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Kepler-62 Based on the Planetary Distances’ Long-Range Order
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Recently, the discovery of the extrasolar planetary systemKepler-62 comprising five
planets was reported. The present paper explores whether (i) the sequence of semi-
major axis values of the planets shows a long-range order, and whether (ii) it is possible
to predict any additional planets of this system. The analysis showed that the semi-
major axis values of the planets are indeed characterized bya long-range order, i.e.
the logarithmic positions of the planets are correlated. Based on this characteristic, an
additional planet at 0.22 AU in the Kepler-62 system is predicted.

1 Introduction

In April 2013, NASA’s Kepler Mission reported [1] the detec-
tion of an extrasolar planetary system comprising five planets
(Kepler-62b, c, d, e and f) orbiting a star (Kepler-62) of spec-
tral type K2, luminosity class V, 69± 0.02% the mass and 63
± 0.02% the radius of the Sun. The Kepler-62 extrasolar plan-
etary system is located in the constellation Lyra,∼1200 light
years away from Earth. The five planets have a size of 1.31,
0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕). The two outer-
most planets (e, f) are likely to be solid planets possibly with
liquid water on their surfaces since their position is within
Kepler-62’s Habitable Zone. The five planets were detected
by analyzing the brightness variations of Kepler-62 based on
images obtained by the Kepler spacecraft.

In an analysis of distances between planets of our so-
lar system (including the dwarf planet Pluto and the asteroid
Ceres) it was shown by Bohr and Olsen [2] that the sequence
of distances show a long-range order on a logarithmic scale,
i.e. the logarithmic positions of the planets are correlated and
follow a periodic pattern; they seem to obey a “quantization”.
The authors tested the statistical significance of the obtained
long-range order by using a permutation test, which revealed
that the regularity of the distances between the planets in our
solar system is very unlikely to have originated by chance.

In a subsequent study by the same authors [3], they ap-
plied their analysis to the extrasolar planetary system HD
10180 and determined that (i) the logarithmic position of the
six planets show also a long-range order, and (ii) that this
property is enhanced when including a seventh (hypotheti-
cally existing) planet at a position of 0.92± 0.05 AU, i.e.
between the planets HD 10180f and HD 10180g. Based on
this analysis, they postulated a possible additional planet in
the HD 10180 system at a distance of 0.92 AU.

The goal of the present analysis was to apply the same
data analysis approach [2,3] to the recently discovered extra-
solar planetary system Kepler-62 and thus to analyze whether
(i) the semi-major axis values of the planets show a long-
range order, and whether (ii) the analysis predicts additional
planets of this system.

2 Materials and methods

2.1 Data

The parameter values of the Kepler-62’s exoplanets were ob-
tained from the listing in Borucki et al. [1]. In particular,
two parameters were selected for the present analysis: the
semi-major axis (a) and the radius (r) of each planet. For the
values, see Table 1.

Planet i a [AU] a [km] r [R⊕] r [km] â

62b 1 0.0553 8.2728× 106 1.31 8355 2.1130
62c 2 0.0929 1.3898× 107 0.54 3444 2.6317
62d 3 0.120 1.7952× 107 1.95 12437 2.8877
62e 4 0.427 6.3878× 107 1.61 10269 4.1570
62f 5 0.718 1.0741× 108 1.41 8993 4.6767

Table 1: Kepler-62 system parameters according to [1].i: planet
number counting outwardly from the star Kepler-62,a: semi-major
axis,r: radius of the planet, ( ˆai = ln(ai/106 km)), a andr are given
in two different units ([AU], [km]) and ([R⊕], [km]), respectively.

2.2 Data analysis

For the analysis, the semi-major axis value (given in units of
106 km) of each exoplanet was first divided by 106 km, then
logarithmized ( ˆai = ln(ai/106 km)) and according to these
values a multimodal probability distribution function (PDF)
p(â), as introduced by Bohr and Olsen [2], was calculated by

p(â) =
N∑

i=1

αi e−β, (1)

with N = 5 (i.e. the maximum number of planets of Kepler-
62) andβ given as

β =
j − âi

wp /2
√

2 ln(2)
, (2)

for j = 1, 1.01, 1.02, . . . , 10, withwp the width (i.e. the full-
width-at-half-maximum) of each Gaussian peak of the PDF,
andαi a scale factor. The scale factor defined the magnitude
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Fig. 1: Results of the analysis of the multimodal PDFρ (â) (a1-a5) and the new oneρ (â′) with the additional hypothetical exoplanet
(marked with a cross in Fig. (b1) and (b2), and marked with a black are of the Gaussian peak in Fig. (b3)) found using the optimization
approach visualized in Fig. 2.

of each peak. For the present analysis, the scale factor was
assigned to the radius of the specific planet, i.e.αi = r i . The
rationale for this definition is that larger planets should be
contribute more to the overall multimodal PDF than smaller
planets. A linear relationship was chosen rather than the non-
linear one used by Bohr and Olsen [2, 3] in order to circum-
vent the definition of the specific type of non-linear relation-
ship which is unknown per se. For the width of each peak,
wp = 0.25 was used which ensures an optimum compromise
between a too strong overlap of the Gaussian peaks on the
one side and to small peaks on the other. Thus,ρ(â) repre-
sents a sum of Gaussian peaks located at the logarithmized
planets semi-major axis values ( ˆa) and weighted by (αi), the
individual radius value of the planet.

In the next step, the autocorrelation sequence of the mul-
timodal PDF was calculated according to

Rρ(â)(m) =
N−m−1∑

n=0

ρ(ân+m) ρ(ân), (3)

for m = 1, 2, . . . , 2 N − 1, with N the number of samples of
ρ(â). Then, the autocorrelation function (ACF) was deter-
mined by

Rρ(â)(m)′ =
1

Rρ(â)(1)
Rρ(â)(m), (4)

i.e. Rρ(â)(m) was normalized by its maximum value given
by Rρ(â)(1) so thatRρ(â)(1)′ = 1. The type and grade of the
order (short- or long-range) of the input sequence can be de-
termined using the ACF characteristics.

In order to quantify the periodicity in the ACF (i.e. the
long-range order of the input sequence), in the next step the

frequency-dependent power spectral density (PSD), i.e. the
power spectrum (PS), of the multimodal PDFρ(â) was cal-
culated by the periodogram method, which is the windowed
discrete Fourier transform (DFT) of the biased estimate of
autocorrelation sequence. For the calculation, 212 points in
the DFT were used by zero-paddingρ(â) to a length of 212

enabling a proper frequency resolution.
In order to analyze whether an additional hypothetical

planet increases the long-range order, the above-mentioned
signal processing steps (i.e. calculation of the multimodal
PDF, the ACF and the PS) were repeated with the input sig-
nal ρ(â) in which an additional Gaussian peak was inserted,
corresponding to the hypothetical exoplanet’s position. The
high of the peak was set to the mean values of the radius of
the five exoplanets. The new peak was introduced between
the peaks associated with values of Kepler-62e and Kepler-
62f since visual inspection reveals a gap in the multimodal
PDF in this region. The semi-major axis value was varied
between 0.15-0.38 AU and the corresponding ACF and PS
were calculated. For each PS, the maximum PSD value of
the fundamental frequency ofρ(â) (i.e. the first peak after
the global maximum at position 0) was calculated. From the
obtained values, the maximum was determined which indi-
cate the strongest long-range order of the corresponding se-
quence with the added new exoplanet. This new multimodal
PDF was denoted asρ(â′), with â′ the vector with the new
semi-major axis values.

3 Results

The analysis of the semi-major axis values of Kepler-62’s
planets b-f revealed an exponential like function (Fig. 1(a1))
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or a quasi linear one when logarithmized values were used
(Fig. 1(a2)).

The calculated multimodal PDF is shown in Fig. 1(a3).
The ACF and the PS are shown in Fig. 1(a3) and 1(a4), re-
spectively. The search of the optimal semi-axis value of the
additional (hypothetical) planet revealed that a global maxi-
mum of the PSD value in the frequency range of 1.1538 1/â
(≈ 0.6502 units of ˆa) can be clearly determined, as depicted
in Fig. 2. Thus, the analysis predicts an additional planet at a
distance of 0.22 AU from the star Kelper-62. The character-
istics of the resulting new multimodal PDFρ(â′) with all six
planets are shown in Fig. 1(b1-b5).

Fig. 2: (a) Color-coded visualization of the PSD values for theρ (â)
function with the added hypothetical exoplanet at different positions.
(b) Function of the PSD values for the frequency of 1.1538 1/â.
The global maximum indicates the value which corresponds tothe
strongest increase in the long-range order.

4 Discussion and conclusion

From the analysis conducted in the present study, the follow-
ing conclusions can be drawn:

(i) The positions of the exoplanets Kepler-62a–f show a
long-range order inferred from the peak-like structure
(four peaks) in the ACF which is captured by the power
spectrum as one single peak, corresponding to linear
periodicity of the logarithmized distances between the
planets.

(ii) The strength of the long-range order increases when
an additional planet with a distance of 0.22 AU from
the star is added to the five observed ones. This result
was obtained by an optimization procedure testing all
possible positions for this planet in the gap between
Kepler-62e and Kepler-62f.

A prediction of possible additional planets in the Kepler-
62 extrasolar system was put forward also recently by Bo-
vaird and Lineweaver [4]. They applied a two-parameter fit
to 68 different extrasolar planetary systems in total and pre-
dicted 141 additional planets. For the fitting they used a func-
tion (denoted by them as a modified Titius-Bode relation) of
the forman = αCn , with an an the semi-major axis, two free
parameters (α,C), andn a variable with the quantized values

n = 1, 2, 3, . . . . Based on their approach, they predicted for
the Kelpler-62 system 7 additional planets with semi-major
distance values of 0.07, 0.15, 0.20, 0.26, 0.33, 0.55 and 0.92
AU. Thus, the approach of Bovaird and Lineweaver predicts
a finer periodicity compared to the prediction (0.22 AU) de-
scribed by the present paper. Only the future will tell which
approach is better in modeling the exoplanetary characteris-
tics, i.e. the next discovery of an exoplanet of Kepler-62.

By the best of my knowledge, the two predictions (by Bo-
vaird and Lineweave, and the present one), are the only ones
published at the present concerning the extrasolar planetary
system Kepler-62.

For other extrasolar planetary systems, various authors
have reported a periodicity/quantization of the planetary po-
sitions and predicted additional orbits/planets based on this.

For example, Naficy et al. [5], recently compared two
approaches for modelling and predicting by using either a
squared model of the formrn = GM n2/(v20 k2) (with rn the or-
bital radius of then-th planet,G the gravitational constant,M
the mass of a central body of the system, and the free param-
etersv20, k, andn) or an exponential one given byrn = a eb n

(with a, b, n free parameters). In both cases, the parame-
ter values ofn are integers. The authors concluded that the
“exponential model has a better coincidence to observational
data” [5]. In addition they observed a relation between the
values of theb parameter and the mass of the central star of
the system, indicating a possible physical mechanism under-
lying the exponential model. The squared model was also
used in a study analyzing extrasolar planetary systems con-
ducted by Rubčić and Rubčić [11].

Another study based on an exponential model was con-
ducted by Poveda and Lara [24] to examine the extrasolar
planetary system 55 Cancri. However, problems with this
study were pointed out later [23].

In another study, Panov [6] applied an exponential model
of the typean = C e2n/k to extrasolar planetary systems and
reported a good fit as well as predictions of additional planets.

As early as 1996, Nottale found that “the distribution of
the semi-major axis of the firstly discovered exoplanets was
clustered around quantized values according to the lawa/GM
= (n/w0)2, in the same manner and in terms of the same
constantw0 = 144 km/s as in our own inner Solar System”
[7, 8]. This approach is a result of the “scale relativity” the-
ory developed by Nottale [9, 10, 32, 33]. In 2008, an updated
analysis involving 300 exoplanets was published [10] which
confirmed and extended the validity of the initial analysis of
1996.∗

An analysis with 443 exoplanets (i.e. all known in 2011)
was conducted by Zoghbi [26]. This revealed a quantization
of the planet’s angular momentum which was shown to have
a probability ofp < 0.024 being due to pure chance.

∗It would be worthwhile and interesting to repeat the analysis with the
presently 732 confirmed exoplanets (September 2013, http://exoplanets.org).
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In another study, using the equationrn = GM/(cαen),
with α the dimensionless fine structure constant of∼ 1/137
and c the speed of light, Pintr et al. [12] reported a strong
agreement between the orbital data of the two analyzed extra-
solar planetary system and the expected values. The interest-
ing thing about this work is that the equation is derived froma
physical theory describing the effects of electric and magnetic
effects on the evolution of a solar system.

Finally, as mentioned earlier, employing a similar method
to the one used in this paper (i.e. analysis of correlation
property of the logarithmized planetary positions), Olsenand
Bohr [3] analysed the extrasolar planetary HD 10180 and pre-
dicted an additional planet at 0.92± 0.05 AU.

Apart from analyzing extrasolar planetary systems, em-
pirical relationships for the distances of the planets of our so-
lar system started to be published centuries ago when J. D.
Titius (1729–1796) and E. Bode (1744–1826) described an
apparent regularity of the planetary radii, later known as the
Titius-Bode law (expressed in 1787 in its more modern math-
ematical form by Wurm: rn = 0.4 + 0.3 × 2n, n = −∞
(Mercury), 0, 1, 2, . . .) [13]. This equation predicted the po-
sition of Uranus, but failed to fit for the planetary positions
of Neptune and Pluto. Based on the many studies about reg-
ularities in planetary distances/radii conducted until now, the
Titius-Bode law can be regarded as a first phenomenological
description of a possible fundamental law of planetary spac-
ing. The work of Bohr and Olsen [2, 3] in particular strongly
suggests that the orbital spacing of planetary systems obeya
long-range order and not a simple short-range one, supporting
the notion that the quantization is not down to chance.

Concerning the physical mechanism involved in creating
a long-range order in planetary systems, this issue is not re-
solved yet. However, important approaches have been put for-
ward over the last decades. For example, Wells showed that
the planetary distances can be “accurately predicted by the
eigenvalues of the Euler-Lagrange equations resulting from
the variation of the free energy of the generic plasma that
formed the Sun and planets” [14, 15]. Further research of
the author led him to conclude that “a unification of the mor-
phology of the solar system” and other astrophysical phe-
nomena “can be accomplished by a basic consideration of
the minimum-action states of cosmic and/or virtual vacuum
field plasmas” [16]. Finally he came to the conclusion that
a unification of all physical forces can be derived based on
the assumption that they are regarded “as ‘fluid’ or ‘Magnus’
forces generated by vortex structures (particles) in the virtual
plasma gas” [15–17]. The work of Wells should be carefully
reconsidered since it might be a key to understanding regular
patterns, long-range orders and quantization of astronomical
systems and structures. In addition, analysis based on the the-
oretical framework of stochastic electrodynamics (SED) that
shed new light on the origin of the solar system [18], and also
the finding of Graner and Dubrulle [19, 20] that Titius-Bode-
like laws appear when assuming a scale and rotational invari-

ance of the protoplanetary system, might also be important
for an understanding of the observed patterns.

Other approaches worth exploring for further research are
that based on large-scale quantization in space plasmas [22],
modelling celestial mechanics using the Schrödinger equa-
tion [21, 27, 29, 39–41, 43], resonance effects [25, 28], or-
bital angular momentum quantization per unit mass [30, 37],
fractal scaling modeling using the continued fraction method
[31], conservation of mass and momentum, and stability of
the angular momentum deficit [35,36], the stochastisation hy-
pothesis [34], macroscopic quantization due to finite gravita-
tional propagation speed [38], and the Weyl-Dirac approach
to gravity [42].

One significant difficulty in explaining the observed reg-
ularities of distances is the fact that planets can migrate large
distances after their formation (e.g. [44–48]). A model that
gives an explanation of the regularities must include this ob-
served fact. One possible explanation might be to regard the
quantization pattern as an attractor in a phase-space of the
planet’s migration movements.

In conclusion, the present analysis of the extrasolar plan-
etary system Kepler-62 reveals that (i) the semi-major axis
values of the planets show a long-range order, and (ii) that
there might be an additional planet at the distance of 0.22 AU
between Kepler-62e and Kepler-62f.
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