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J. Wheeler’s geometrodynamic concept has been used, in which space continuum is
considered as a topologically non-unitary coherent surface admitting the existence of
transitions of the input-output kind between distant regions of the space in an additional
dimension. This model assumes the existence of closed structures (micro- and macro-
contours) formed due to the balance between main interactions: gravitational, electric,
magnetic, and inertial forces. It is such macrocontours that have been demonstrated
to form — independently of their material basis — the essential structure of objects
at various levels of organization of matter. On the basis of this concept in this paper
basic regularities acting during formation planetary systems have been obtained. The
existence of two sharply different types of planetary systems has been determined. The
dependencies linking the masses of the planets, the diameters of the planets, the orbital
radii of the planet, and the mass of the central body have been deduced. The possibility
of formation of Earth-like planets near brown dwarfs has been grounded. The minimum
mass of the planet, which may arise in the planetary system, has been defined.

1 Introduction

Wheeler’s geometrodynamic concept, in which microparti-
cles are considered as vortical oscillating deformations on a
non-unitary coherent surface and the idea about transitions
between distant regions of space in the form of Wheeler’s
“wormholes”, made it possible to substantiate the existence
of closed structures (micro- and macrocontours) acting at var-
ious levels of organization of matter [1–3].

These contours are material, based on the balance be-
tween main interactions: electrical, magnetic, gravitational,
and inertial forces. They are not associated to the specific
properties of the medium; they determine the important prop-
erties of objects and allow using analogies between objects of
various scales.

Such approach allows using a model that best are inde-
pendent of the properties of an object or medium. In this
paper the concept is used to establish some of the basic laws
of the formation of planetary systems. Here, as in paper [2],
there is no need to consider the nature of the cosmological
medium, i.e. protoplanetary nebula, from which the planets
formed, and other specific features of the process. Idea of
the planetary system consisting of some amount of macro-
contours, from which planets formed, and the contours of a
higher order integrating the planets and a central body was
enough to get the general regularities.

2 Initial assumptions

As was shown earlier [1], from the purely mechanistic point
of view the so-called charge only manifests the degree of the
nonequilibrium state of physical vacuum; it is proportional to
the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, the spin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while

the magnetic interaction of the conductors is analogous to the
forces acting among the current tubes. It is given that the ele-
mentary unit of such tubes is a unit with the radius and mass
equal to those of a classical electron (re and me).

It should be noted that in [1, 2] the expressions for the
electrical and magnetic forces are written in a “Coulombless”
form with charge replaced by electron limiting momentum.

In this case, the electrical and magnetic constants (ε0 and
µ0) are expressed as follows:

ε0 = me/re = 3.33 × 10−16 kg/m, (1)

µ0 = 1/ε0c2 = 0.0344 N−1, (2)

where c is the velocity of light.
Thus, the electric constant ε0 makes sense the linear den-

sity of the vortex tube current, and the magnetic constant µ0
makes sense the reciprocal value of the interaction force be-
tween two elementary charges.

In [2] the relative comparison of various interactions have
been carried out and the basic relationships were obtained,
some of which are necessary for the understanding of this
article.

1. The balance of electric and magnetic forces gives a ge-
ometric mean — a characteristic linear parameter that
is independent of the direction of the vortex tubes and
the number of charges:

Rs = (r0L)1/2 = (2π)1/2 c × [sec] = 7.52 × 108 m (3)

– a magnitude close to the Sun radius and the sizes of
typical stars, where r0, and L are the rotary radius or
the distance between the vortex tubes (thread) and their
length.
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2. The balance of gravitational and inertial (centrifugal)
forces gives the maximum gravitational mass of the ob-
ject satisfying the condition (3):

Mm =
Rsc2

γ
= f Rsε0 = 1.01 × 1036 kg. (4)

3. The balance of magnetic and gravitational forces also
results in a geometrical mean:

(r0L)1/2 =

(
ε

f

)1/2

Rs, (5)

where the ratio of the products ε= (zg1zg2)/(ze1ze2) is an
evolutionary parameter, which characterizes the state
of the medium and its changes, as the mass carriers
become predominant over the electrical ones and, as a
matter of fact, shows how the material medium differs
from vacuum. Here ze and zg are the relative values of
charge and mass in the parameters of electron charge
and mass, f — is the ratio of electrical-to-gravitational
forces, which under the given conditions is expressed
as follows:

f =
c2

ε0γ
= 4.16 × 1042, (6)

where γ is the gravitational constant. In the general
case, expression (5) gives a family of lengthy contours
consisting of contra-directional closed vortex tubes
(mg-contours).

4. The vortex tubes can consist, in their turn, of a number
of parallel unidirectional vortex threads, whose stabil-
ity is ensured by the balance of magnetic and inertial
forces forming mi-zones.

5. Structurizations of the primary medium, where there is
more than one pair of balanced forces, results in com-
plication an originally unstructured mass by forming in
it local mi-zones. In particular, the number of mi-zones
in the object of arbitrary mass Mi will be:

zi =

(
Mm

Mi

)1/4

. (7)

3 Planetary systems

Let us assume there is a cloud of the originally protoplanetary
material having an evolutionary parameter ε, in which a plan-
etary system with a central mass M0 and planets with a mass
mp on a radius rp, with a rotary velocity v0 is being formed.
Let us assume that the central body is a point-like mass, and
the mass of the planet is formed of contours of total number
zp and axis sizes dp × lp. Then the mass of the planet can be
expressed as the total mass of contours:

mp = zpεε0lp. (8)

The characteristic size of the mg-contour by analogy to (5):

(
lpdp

)1/2
=

(
ε

f

)1/2

Rs. (9)

Suppose the number of mg-contours constituting the mass of
the planet is proportional to the distance to the central body,
i.e. a planet contour is a structural unit for the contour of
higher order that integrates planet with the central body:

zp =
rp

dp
. (10)

This is true for a flat homogeneous disk of the initial neb-
ula, where the mg-contour is one-dimensional, but in general,
density of medium may be different and, of course, decrease
toward the periphery. The protoplanetary disk may have a
local rarefaction or condensation, i.e. have sleeves or be flat-
spiral. Therefore, in general, we have:

zp =

(
rp

dp

)n

, (11)

where the coefficient n reflects the “packaging” of contours
in the model object (planet).

The orbital velocity of the planet can be expressed from
the balance of centrifugal and gravitational forces:

v0 =

(
γM0

rp

)1/2

. (12)

On the other hand, we can use the analogy of the Bohr atom,
where in the proton-electron system the orbital velocity of the
electron at the radius of ri is equal to

v0 = c
(

re

ri

)1/2

. (13)

Then for the contour integrating the planet with the central
body, taking the parameter lp as the unit of length, an analo-
gous relation can be written:

v0 = c
(

lp

rp

)1/2

. (14)

The number of mg-contour z0 for the stable state of the object,
as given in [2], should be taken equal to the number of mi-
zones:

zp = zi =

(
Mm

mp

)1/4

. (15)

Share further the dimensionless parameter: M =M0/Mm,
m=mp/Mm, v= v0/c, r= rp/Rs, l= lp/Rs, d = dp/Rs, and
z=m−1/4. Taking into account (8-15), after transformations
we obtain expressions describing the dependence of the pla-
net mass on its orbit radius and mass of the central body:

m =
(
rM2

)4n/(5n−1)
, (16)
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Fig. 1: Dependence of the mass of Type I planets on their orbital ra-
dius at M ≈ 1 s.m. 1 — HD10180, 2 — HD125612, 3 — HD134606,
4 — HD160691, 5 — HD204313, 6 — HD75732, 7 — HD95128,
8 — HD31527, 9, 10 — KOI.

Fig. 2: Dependence of the mass of Type I planets on their orbital
radius at M ≈ 0.7 s.m. 1 — HD20794, 2 — HD40307, 3 — GJ676A,
4 — HD10700, 5 — HD181433, 6 — KOI 701, 7 — HIP57274.

proportions of mg-contour

d =
m5/4

M2 , (17)

l = M, (18)

and the value of the evolutionary parameter

ε =
f m5/4

M
. (19)

However, this model also admits a second case of orien-
tation of mg-contour according to another to its axis. In this
case an expression for zp analogous to (11) can be written:

zp =

(
rp

lp

)k

; (20)

Fig. 3: Dependence of the mass of Type I planets on their orbital
radius at M ≈ 0.3 . . . 0.4 s.m. 1 — GJ, 2 — Gliese, 3 — OGLE.

then relation m(r) taking into account (15), (18), (20) will
look as follows:

m=
( M

r

)4k

. (21)

In this variant the emerging masses of planets quickly de-
crease to the periphery of the protoplanetary disk, and it can
be assumed that such initial nebulae are lenticular in nature.
We call planets corresponding relations of (16) and (20) as
Type I planets and Type II planets, accordingly.

The actual data relating to the planets in extrasolar plane-
tary systems having three or more planets plotted on diagrams
in the coordinates of r — m, where r — the size of the major
semiaxis, (Fig. 1-3).

The results of the site http://www.allplanets.ru/index.htm
have been used. The numbers in the figures correspond to the
position of the experimental points and point to the sections
of the catalog of extrasolar planets.

The calculated dependencies m(r) according with formula
(16) converted to coordinates expressed in the masses of
Jupiter and astronomical units by multiplying m by
Mm/1.87× 1027 and r by Rs/1.5× 1011. These dependencies
correspond to the period of planet formation, but several iso-
lines n are shown, because the conditions of formation of the
planets and their further evolution is unknown. A large scat-
ter in the values is present on this and others diagrams; in this
case it is inevitable. However, the dependence of the masses
of extrasolar planets on their orbital radii and on the masses
of central stars is revealed quite clearly in agreement with the
expression (16). These regularities, i.e. increase in the mass
of planets with increasing distance to the central star and with
increasing the mass of central stars, also confirmed in [4–7]
and others.

Types II planets do not fit into this pattern. In (Fig. 1-3)
they would be located near the dashed line. They have masses
of the order of the mass of Jupiter and greater than one and
are in orbits close to the central star (hot Jupiters).
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Fig. 4: Dependence of the mass of Type II planets on their orbital ra-
dius at M ≈ 1 s.m. 1 — CoRoT, 2 — HAT-P, 3 — WASP, 4 — TrES,
5 — XO, 6 — OGLE, 7 — HD.

Fig. 5: The calculated dependence m(r) on the background of dis-
tribution of all known extrasolar planets in the semimajor axis-mass
parameter spaces. Triangles represent the planets of the system GJ
221. Masses are expressed in the masses of the Earth.

Figure 4 shows the actual data on extrasolar Type II plan-
ets, which are in agreement with the expression (21) at a co-
efficient k, whose value differs very little from 1/3. When
comparing (11) and (20), given that k≈ 1/3, one comes to the
conclusion that in this case mg-contour is a three-dimensional
element. With decreasing the density of medium towards the
periphery of the disc the dimension of mg-contour can be re-
duced.

These planets are mainly found in single-planet systems.
The existence of systems of this type was unexpected for as-
trophysicists. It is supposed that their formation or dynam-
ical history occurred in another way when the planets were
formed on the periphery of the initial disc and then migrated
to closer orbits [8]. In the framework of the proposed model
the existence of such planetary systems is natural. More-

Fig. 6: Dependence of the mass of the solar system planets on their
orbital radius.

over, this situation by Type II occurs in systems of plane-
tary satellites, such as the Earth-Moon, Neptune-Triton, and
Pluto-Charon.

Figure 5, taken from the article [9], shows a large array
of data on extrasolar planets in the coordinates r — m (star
masses are different). In order to confirm these regularities
isolines m(r) by (16) and (21) at M = 1 s.m. superimposed on
the diagram; they just pass through areas, where the planets
are at the most grouped. Moreover, the model allows us to
explain the presence of the large number of massive planets
and indicate the area, where they are concentrated.

In paper [2] it is shown that for the central star there is a
period of evolution when the number of mg-contours is equal
to the number of mi-zones, which should correspond to the
most stable or balanced state. It is this period is most favor-
able for the formation of the most massive planets. In this
case, the evolutionary parameter ε receives the expression:

ε = f M11/12. (22)

Then, as it follows from (19) and (22),

m = M23/15. (23)

For the mass of the Sun M = 2 × 10−6. Then mp =

(2× 10−6)23/15Mm or 1.85× 1027 kg, which is almost exactly
the mass of Jupiter. Depending on the type of planetary sys-
tem this mass can arise in orbit size of 0.038 au (hot Jupiters),
or 2.3 au (cold Jupiter), (Fig. 5). More massive stars give rise
greater mass of the planet.

Figure 6 shows the dependencies of m(r) by (16) at dif-
ferent n and by (21) at k= 1/3 as well as the position of the
planets in the solar system. Decrease in the value of index n
with increasing radius and decreasing density of protoplane-
tary disk is interpreted by expression n – (n− 0.4)r/50, as-
suming that the disk was limited of radius 50 au wherein n
was reduced to a value 0.4 at the periphery.
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Fig. 7: Dependence of the diameter of the planets on their mass for
Type I planets. The squares marked planets of the system Kepler-
11. Rectangle roughly bounded region of massive Type II planets at
M ≈ 1. Dash-dot line shows the boundary of the minimum planetary
masses, determined from the condition rp =Rs at n= 1.

In general, the initial protoplanetary cloud of the solar
system would fit the flat model at n≈ 1 if it is assumed that the
small planets were formed close to the Sun, but later moved
to a more distant orbit under the influence of massive plan-
ets that were formed later. Detection of Earth-like planets
that are very close to the central star [10, 16] confirms this
assumption. It is also possible that the initial cloud had a low
density on the orbits where small planets have been formed.

4 On the parameters of planets

For Type I planets calculations show that d≫ l, i.e. a mg-
contour is actually a one-dimensional structure and when
“packaging” it in a volume ratio of its linear dimensions, i.e.
ratio of the diameters of planets averaged over density, taking
into account (17), must meet the relationship:

D = d1/3 = m5/12M−2/3. (24)

These parameters are here dimensionless and can be express-
ed as, for example, the parameters of Jupiter and the Sun.

Figure 7 shows the dimensionless dependence D(m) by
(24) for Type I planets reduced to the parameters of Jupiter
and mass of the Sun. The planets of the solar system are
located along a solid line. It also shows the position of the
six planets of the sistem Kepler-11 having an intermediate
density [11], which generally corresponds to the calculated
dependence.

It is interesting to note that the expression (24) obtained
solely on the basis of general provisions and being adequate
to a wide range for Type I planets, in fact, coincides with the
analogous dimensionless dependence derived by the authors
in the paper [7]. However, this dependence was obtained by

the authors by solving the equation of state, which describes
the relationship between density, pressure, and temperature
for the substance under conditions of thermodynamic equi-
librium. The position of the terrestrial planets corresponds
exactly to the general trend and confirms the assumption that
these planets were formed by Type I near the Sun.

During evolution first planets were formed when the or-
bital angular momentum of the planet is compared to the
rotational angular momentum of the central body. Let us
compare the corresponding expression: to the central body
derived in [2] and, referring to (10), (12), (17), (19), at n= 1,
analogous one to the planet:

M
ε

f
MmcRs =M7/10

(
ε

f

)6/5

MmcRs. (25)

As follows from (25):

ε = f M3/2, (26)

and then one can obtain:

m = M2, (27)

r = 1, (28)

Radius rp =Rs is the natural limit for the minimum masses of
Type I planets. The outer planets, whose mass is greater, have
the orbital angular momentum greater than the rotational an-
gular momentum of the central star. With M = 1 s.m.
mp min = 4× 10−12 Mm = 4× 1024 kg, which just corresponds
to the average mass of the terrestrial planets. Thus, in this
model the existence of Earth-like planets near the central star
is natural.

The size of the planets of type II can be estimated by
the value of the orbital radius, having on a mg-contour, r/z.
Keeping in mind the formula (20) at k= 1/3, and expressing
r from (21), we obtain:

D ∼ M
m1/2 , (29)

There is a need additionally to take account the fact that the
unit mg-contour is in this case not one-dimensional, and the
mass of the model object is proportional to the parameter ε,
formula (8). Thus, the relation (29) should be supplemented.
Using (19) and moving from the mass ratio to the ratio of
linear sizes the final expression gets the following forms:

– in the case of a three-dimensional mg-contour

D =
M

m1/2

(
m5/4M−1

)1/3
=

M2/3

m1/12 ; (30)

– for the less dense medium, in the case of two-dimensional
mg-contour, formula (30) takes the form:

D =
M

m1/2

(
m5/4M−1

)1/2
=

M1/2

m1/8 ; (30a)
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The obtained dimensionless relationships are generally in ag-
reement with the actual laws. Figure 8 shows the dependence
of D(M), and Figure 9 shows the dependence of D(m) cal-
culated from formulas (30) and (30a) at different M, which
are for illustrative purposes superimposed on the chart taken
from the article [12].

In particular, it becomes clear both the existence of plan-
ets with similar sizes but sharply differing masses and hav-
ing the same mass at various sizes. Planets with a relatively
small mass, for example, GJ 1214b [13], Kepler-87c (they
are shown in Figure 8 and 9), and others, formed probably by
type II; their diameters varied greatly and correspond to the
values, which are calculated by the option (30a).

The densities of Type I and Type II planets through their
mass and the mass of a star in dimensionless units (in units
of the Jupiter’s mass and the Sun’s mass), having in mind
that ρ∼mD−3, have radically different character and can be
expressed as follows:

ρ1 = m−1/4M2, (31)

ρ2 = m5/4M−2, (32)

ρ2a = m5/8M−3/2. (32a)

Of course, obtained dependences are not precise or defini-
tive. They only reflect the general trends uniting the diameter
of the planet to its mass and the mass of stars in the period of
the formation of planetary systems. By equating the orbital
angular momentum of the planet and the rotational angular
momentum of the central body one can obtain the relations
similar to (25-28) for Type II planets at k= 1/3:

M
(
ε

f

)
MmcRs = M3/2

(
ε

f

)1/2

MmcRs, (33)

ε = f M, (34)

m = M8/5, (35)

r = M−1/5, (36)

which determine their specific mass and orbital radius. At
M = 1 s.m. mp = 7.6× 10−10Mm = 7.6× 1026 kg or 0.4 Jupi-
ter’s masses, rp = 13.8 Rs = 1.03× 1010 m or 0.07 au. The
inner planets with a greater mass have angular momentum
that is less than that of the central star.

As follows from (21) and (32) Type II planet masses de-
crease with increasing distance from the central star as well
as their density decreases. This is illustrated by the planet Ke-
pler 87c having a very low density with its orbital radius of
136 Rs or 0.68 au. Formation of the planets in more remote
orbits it is unlikely, where the less often they exist, the more
massive major planet [8].

Low-mass rocky planets of type II can not be formed
near Sun’s mass stars and having greater masses, but, as fol-
lows from (32), their formation is possible in the system of

Fig. 8: Dependence of the diameter of the planets on the mass of
the central star (masses of the planets are different). 1 — CoRoT,
2 — HAT-P, 3 — WASP, 4 — KOI, 5 — XO, 6 — TrES, 7 — OGLE,
8 — GJ.

Fig. 9: The calculated dependences D(m) of Type II planet on the
background of distribution of known transit extrasolar planets in the
planet mass-radius spaces. Squares shows the planets in the solar
system. Dotted lines are lines of equal density — 0.1, 0.3, 0.9,
3.0, 9.0, 25.0, and 100 g/cm3. Dash-dotted line limits the maximum
masses of the planets, k= 1/3.

dwarf stars when M < 1 s.m. Indeed, another test of the cor-
rectness of the presented model may serve determination the
masses of stars, at which planets with masses and sizes like
the Earth can be formed. Let their mass is in the range from
0.001 . . . 0.01 Jupiter’s mass and the density is 3 . . . 5 Jupiter’s
density.

Then for the Type I planets formula (31) gives:
M = 0.73 . . . 1.26 s.m. and for Type II planets formulas (32)
and (32a) give: M = 0.006 . . . 0.032 and M = 0.019 . . . 0.07
s.m. The first solution is obvious and corresponds to the stars
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Fig. 10: Dependence of the mass of the planets on their orbital radius
at l= d.

with a mass close to the mass of the Sun and the second so-
lutions just correspond to the very low-mass stars — brown
dwarfs.

This prediction proved to be correct. Indeed, recent ob-
servations have shown that is quite possible the formation of
Earth-like planets around of brown dwarfs and there may be
created suitable conditions for emergence of life [14]. These
types of planetary systems even more preferable since no need
planets to migrate to more distant (as in the case of the Earth)
and the suitable masses of the brown dwarfs vary within a
more wide range. The question arises whether there are con-
ditions under which the formation of planets in the evolution
of both types is equally probable?

It is logical to assume that in the initial period there had
been rarefied initial spherical cloud around the central body,
which is then transformed into or flatspiral disk, or lenticu-
lar in shape, from which Type I planets or Type II planets,
respectively, have been formed. Hypothetically, this would
correspond to the initial state of complete equality of condi-
tions of planets formation in both types, i.e. l= d =M, n= k,
masses of planets by (16) and (21) are equal.

Having in mind (16), (17), (21), we find:

n = k = 0.2

 lg
(
rM2

)
lg (M/r)

+ 1

 , (37)

m = M12/5. (38)

Thus, this mass depending on the coefficient n may occur at
any orbit (Fig. 10). The size of the planet in this case is uncer-
tain since dependences (24) and (30) are here incorrect. One
can specify the maximum size of an object if mg-counters are
packaged in a linear structure, Dmax = zl. Since z=m−1/4 and
l=M, using (38), we obtain:

Dmax = M2/5. (39)

Convergence coefficient values of n and k indicate a decrease
formally in the density of medium in any variant evolution
that, obviously, corresponds to the moust low mass. The av-
erage value of the coefficient equal to 0.5 at M = 1 s.m. corre-
sponds to the orbital radius of 0.07 au, which coincides with
the specific radius for Type II planets.

For the mass of the Sun, mp lim = 2.1× 10−14Mm =

= 2.1× 1022 kg, Dp max = 0.0053 Rs = 3.9× 106 m. It is un-
known whether such planets form in reality. In any case, in
the solar system there are no regular planet’s masses less than
mp lim, except Pluto having a similar mass of 1.3× 1022 kg,
the status of which is uncertain. The same can be said of the
satellite systems of the major planets. Masses less settlement
not observed to date also among extrasolar planets.

The existence of lowest masses for the planets formed
and, accordingly, their lowest diameters explains fact of rapid
decrease of the planets having a small radius as well as exis-
tence of a maximum of the planetary radii specified in [15].

5 Conclusion

Planetary systems can be quite diverse as their structure de-
pends on the initial composition of the protoplanetary cloud,
mass and type of stars, formation history of the planetary sys-
tem, and the random factors. Nevertheless, there are some
general patterns.

There are two types of planetary systems. In the system of
the first type planets are formed from flatspiral protoplanetary
cloud. Masses of Type I planets increase to the periphery
passing through their maximum (cold Jupiters) that occur in
the distance from the center in the local condensations of the
medium (the sleeves, spirals), supposedly, in later periods of
the evolution. Earth-like planets are formed near the central
star and maybe can migrate to the more remote orbits.

In the second type of planetary systems planets are formed
from a protoplanetary cloud lenticular or elliptical type. The
masses and densities of Type II planets decrease to the pe-
riphery of the disc. Massive planets (hot Jupiters) are formed
in condensations near the central star; the formation of other
planets in more distant orbits is unlikely. Low-mass rocky
planets in these systems can be formed only at low-mass stars
(brown dwarfs).

The possibility of the formation of Earth-like planets in
the planetary systems of brown dwarfs has been predicted.

The regularities among the masses, sizes, orbital radii of
the planets and masses of the central stars have been obtained.
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