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The geometric collective model proposed in a previous paper in examined to de-
scribe the nuclear shape transitions for Gd and Dy isotopes chains. The optimized
model parameters for each nucleus have been adjusted by fitting procedure using
a computer simulated search program in order to reproduce the excitation energies
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nuclei in each isotopic chain. Calculated potential energy surface (PES’S) describing
all deformation effects of each nucleus have been extracted. Our systematic studies
on Gd / Dy chains have revealed a shape transition from spherical vibrator to axially
deformed rotor when moving from the lighter to heavier isotopes.

1 Introduction

Recent developments in nuclear structure have brought con-
siderable focusing on the problems of shape phase transition
and shape coexistence phenomena [1]. For instance, sev-
eral isotopes have been found to undergo shape phase evo-
lution of first order from spherical vibrator to deformed ax-
ially symmetric rotor [2–6] and phase transition of second
order from spherical vibrator to deformed γ - soft [7–9]. The
study of shape phase transitions in nuclei was best done by
using the interacting boson model (IBM) [10]. The original
version of IBM (IBM-1) includes s and d bosons, it defines
six-dimensional space and this leads to a description in terms
of a unitary group U(6). Three dynamical symmetries in the
IBM-1 were shown [11]: the U(5) symmetry corresponding
to spherical oscillator, the SU(3) symmetry corresponding to
deformed axially rotor and the O(6) symmetry corresponding
to the γ - soft asymmetric rotor shapes. These three sym-
metry limits from a triangle known as a Casten triangle that
represents the nuclear phase diagram [12]. The X(5) critical
point symmetry [13] has been found to correspond to the first
order transition between U(5) and SU(3), while the E(5) crit-
ical point symmetry [14] has been found to correspond to the
second order transition between U(5) and O(6).

In the previous paper [3], we used the flexible and power-
ful geometric collective model (GCM) [3, 15–18] to describe
the quantum phase transition between spherical and deformed
shapes for doubly even nuclei in lanthanide and actinide iso-
topes chains. The potential energy surfaces (PES’S) describ-
ing all deformed effects of each nucleus were extracted in
terms of the intrinsic shape parameters β and γ. The pa-
rameter β is related to the axial deformation of the nucleus,
while γ measure the deviation from axial symmetry. In the
present work, it is of interest to examine the GCM in investi-
gating the shape transition from spherical vibrator to axially
deformed rotor for Gd and Dy isotopic chains by analyzing
the PES’S. In section 2, we construct the GCM Hamiltonian

and its eigenfunction. In section 3, we generated the PES’S to
classify shape phase transitions and to decide if a nucleus is
close to criticality. In section 4, we applied our model to the
rare earth Gd / Dy isotopic chains which evolve a rapid struc-
tural charges from spherical to well-deformed nuclei when
moving from lighter to the heavier isotopes.

2 The GCM Hamiltonian and eigenstates

In GCM, the Hamiltonian of the nucleus, in appropriate units,
can be expressed as a series expansion in terms of the sur-
face deformation coordinates α and the conjugate momenta π
as [3]:

H = 1
2B2

[π × π](0) +C2[α × α](2)

+C3[[α × α](2) × α](0)

+C4[α × α](0)[α × α](0)

(1)

The eigenstates of the the Hamiltonian 1 associated with
the number ν of quanta and definite seniority λ, angular mo-
mentum L and projection M can be denoted by the Ket
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and µ indicates the remaining quantum numbers required to
fully characterize the states of the Hamiltonian 1. ωi are the
Euler angles, β and γ are the intrinsic coordinates. DL∗

Mk(ωi)
are the Wigner functions that are the irreducible representa-
tion of the O(3) group.
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where Lλ+
3
2

n are the well-known Laguerre polynomials and the
function is normalized for the volume element β4dβ. The γ-
dependent functions φλµLk satisfy the differential equation

Λ2φ
λµL
k = λ(λ + 3)φλµLk (5)

where Λ2 is the seniority operator (Casimir operator of O(5))
which has the form

Λ2 = − 1
sin 3γ

∂

∂γ
+

3∑
k=1

I−1
k L̀2

k(ωi) (6)

with

Ik = 4B2 sin2
(
γ − 2π

3
k
)

(7)

Ik are the moments of inertia with respect to the principle
axes. For arbitrary angular momentum L and λ , φ(γ) reads

φ
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k̀
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where W is a Racah coefficient and Qλ,L,L̄

k,k̄
(γ, d

dγ ) is an operator

function of γ and d
dγ .

3 Potential energy surfaces (PES’S) and critical point
symmetries

The PES depends only upon the shape of the nucleus not
it orientation in space, and can thus be expressed purely in
terms of the shape coordinates β and γ as [3]:

V(β, γ) = C2
1
√

5
β2 −C3

√
2
35
β3 cos 3γ +C4

1
5
β4 (10)

where β ∈ [0,∞] and γ ∈ [0, 2π/3]
The equilibrium shape associated to the GCM Hamilto-

nian can be obtained by determining the minimum of energy
surface with respect to the geometric variables β and γ, i.e
the first derivative vanish. Since the parameter C2 controls
the steepness of the potential, and therefore, the dynamical
fluctuations in γ, it strongly affects the energies of excited in-
trinsic states. The parameter C3 = 0 gives a γ-flat potential
and an increase of C3 introduces a γ-dependence the potential
with a minimum at γ = 0. Changing C3 will indeed induce a
γ-unstable to symmetric rotor transition, it is best to simulta-
neously vary C2 and C4 as well. The shape transition from vi-
brator to rotor is achieved by starting from the vibrator limit,

lowering C2 from positive to negative value, increasing C4 to
large positive value, which gradually increasing C3 (lowering
C2 from positive to negative value, introducing a large posi-
tive C4 and a positive C3).

4 Numerical results applied to Gd and Dy isotopes
chains

The N = 90 isotones 154Gd [15, 16] and 156Dy [17, 18] were
seen to provide good example to transition from spherical to
axially deformed. In our calculation we will examine and sys-
tematically study the lanthanide 148−162Gd and 150−164Dy iso-
topes because of the richness of available experimental data
indicating a transition of nuclear shapes from spherical to de-
formed form. The ground band levels are shown in Figure (1).
We can see that the energy values for each spin states in lan-
thanide change almost linearly for N ≤ 88 and become quite
flat for N ≥ 90. This is consistent with the onset of the Z = 64
sub-shell effect. For actinide the energy levels become flat for
N ≥ 144. The optimized model parameters for each nucleus
was adjusted by fitting procedure using a computer simulated
search program in order to describe the gradual change in the
structure as neutron number varied and to reproduce the prop-
erties of the selected reliable state of positive parity excitation
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separation energies of all isotopes in each isotopic chain. The
resulting parameters are listed explicitly in Tables (1).

For the isotopic chains investigated here, the collective
properties are illustrated by represented the calculated poten-
tial energy surface (PES) describing all deformation effects of
the nucleus. We investigated the change of nuclear structure

Table 1: The GCM parameters as derived in fitting procedure used
in the calculation of the Gd and Dy isotopes.

Nucleus C2 C3 C4
148Gd 16.53067 1.48970 -34.76151
150Gd 9.79566 11.28331 -5.21603
152Gd -26.55250 53.24420 138.12500
154Gd -71.41529 104.21630 313.83380
156Gd -91.19133 127.81150 392.95380
158Gd -101.97220 141.63350 437.50440
160Gd -111.19320 153.76500 476.06680
162Gd -120.17800 165.64110 513.72330

150Dy 18.56558 1.70251 -38.99710
152Dy 10.69898 12.69373 -5.14990
154Dy -29.90650 59.16022 154.37500
156Dy -79.02660 114.63790 346.26770
158Dy -99.93424 139.43080 429.68950
160Dy -110.88850 153.43620 474.89930
162Dy -120.13350 165.59310 513.55260
164Dy -129.12150 177.47260 551.221306
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Fig. 1: Systematics of low-lying yrast level energies in even-even
lanthanides Gd/Dy isotopes. The 2+, 4+, ...10+ level energies are
plotted. The states are labeled by Iπ.

within these chains as illustrated in Figures (2, 3). The PES’s
versus the deformation parameter β for lanthanide isotopic
chains of nuclei evolving from spherical to axially symmetric
well deformed nuclei. We remark that for all mentioned nu-
clei, the PES is not flat, exhibiting a deeper minimum in the
prolate (β > 0) region and a shallower minimum in the oblate
(β < 0) region. Relatively flat PES occur for the N = 86 nu-
clei 150Gd and 152Dy. A first order shape phase transition with
change in number of neutrons when moving from the lighter
to heavier isotopes, i.e U(5) - SU(3) transitional region are
observed.

The present result for 154Gd is in good agreement with
Nilsson-Strutinsky BCS calculations [18]. However, the ex-
istence of a bump in the PES is related to the success of the
confined γ-soft (BCS) rotor model [19], employing an infinite
square well potential displaced from zero, as well as to the
relevance of Davidson potentials [20–22]. It also be related

Fig. 2: Potential energy surface (PES) calculated with GCM as
a function of the shape parameter β for shape phase transition
from spherical to prolate deformed for Gadolinium isotope chain
148−162

64Gd.

to the significant five-dimensional centrifugal effect [22–25].

5 Conclusion

In the present paper exact numerical results of GCM Hamil-
tonian along the shape phase transition line from harmonic
spherical vibrator shape to axially deformed rotor shape are
obtained. A systematic study of even-even 148−162Gd and
150−164Dy isotopes chains in the lanthanide region is
presented. For each nucleus the GCM parameters C2, C3, C4
were optimized to fit the energy ratios between selected low-
lying states. The geometric character of the nuclei has been
visualized by plotting the PES’S obtained from the GCM
Hamiltonian. In these chains, nuclei evolve from spherical to
prolate axially deformed rotor when moving from the lighter
to the heavier isotopes. Also we have analyzed the critical
points of the shape phase transition in the space of the GCM
parameters C2, C3 and C4.
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Fig. 3: Potential energy surface (PES) calculated with GCM as
a function of the shape parameter β for shape phase transition
from spherical to prolate deformed for Dysprosium isotope chain
150−164

66Dy.
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