However, the time-retarded trans-
verse component can be derived only from the curl of a vector
potential. The formula for the vector potential will be found
by using Stoke’s theorem. The resulting vector potential isdi-
rected along the north-south direction. The north-south com-
ponent of the gravitational field is given by the time-derivative
of the vector potential. By using an analogous Lorentz force
law, it will be shown that a small time-dependent radial com-
ponent is created by induction from the north-south gravita-
tional field. This small induced radial component can slightly
change the weight of a suspended gyroscope. By measuring
the change in weight, the neoclassical causal theory can be
worked backwards to deduce the strength of the vector poten-
tial, and thereby indirectly measure the speed of the Earth’s
gravitational field.

More than 60 years ago [3], N.A. Kozyrev used the caus-
ality principle to predict the need for a second universal veloc-
ity, one that is to be associated with rotational motion [4].He
designatesc2 as the speed for this second universal velocity.
He developed a theory that suggests that the numerical value
for c2 should be related to the fine structure constant [5]. In
electrostatic cgs units, the unit of electric charge is the stat-
coulomb.

The formula for the fine-structure constant, designated by
α, in cgs electrostatic units, becomes [5]

α =
2π
c

e2

h
�

1
137
, (1)

Fig. 1: Schematic of the compound pendulum developed by
N.A. Kozyrev to measure a change in the weight of a gyroscope sus-
pended from a balanced cross beam [6]. The preferred orientation
of the cross beam appears to have been along the north/south direc-
tion, and that for the rotational axis of the gyroscope’s rotor along
the east/west direction. In some cases a weight change was detected
by a small steady imbalance in the cross beam.

wherec is the well-known speed of light in vacuum,e is the
electronic charge in statcoulombs, andh is Plank’s constant.
The numerical value for the ratioe2/h is 350 km/s. Kozyrev
found by experiment thatc2� 700 km/s=2e2/h= c/430=
αc/π.

A schematic for the compound pendulum developed by
N.A. Kozyrev to measurec2 is shown in Fig. 1 [6]. Kozyrev
found that the weight of the gyroscope under certain condi-
tions would change when there is a vertical vibration of the
cross arm. Sometimes he observed a relative weight change
on the order of 10−5.

The objective ofthis article is to derive the effects of the
neoclassical causal theory on a suspended gyroscope. We will
find that the weight changes observed by N.A. Kozyrev may
have been caused by the causal version of Newton’s theory.

Parameter values and basis vectors

Numerical values for various parameters will be needed. Let
m be the mass of the gyroscope’s rotor, letR be its radius,
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let ωrot be its angular speed, letProt be the rotational period,
let Irot be the moment of inertia, letJrot be the angular mo-
mentum vector, and letErot be the rotational energy. Typical
numerical values for the parameters of an aircraft navigation
gyroscope are [4]

m = 0.1 kg,

R = 2× 10−2 m,

ωrot = 2π500 rad/s= 3.14× 103 rad/s,

Prot = 2π/ωrot = 2× 10−3 s,

Irot = mR2 = 4× 10−5 kg×m2,

Jrot = Irotωrot = 0.126 kg×m2/s,

Erot =
1
2

Irotω
2
rot = 197 kg× m2/s2.

(2)

Let the Earth be simulated by a spinning isotropic sphere of
radiusrE , massME , sidereal spin angular speedΩE , equato-
rial surface speed veq, moment of inertiaIE , surface gravita-
tional scalar potentialϕE , surface gravitational fieldgE, spin
energyEE , and spin angular momentumJE . Numerical val-
ues for the Earth’s parameters are [1]

G = 6.6732× 10−11 N ×m2/kg2,

rE = 6.37× 106 m,

ME = 5.98× 1024 kg,

ΩE = 7.29× 10−5 rad/s,

veq = rEΩE = 4.65× 102 m/s,

IE = 8.02× 1037 kg×m2,

ϕE =
GME

rE
= 6.26× 107 m2/s2,

gE =
GME

r2
E

= 9.83 m/s2,

EE =
1
2

IEΩ
2
E = 2.13× 1029 kg×m2/s2,

JE = IEΩE = 5.85× 1033 kg×m2/s.

(3)

Let (X,Y, Z) be the rectangular coordinates for an inertial
frame-of-reference, let the Earth’s center be at the origin, let
the (X,Y) plane coincide with the equatorial plane, and let
the axis of rotation coincide with theZ-axis. LeteX be a unit
vector directed outwardly along theX-axis, leteY be a unit
vector directed outwardly along theY-axis, and leteZ be a
unit vector directed outwardly along theZ-axis.

Let the spherical coordinates for an exterior field-point
be (r,φ,λ), wherer is the geocentric radial distance,φ is the
azimuthal angle, andλ is the geocentric latitude. Leter be
a unit vector directed upward alongr, let eφ be a unit vector
directed towards the east, and leteλ be a unit vector directed
towards the north. The triad (er,eφ, eλ) forms the basis for a
right-handed system of orthogonal spherical coordinates.

Effects of a vertical vibration of a suspended gyroscope

Let the field-point be at the center of the rotor of an aircraft
navigation gyroscope. Letλ be the geocentric latitude for the

gyroscope. Leth be the rotor’s height above the Earth’s sur-
face, leth0 be a constant altitude, leth1 be the vibration ampli-
tude, and letωh be the angular speed for a vertical vibration.
Then

h = h0 + h1 cosωht. (4)

The time dependent geocentric radial distance becomes

r = rE

(

1+
h0

rE
+

h1

rE
cos (ωht)

)

. (5)

Let rφ be the rotor’s geocentric radius of gyration

rφ = rE cosλ

(

1+
h0

rE
+

h1

rE
cos (ωht)

)

. (6)

Let v be the rotor’s vector inertial velocity

v = ervr + eφvφ + eλvλ. (7)

The formulas for vr and vφ are

vr =
dr
dt
= −h1ωh sin (ωht),

vφ = rφΩφ = rEΩE cosλ

(

1+
h0

rE
+

h1

rE
cos (ωht)

)

.
(8)

Let Er be the radial energy. If the radial energy isconstant,
then

constant = Er =
1
2

mv2r − mgEh =

=
1
2

mh2
1ω

2
h sin2 (ωht) − mgE(h0 + h1 cos (ωht)).

(9)
By using a trig identity for sin2(ωht), the time independent
part of (9) becomes

constant =
1
4

mh2
1ω

2
h − mgEh0. (10)

Suppose a gyroscope is suspended by a spring of unstretched
lengthℓ0 and spring constantk, as depicted in Fig. 2. Suppose
the upper end of the spring is connected to a vibrator which
can produce a time-dependent supporting force.

Fup = W + mhvibω
2
vib cos (ωvibt), (11)

whereW is the weight of the gyroscope. If the vibrator is
turned off, hvib = 0. In this case, the upper end of the spring
is attached to a fixed solid point, and the system becomes a
simple undriven harmonic oscillator.

Let δℓ0 be the stretch of the spring when the gyroscope is
attached. Thenk =W/δℓ0� mgE/δℓ0, wheregE is the Earth’s
radial gravitational field at the surface. Letδℓ0= h0. Then

k =
mgE

h0
. (12)
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Fig. 2: Schematic for a forced harmonic oscillator; a rotor of massm
suspended by a spring of spring constantk with an upward support-
ing forceFup. HereT is the spring tension pulling up on the rotor,
the weightW is the downward force of gravity on the rotor, andh
is the height of the center of the rotor above the surface. Assume
that the mass of the spring is negligible, and that the mass ofthe
gyroscope approximately equals the mass of the rotor.

If the system is enclosed in a glass box, the damping of small
amplitude free oscillations would be weak. The equation for
an undamped harmonic oscillator is [7]

d2h
dt2
+ ω2

kh = 0, (13)

where

ω2
k =

k
m
=
gE

h0
. (14)

If h0 � 10−4 m, thenωk � 313 rad/s or 50 Hz. Ifωh =ωk and
the constant of (10) is zero, the connection betweenh1 andh0

becomes
h1 = 2h0. (15)

This shows that the constanth0 is comparable with the ampli-
tudeh1.

Now consider the forced harmonic oscillator. Suppose
the vibrator is turned on and adjusted to an amplitudehvib and
angular speedωvib. In this case,

Fup = mgE + mhvibω
2
vib cos (ωvibt). (16)

If ωvib �ωk, the system is at or near resonance [7]. At res-
onance, if the damping is small, the speeddh/dt is in phase
with the driving forceFup, the average kinetic energy in the
system is at a maximum, and the amplitude at the rotorh1 can
be many times greater than the driver amplitudehvib.

The effects of vibration alone apply to any dead weight,
because vibration alone does not depend on the rotation of
the gyroscope’s rotor. Gyroscopic forces do depend on the
rotation of the rotor. Therefore, for a complete analysis, gy-
roscopic forces must be included.

Effects of gyroscopic forces

Gyroscopic forces cause precession and nutation [7, 8]. Pre-
cession is a steady revolution of the rotor around a vertical

Fig. 3: Depiction of the gyroscopic forces acting on a rotor of mass
m, radiusR, and angular momentum vectorJrot, which is supported
by an upward forceFup at a distanceb along the axel from the ro-
tor’s center to the support. AssumeJrot is in the horizontal plane. If
Fup =mgE , the precessional torque on the rotorτpcn = bmgE . In this
case, the rotor precesses around the support with an angularspeed
ωpcn = bmgE/mR2ωrot.

axis, and nutation is an up-down nodding motion of the rotor.
The general problem for motions of a spinning rigid body can
be quite complicated, but the problem is simplified for certain
special cases. The case for “THE HEAVY SYMMETRICAL
TOP WITH ONE POINT FIXED” is described in great detail
by H. Goldstein [8, p. 213].

Suppose the axel for a rotor is supported at a distanceb
from the center with an upward supporting forceFup and with
the angular momentum vectorJrot released in the horizontal
plane, as depicted in Fig. 3.

For a first case, suppose the supporting force is constant
and equal to the weight,Fup =mgE . Consider the case for
slow precession without nutation.

Let ωpcn be the precessional angular speed, and let vpcn

be the linear speed. Then the torqueτpcn = bmgE = Jrotωpcn.
Solving for the angular speed givesωpcn = bgE/R2ωrot.

If the distanceb=0.1 m, R=2×10−2 m, and ωrot =

3.14×103 rad/s, numerical values forωpcn and vpcn are

ωpcn =
bgE

R2ωrot
= 0.782 rad/s,

vpcn = bωpcn = 7.82× 10−2 m/s.
(17)

Thus we find that the precessional speed for this case would
be slow and constant at about 8 cm/s. Notice that this gyro-
scopic force supports the entire weight of the rotor.

Suppose the system is started withJrot at a small initial
angleδθ0 above the horizontal plane. Lethntn be the ampli-
tude for nutation, which is the initial height above the hori-
zontal plane. Then

hntn = b tanδθ0. (18)

When released, the rotor will precess with the angular speed
ωpcn of (17) and oscillate up and down with an upper maxi-
mum angleδθ0 and a lower minimum angleδθ1. Letωntn be
the angular speed for nutation. The formula forωntn can be
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found in [8, p. 221].

ωntn =
bgE

R2ωpcn
= ωrot = 3.1× 103 rad/s. (19)

Thus we find that the frequency for nutation is the same as
the frequency for the rotor, 500 Hz.

The formula for the difference sinδθ0− sinδθ1 can be
found in [7, p. 312].

sinδθ0 − sinδθ1 =
2gEb3

R4ω2
rot

.

If b=0.1 m, R=2×10−2 m, andωrot = 3.14× 103 rad/s, the
numerical value for the difference becomes

sinδθ0 − sinδθ1 = 1.24× 10−2, (20)

the amplitude
hntn = 6.2× 10−4 m, (21)

and the linear speed for nutation becomes

vntn = hntnωntn sin (ωntnt) � (1.9 m/s) sin (ωntnt). (22)

Now let’s change the length of the axel. Suppose the rotor’s
axel is extended on the other side of the support by the same
distanceb, and a dead weight that balances the cross beam
is attached. IfJrot is directed outward from the supporting
point, the dead weight would produce a torque equal in mag-
nitude but opposite to the direction forτpcn, which would can-
cel the precessional motion. But such a balance would not
cause any change in the nutational motion.

With the cross beam balanced in this manner, suppose
the vibrator that supports the cross beam is turned on and
adjusted to have an amplitude ofhntn and an angular speed
ωntn. This would induce an artificial nutation, but only if the
gyroscope’s rotor is spinning with an angular speedωrot. If
the radial gravitational field contains a small time-dependent
component with an angular speed nearωntn, there would be
interesting interference effects and beat frequencies that could
become visible in the balance of the cross beam.

The Earth’s time-retarded transverse gravitational field

To satisfy the causality principle, the neoclassical causal the-
ory postulates a new time-retarded transverse component for
the Earth’s gravitational field [1]. Letgφ be the Earth’s time-
retarded transverse component. The formula for the magni-
tude is [1]

gφ = Cφ

(

1−
Ωφ

ΩE

)

PS (r) cos2 λ, (23)

where the definition for the coefficient is

Cφ = Gρ̄rE
veq

cg
. (24)

HereG is the gravity constant,rE is the Earth’s spherical ra-
dius,ΩE is the Earth’s sidereal angular speed, ¯ρ is the Earth’s
mean mass density,cg is the speed of propagation of the
Earth’s gravitational field,r is the geocentric radial distance
to the field point,λ is the geocentric latitude for the field
point,Ωφ is the angular speed of the projection of the field
point onto the equatorial plane, andPS (r) is a power series
representation for a triple integral over the Earth’s volume.

The numerical value forCφ with cg = c is

Cφ = Gρ̄rE
veq

c
= 3.635× 10−6 m/s2. (25)

The formula for the power series is

PS (r)=
( rE

r

)3
(

C0+C2

( rE

r

)2
+C4

( rE

r

)4
+C6

( rE

r

)6
)

, (26)

where the values for the coefficients are

C0= 0.50889, C2=0.13931,

C4= 0.01013, C6=0.14671.
(27)

Let CPS 0 be the value forPS (rE). The definition and numer-
ical value are

CPS 0 = C0 +C2 +C4 + C6 = 0.805. (28)

Let JZ be the geocentric angular momentum for the rotor,
defined as

JZ = mr2
φΩφ (29)

By conservation of angular momentum,

constant =
Jz

m
= r2
φΩφ = r2

EΩE cos2 λ (30)

Solving (30) forΩφ gives

Ωφ � ΩE

(

1− 2
h0

rE
− 2

h1

rE
cos (ωht)

)

(31)

Then the difference

1−
Ωφ

ΩE
= 2

h0

rE
+ 2

h1

rE
cos (ωht). (32)

Substituting (32) into (23) produces

gφ = Cφ

(

2
h0

rE
+ 2

h1

rE
cos (ωht)

)

PS (r) cos2 λ. (33)

The numerical value forgφ with cg = c, r= rE , h0= h1=

10−4 m, andλ = 60◦, is

gφ =
(

2.3× 10−17 m/s2
)(

1+ cos (ωht)
)

. (34)

This result shows that the time-retarded transverse gravita-
tional field for a suspended gyroscope is totally negligible.
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Fig. 4: Depiction of the semicircular area to be used for Stoke’s
theorem. The contour for the line integral isA→ B→C→ A. Here
dℓ is an elemental path length vector, da is an elemental area vector,
andeλ is a unit vector forλ. The field-point is atr and the elemental
area da is atr ′.

The Earth’s time-retarded transverse vector potential

Let A be the vector potential forgφ. Then by definition

gφ = ∇ × A. (35)

Units for A arem2/s2, the same as the units for the scalar po-
tential. Because the divergence ofgφ is zero, the divergence
of A must also be zero, which means thatA cannot have a
component directed alonger. Consequently,A must be di-
rected alongeλ.

The needed elemental vectorsdℓ and da for integration
using Stoke’s theorem are depicted in Fig. 4. Stoke’s theorem
states that the line integral ofA • dℓ around a closed con-
tour equals the surface integral of∇× A • da over the surface
bounded by the contour. It is symbolically written as

∮

A • dℓ =
"
∇ × A • da. (36)

Consider the closed contour depicted in Fig. 4:A→ B→
C→ A. The left side of (36) becomes

∮

A→ B

A • dℓ = 0,
∮

B→ C → A

A • dℓ = Aλπr. (37)

The right side of (36) becomes
"
∇ × A • da = gφ

"
r′dr′dλ′ = gφ

π

2
r2. (38)

Next comes the solution

Aλ =
1
2

rgφ = A0 cos2 λ PS ′(r)

(

2
h0

rE
+ 2

h1

rE
cos (ωht)

)

(39)

where the definition forA0 and its numerical value withcg = c
and the definition for the power series forAλ are

A0 =
CφrE

2
= 11.6 m2/s2,

PS ′(r) =
r

rE
PS (r) =

= C0

( rE

r

)2
+C2

(rE

r

)4
+C4

( rE

r

)6
+ C6

( rE

r

)8
.

(40)

The formula that connectsgλ to the time-dependence ofAλ
is [9, p. 219].

gλ = −
1
vk

dAλ
dt
=

= 2
A0

vk
cos2 λ

(

h1ωh

rE
PS ′(rE) sin (ωht)−

−
dPS ′

dt

(

h0

rE
+

h1

rE
cos (ωht)

))

,

(41)

where vk is the “induction speed” for the neoclassical causal
theory.

The numerical value for the average induction speed has
been found to be [1]

v̄k � 5× 103 m/s. (42)

The coefficientA0 is inversely proportional tocg. It is interest-
ing to notice thatA0/vk with cg = c is inversely proportional
to cvk, and that

√
cvk � 11× 105 m/s= 1.7c2, (43)

wherec2 is Kozyrev’s secondary universal speed, the one that
is to be associated with rotational motion [4].

Let CPS ′0 be the value forPS ′ at r= rE .

CPS ′0 = PS ′(rE) = C0 +C2 +C4 +C6 = 0.805. (44)

The value fordPS ′/dt evaluated atr= rE is

dPS ′

dt

∣

∣

∣

∣

∣

r=rE

= (2C0+4C2+ 6C4+8C6)
h1ωh

rE
sin (ωht) =

= 2.81
h1ωh

rE
sin (ωht).

(45)

The formula forgλ to first order inh1/rE reduces to

gλ � Cλ cos2 λ
h1ωh

vk
sin (ωht), (46)
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where the definition and numerical value withcg = c for Cλ
are

Cλ = 0.805× 2
A0

rE
= 0.805Cφ = 2.926× 10−6 m/s2, (47)

andCφ is given by (24).
If h1=10−4 m, ωh =ωrot, vk = 5 km/s, andλ=60◦, the

numerical value forgλ reduces to

gλ = (4.6× 10−11 m/s2) sin (ωht) (48)

This result shows that the vector potential can produce a rela-
tively large value for the north/south transverse gravitational
field. The ratio forgλ/gφ, with gφ from (34), is on the order
of

gλ

gφ
∼ 2× 106. (49)

Secondary radial induction field

The analogous Lorentz force law for gravity [1, 2] states that
a north/south transverse gravitational field can induce a radial
gravitational field. Letgind be the induced gravitational field.
Then

gind =
v
vk
× g =

1
vk

∣

∣

∣

∣

∣

∣

∣

∣

er eφ eλ
vr vφ vλ
gr gφ gλ

∣

∣

∣

∣

∣

∣

∣

∣

. (50)

The induced gravitational field alonger is the only one of the
components that can change the weight of the rotor.

ergind = er

(

vφ
vk
gλ −

vλ
vk
gφ

)

� er
vφ
vk
gλ. (51)

Substituting (8) and (42) into (51) gives

gind � Cind sin (ωht), (52)

where

Cind = Cλ
h1ωh

vk

veq

vk
cos3 λ (53)

If λ= 60◦, h1= 10−4 m,ωh =ωrot, and vk = 5 km/s, the numer-
ical value forCind reduces to

Cind = 2.1× 10−12 m/s2. (54)

This result predicts a very small value forgind, but it is close to
the order of magnitude forgλ, which is predicted to be about
106 timesgφ. There may be some hidden effect that enhances
gind by 106, in particular the nutation effects of (21) and (22).
This question can be resolved only by experiment.

Conclusions and recommendations

It seems plausible but not proven that the weight changes ob-
served by N.A. Kozyrev may have been caused by the neo-
classical causal theory. Modern experimental techniques us-
ing digital electronics, sensitive strain gauges, sensitive ac-
celerometers, and computer controls, can greatly increasethe

sensitivity and reliability of laboratory instruments. Ifan in-
strument that can detect the Earth’s time-retarded transverse
vector potential is developed with a precision of about 1 part
in 1000, the theory can be worked backwards to provide a
measured value for the speed of the Earth’s gravitational field.
To accomplish this end, a dedicated effort to develop an in-
strument, and comprehensive systematic studies using such
an instrument, are highly recommended.
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