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In general, it is assumed in some non viscous flows that the flow velocity is constant
at a cross-section. In this paper, we impose more realistic boundary conditions by, for
example, introducing viscosity, and suction at walls, the net mass flow will change since
the continuity equation must hold. The convective acceleration terms will be products
of variables such that a non-linear behaviour will take place in the flow. The work will
consist of deriving all the equations and parameters needed to described this kind of
flow. An approximate analytic solution for the case of small Reynold number Re is
discussed using perturbation techniques. Expression for the velocity components and
pressure are obtained. The governing non-linear differential equation that cannot be
solved analytically is solved numerically using Runge-Kutta Program and the graphs of
axial and lateral velocity profiles are drawn.

1 Introduction

The problems of fluid flow through porous duct have arouse
the interest of Engineers and Mathematicians, the problems
have been studied for their possible applications in cases of
membrane filtration, transpiration cooling, gaseous diffusions
and drinking water treatment as well as biomedical engineer-
ing. Such flows are very sensitive to the Reynold number.

Berman was the first researcher who studied the problem
of steady flow of an incompressible viscous fluid through
a porous channel with rectangular cross section, when the
Reynold number is low and the perturbation solution assum-
ing normal wall velocity to be equal was obtained [1].

Sellars [2], extended the problem studied by Berman by
using very high Reynold numbers.

Also wall suctions were recognize to stabilize the bound-
ary layer and critical Reynold number for natural transition
46130 was obtained [3]. The stabilization effects of wall suc-
tion is due to the change of mean velocity profiles.

In the review of Joslin [4], it is also noticed that the uni-
form wall suction is not only a tool for laminar flow control
but can also be used to damped out already existing turbu-
lence.

The effects of Hall current on the steady Hartman flow
subjected to a uniform suction and injection at the boundary
plates has been studied [5].

Other reviews of flow in porous duct tend to focus only on
one specific aspect of the subject at a time such as membrane
filteration [8], the description of boundary conditions [6] and
the existence of exact solutions [7].

In this paper, we consider the steady two-dimensional
laminar flow of an incompressible viscous fluid between two
parallel porous plates with equal suction and assume that the
wall velocity is non uniform.

2 Formulation of the problem

The steady laminar flow of an incompressible viscous fluid
between two parallel porous plates with an equal suction at
walls and non uniform cross flow velocity is considered. The
well known governing equations of the flow are:

Continuity equation

∂u
∂x
+
∂v

∂y
= 0. (1)

Momentum equations (without body force)

u
∂u
∂x
+ v

∂u
∂y
= −1

ρ

∂p
∂x
+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p
∂y
+ ν

(
∂2v

∂x2 +
∂2v

∂y2

)
. (3)

Let us consider channel flow between uniformly parallel
plates with equal suction. Assuming that we are far down-
stream of the entrance, the boundary conditions can be de-
fined as

y = h, u = 0, v = vw, (4)

y = −h, u = 0, v = −vw. (5)

Let u(0) denote the average axial velocity at an initial sec-
tion (x = 0). Then it is clear from a gross mass balance that
u(x) will differ from u(0) by the amount vw

h x. This observation
led Berman(1953) to formulate the following relation for the
stream in the channel [9].

ψ(x, y) = (hu(0) − vwx) f (y∗). (6)

Where y∗ = y
h , ψ(x, y) is a stream function,u(0) is initial av-

erage axial velocity and f is dimensionless function to be de-
termined. The velocity components follow immediately from
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the definition of ψ:

u(x, y∗) =
∂ψ

∂y
=

(
u(0) − vwx

h

)
f ′(y∗) = u(x) f ′(y∗), (7)

v(x, y∗) = −∂ψ
∂x
= vw f (y∗) = v(y). (8)

The stream function must now be made to satisfy the mo-
mentum equations (2) and (3) for steady flow (2) and (3) will
now become

u
∂u
∂x
+
v

h
∂u
∂y∗
= −1

ρ

∂p
∂x
+ ν

(
∂2u
∂x2 +

1
h2

∂2u
∂y∗2

)
, (9)

u
∂v

∂x
+
v

h
∂v

∂y∗
= − 1

ρh
∂p
∂y∗
+ ν

(
∂2v

∂x2 +
1
h2

∂2v

∂y∗2

)
. (10)

Using (7) and (8) in (9) and (10), the momentum equa-
tions reduces to,

−1
ρ

∂p
∂x
=

(
u(0) − vwx

h

) (
vw
h

(
f f ′′ − f ′2

)
− ν

h2 f ′′′
)
, (11)

− 1
ρh

∂p
∂y∗
=
v2
w

h
f f ′ − νvw

h2 f ′′. (12)

Now differentiating (12) w.r.t x, we get

∂2 p
∂x∂y∗

=
∂2 p
∂x∂y

= 0. (13)

Differentiating (11) w.r.t y∗, we get

∂2 p
∂x∂y∗

=

(
u(0) − vwx

h

) d
dy∗

(
vw
h

(
f f ′′ − f ′2

)
− ν

h2 f ′′′
)
. (14)

From (13), (14) can be written as

d
dy∗

(
vw
h

(
f f ′′ − f ′2

)
− ν

h2 f ′′′
)
= 0, (15)

vw
h

(
f f ′′′ − f ′ f ′′

) − ν

h2 f ′′′′ = 0.

Let the suction Reynold number be Re = hvw
ν

and substi-
tute into above expression, we get

f ′′′′ + Re
(
f ′ f ′′ − f f ′′′

)
= 0. (16)

(16) has no known analytic-closed form solution, but it can
be integrated once i.e integrate (16) w.r.t y∗, we get

f ′′′ + Re
(

f ′2 − f f ′′
)
= K = const. (17)

The boundary conditions on f (y∗) 0f (4) and (5) can now be
written as,

f (1) = 1, f (−1) = −1, f ′(1) = 0, f ′(−1) = 0. (18)

Hence, the solution of the equations of motion and conti-
nuity is given by non-linear fourth order differential equation
(16) subject to the boundary condition (18).

3 Results

3.1 Approximate analytic solution (perturbation)

The non-linear ordinary differential equation (16) subject to
condition (18) must in general be integrated numerically.
However for special case when “Re” is small, approximate
analytic results can be obtained by the use of a regular per-
turbation approach. Note that perturbation method has been
used because the equations (16 and 18) are non-linear by us-
ing that technique, we get a linear approximated version of
the true equations. The solution of f (y∗) may be expanded in
power of Re [10]

f (y∗) =
∞∑

n=0

Ren fn(y∗) (19)

where fn(y∗) satisfies the symmetric boundary conditions

f0(0) = f ′0(1) = f ′′0 (0) = 0, f0(1) = 1 (20)

and
fn(0) = f ′n(1) = f ′′n (0) = 0, fn(1) = 1. (21)

Here fn are independent of Re. Substituting (19) in (16), we
get(

f ′′′′0 + Re f ′′′′1 + Re2 f ′′′′2

)
+ Re

[ (
f ′0 + Re f ′1 + Re2 f ′2

)(
f ′′0 + Re f ′′1 + Re2 f ′′2

)
−

(
f0 + Re f1 + Re2 f2

)(
f ′′′0 + Re f ′′′1 + Re2 f ′′′2

) ]
= 0.

Equating coefficients of Re, we get

f ′′′′o = 0, (22)

f ′′′′1 + f ′o f ′′o − fo f ′′′o = 0, (23)

f ′′′′2 + f ′o f ′′1 + f ′1 f ′′o − fo f ′′′1 − f1 f ′′′o = 0. (24)

The solution of (22) is of the form

fo(y∗) =
Ay∗3

6
+

By∗2

2
+Cy∗ + D,

where A,B,C and D are constants.
Applying the boundary condition (20) to the above equa-

tion, we get

fo(y∗) =
1
2

(
3y∗ − y∗3

)
. (25)

The solutions of Eq (23) and (24) subject to the boundary
condition (21), are:

f1(y∗) = − 1
280

(
y∗7 − 3y∗3 − 2y∗

)
, (26)

f2(y∗) =
1

1293600
×(

14y∗11 − 385y∗9 + 198y∗7 + 876y∗3 − 703y∗
)
. (27)
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Hence, the first order perturbation solution for f (y∗) is

f ′(y∗) = fo(y∗) + Re f1(y∗),

f 1(y∗) =
1
2

(
3y∗ − y∗3

)
− Re

280

(
y∗

7 − 3y∗3 − 2y∗
)
. (28)

The second order perturbation of solution for f (y∗) is

f 2(y∗) = fo(y∗) + Re f1(y∗) + Re2 f2(y∗),

f 2(y∗) =
1
2

(
3y∗ − y∗3

)
− Re

280

(
y∗7 − 3y∗3 − 2y∗

)
+

Re2

1293600

(
14y∗11 − 385y∗9 + 198y∗7

+876y∗3 − 703y∗
)
.

(29)

Hence, the first order expression for the velocity compo-
nents are:

u(x, y∗) =
[
u(0) − vwx

h

]
f ′(y∗) =[

u(0) − vwx
h

] 3
2

(
1 − y∗2

) (
1 − Re

420

(
2 − 7y∗2 − 7y∗4

))
, (30)

v(x, y∗) = vw f (y∗) =

vw

[
1
2

(
3y∗ − y∗3

)
− Re

280

(
y∗7 − 3y∗3 − 2y∗

)]
. (31)

For pressure distribution, from Eq. (11) we get

h2

ρν

∂p
∂x
=

[
u(0)− vwx

h

] [
f ′′′(y∗) + Re

(
f ′2(y∗) − f (y∗) f ′′(y∗)

)]
,

and since f ′′′(y∗) + Re
(

f ′2(y∗) − f (y∗
)

f ′′(y∗)) = K, from
(17), we have:

∂p
∂x
=

Kρν
h2

[
u(0) − vwx

h

]
=

Kµ
h2

[
u(0) − vwx

h

]
. (32)

Now, from Eq. (12), we have

∂p
∂y∗
=
µvw
h

f ′′(y∗) − ρν2 f (y∗) f ′(y∗). (33)

Since dp = ∂p
∂x dx + ∂p

∂y∗ dy
∗, then

dp =
Kµ
h2

[
u(0) − vwx

h

]
dx

+

[
µvw
h

f ′′(y∗) − ρν2 f (y∗) f ′(y∗)
]

dy∗.
(34)

Integrating (34), we get

p(x, y∗) = p(0, 0) − ρν
2

2
f 2(y∗) +

Kµ
h2

[
u(0)x − vwx2

2h

]
+
µvw
h

[
f ′(y∗) − f ′(0)

]
. (35)

The pressure drop in the major flow direction is given by

p(x, 0) − p(x, y∗) =
Kµ
h2

[
vwx2

2h
− u(0)x

]
. (36)

Fig. 1: Lateral velocity profiles for flow between parallel plates with
equal suctions for different values of Re.

Fig. 2: Axial velocity profiles for flow between parallel plates with
equal suctions for different values of Re.

3.2 Numerical solution

The approximate results of the previous section are not reli-
able when the Reynold number is not small. To obtain the
detail information on the nature of the flow for different val-
ues of Reynold number (i.e. Re = 0, 10, 20, 30), a numerical
solution to the governing equations is necessary. The Runge-
Kutta program App.C is used to solve Eq. (17) numerically.
One initial condition and constant (K) are unknown; i.e. start-
ing at y∗ = 1, then f ′′(1) and K were guessed and the solution
double-iterated until f (−1) = −1 and f ′(−1) = 0. The most
complete sets of profiles are shown in the figs. 1 and 2.

4 Discussion

The velocity profiles have been drawn for different values of
Reynold number (i.e. Re = 0, 10, 20, 30). The shapes change
smoothly with Reynold number and show no odd or unstable
behaviour. Suction tends to draw the profiles toward the wall.
From fig. (1), it is observed that for Re > 0 in the region
0 ≤ y∗ ≤ 1, f (y∗) decreases with the increase of Reynold
number Re. Also from fig. (2), it is observed that, for Re > 0,
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then f ′(y∗) decreases with an increase of the Reynold number
in the range of 0 ≤ y∗ ≤ 1.

5 Conclusion

In this paper, a class of solutions of laminar flow through
porous duct has been presented. Numerical approach is nec-
essary for arbitrary values of Re. Also, when a cross flow
velocity along the boundary is not uniform, a numerical tech-
nique is necessary to solve Eq. (2) and (3). Also, from the
results obtained in this article, we can now conclude that, the
non-linear effects of a flow of the porous duct is due to non
uniform cross flow velocity and non vanishing terms of con-
vective acceleration of momentum equations. The perturba-
tion solution obtained for this problem reduces to the results
of Berman [1].
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Nomenclature

A,B,C,D: Constants
K: Arbitrary Constant
f: Dimensionless function representing lateral velocity profile
h: Height of the channel
P: Pressure
x: Axial distance
y: Lateral distance
vw: Lateral wall velocity
u(x,y): Axial velocity component
v(x,y): Lateral velocity component
y∗ = y

h : Dimensionless lateral distance
Re = vwh

ν
: Wall Reynold number

Greek Symbols

µ: Shear viscosity
ν: Kinematic viscosity
ρ: Fluid density
ψ(x, y): Stream function.
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