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Orbits in Homogeneous Time Varying Spherical Spacetime
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The solution to Einstein’s gravitational field equations exterior to time varying distribu-
tions of mass within regions of spherical geometry is used to study the behaviour of test
particles and photons in the vicinity of the mass distribution. Equations of motion are
derived and an expression for deflection of light in this gravitational field is obtained.
The expresion obtained differs from that in Schwarzschild’s field by a multiplicative
time dependent factor. The concept of gravitational lens in this gravitational field is
also studied.

1 Introduction

In [1], the covariant metric tensor exterior to a homogeneous
time varying distribution of mass within regions of spherical
geometry is defined as:

g00 = −
[
1 +

2
c2 f (t, r)

]
(1)

g11 =

[
1 +

2
c2 f (t, r)

]−1

(2)

g22 = r2 (3)

g33 = r2 sin2 θ (4)

where f (t, r) is a function dependent on the mass distribution
within the sphere that experiences radial displacement. Ein-
stein’s gravitational field equations were constructed in [1]
and an approximate expression for the analytical solution of
the lone field equation was obtained as

f (t, r) ≈ −k
r

exp iω
(
t − r

c

)
(5)

where k = GM0 with G being the universal gravitational con-
stant and M0 the total mass of the spherical body. ω is the
angular frequency of the radial displacement of mass within
the sphere.

In this article, we use this solution of Einstein’s field equa-
tions to study the behaviour of light in the vicinity of a time
varying spherical mass distribution.

2 Orbits in Time Varying Spherical Spacetime

In order to study the motion of planets and light rays in a
homogeneous time varying spherical spacetime, there is need
to derive the geodesic equations [2]. The Lagrangian (L) for
this gravitational field can be defined using the metric tensor
as:

L=
1
c

−g00

(
dt
dτ

)2

−g11

(
dr
dτ

)2

−g22

(
dθ
dτ

)2

−g33

(
dϕ
dτ

)2
1
2

(6)

Assuming that the orbits remain permanently in the equato-
rial plane (as in Newtonian Theory), then θ = π

2 and the La-
grangian reduces to

L =
1
c

−g00

(
dt
dτ

)2

− g11

(
dr
dτ

)2

− g33

(
dϕ
dτ

)2
1
2

(7)

or more explicitly as

L =
1
c

(1 + 2
c2 f (t, r)

)
ṫ2 −

(
1 +

2
c2 f (t, r)

)−1

ṙ2 − r2ϕ̇2


1
2

(8)

where the dot denotes differentiation with respect to proper
time (τ).

Now, using the Euler-Lagrange equations and considering
the fact that in a gravitational field is a conservative field, it
can be shown that the law of conservation of energy in this
field is given as(

1 +
2
c2 f (t, r)

)
ṫ = d (constant) (9)

or more explicitly as[
1 − 2GM

rc2 exp iω
(
t − r

c

)]
ṫ = d (10)

which differs from that in Schwarzschild’s field by the expo-
nential factor that describes the radial displacement of mass
with time.

It can also be shown that the law of conservation of angu-
lar momemtum in this gravitational field is given as

r2ϕ̇ = h (constant) (11)

which is the same as that in Schwarzschild’s field.
Let L = ε, and equation (8) becomes

ε2=

(
1+

2
c2 f (t, r)

)
ṫ2− 1

c2

(1+ 2
c2 f (t, r)

)−1

ṙ2−r2ϕ̇2

 . (12)

Substituting equation (10) in (12) yields

1
2

[
ṙ2+r2ϕ̇2

(
1+

2
c2 f (t, r)

)]
+ε2 f (t, r)=

1
2

c2
(
d2−ε2

)
. (13)
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This is the Newtonian energy equation with a modification to
the ϕ̇2 term. It is similar to that obtained in Schwarzschild’s
field except for the time dependent radial diplacement. Also,
using equation (11), it can be shown that

ṙ =
dr
dϕ

dϕ
dτ
= ϕ̇

dr
dϕ
=

h
r2

dr
dϕ
. (14)

Now, let u(ϕ) = 1
r(ϕ) then

ṙ = −h
du
dϕ
. (15)

Substituting equation (5) and (15) into equation (13) yields

(
du
dϕ

)2

+ u2
[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
+

2ε2k
h2 u exp iω

(
t − 1

uc

)
=

c2

h2

(
d2 − ε2

)
(16)

It is worthnoting that integrating equation (16) directly leads
to elliptical integrals which are ackward to handle; thus differ-
entiating yields the following second order differential equa-
tion

d2u
dϕ2 + u

[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
−

2k
c2 u2

(
1 − 1

u

)
exp iω

(
t − 1

uc

)
+

2kε2

h2

(
1 +

1
u2

)
exp iω

(
t − 1

uc

)
= 0. (17)

This equation has additional terms not found in Schwarz-
schild’s field.

3 Timelike Orbits and Precession

For timelike orbits ε = 1 and equation (17) becomes

d2u
dϕ2 + u

[
1 − 2k

c2 u exp iω
(
t − 1

uc

)]
−

2k
c2 u2

(
1 − 1

u

)
exp iω

(
t − 1

uc

)
+

2k
h2

(
1 +

1
u2

)
exp iω

(
t − 1

uc

)
= 0. (18)

Now as a first approximation, suppose uc ≫ 1 and k ≪
h2u2 then equation (8) reduces to

d2u
dϕ2 + u = k

[
3
c2 u2 +

1
c2 u − 1

h2

]
exp iωt. (19)

The Newtonian equation for a spherical mass is

d2u
dϕ2 + u =

k
h2 (20)

and that obtained in Schwarzschild’s field is

d2u
dϕ2 + u =

k
h2 +

3k
c2 u2. (21)

Apart from the first and second terms of equation (19) that
are similar to Newton’s equation and that in Schwarzschild’s
field, the other terms have terms dependent on the time rate
of rotation of the mass content within the sphere [3].

Solution of the Newtonian equation (20) yields the well
known conics

u0 =
1
l

(1 + e cos θ) (22)

where l = h2

GM and e is the eccentricity of the orbit. Attempt-
ing an approximate solution for equation (19) by substituting
the Newtonian solution into the quadratic term in u on the
right hand side and neglecting the term in u, a particular inte-
gral u1 satisfies equation (19) such that

d2u1

dϕ2 + u1 = k
[

3
l2c2 (1 + e cos θ)2 − 1

h2

]
exp iωt. (23)

Now suppose u1 takes the form:

u1 = A + Bϕ sin ϕ + C cos 2ϕ (24)

where A, B and C are constants, then it can be shown that

u1 =
k
c2

(
3
l2
− 1

l
− 1

h2

)
exp iωt

+
keϕ
2c2

(
3
l2
− 1

2l

)
sin 2ϕ exp iωt +

ke2

l2c2 cos 2ϕ. (25)

Then the approximate solution for u can be given as

u = u0 + u1 (26)

or

u =
1
l

(1 + e cos θ) +
k
c2

(
3
l2
− 1

l
− 1

h2

)
exp iωt

+
keϕ
2c2

(
3
l2
− 1

2l

)
sin 2ϕ exp iωt +

ke2

l2c2 cos 2ϕ. (27)

Hence, this approximate solution introduces corrections to u0
and hence depicts that the orbits of massive objects is only
approximately elliptical and also accounts for the perihelion
precession of planetary orbits in this gravitational field.

4 The Bending of Light

For null geodesics, ε = 0 and equation (17) yields

d2u
dϕ2 + u =

[
3k
c2 exp iω

(
t − 1

uc

)]
u2

+

[
k
c2 exp iω

(
t − 1

uc

)]
u. (28)
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In the limit of Special Relativity, equation (28) reduces to

d2u
dϕ2 + u = 0. (29)

The general solution of equation (29) is given as

u =
1
b

sin (ϕ − ϕ0) (30)

where b is the closest approach to the origin (or impact pa-
rameter). This is the equation of a straight line as ϕ goes from
ϕ0 to ϕ0 + π. The straight line motion of light is the same as
that predicted by Newtonian theory.

Now, solving the General Relativity problem (equation
28) by taking the general solution (u) to be a pertubation of
the Newtonian solution, and setting ϕ0 = 0, then

u = u0 + u1 (31)

where u0 =
1
b sin ϕ. Thus, u1 satisfies the equation

d2u1

dϕ2 + u1 =
3k

b2c2 sin2 ϕ exp iω
(
t − b

c sin ϕ

)
+

k
bc2 sin ϕ exp iω

(
t − b

c sin ϕ

)
. (32)

Now, by considering a particular integral of the form

u1 = A + B sin2 ϕ (33)

and substituting in equation (32), it can be shown that

u1 =
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
(34)

and thus

u =
1
b

sin ϕ+
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
. (35)

Now, consider the deflection of a light ray from a star
which just grazes the time varying homogeneous spherical
mass (such as the Sun approximately); as in Fig. 1, then as
r → ±∞, u→ 0, so

0 =
1
b

sin ϕ+
2k

b2c2

(
1 − 1

2
sin2 ϕ

)
exp iω

(
t − b

c sin ϕ

)
. (36)

At the asymptotes, ϕ = −ψ1 and ϕ = ψ2 + π and taking ϕ ≪ 1
then equation (36) reduces to

0 =
1
b
ψ1 +

2k
b2c2 exp iω

(
t +

b
cψ1

)
(37)

and

0 =
1
b
ψ2 +

2k
b2c2 exp iω

(
t +

b
cψ2

)
. (38)

Fig. 1: Diagram showing the total deflection of light.

Fig. 2: Einstein’s Ring.

The total deflection of light (σ) is given as

σ = ψ1 + ψ2

or

σ =
2k
bc2

[
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]
. (39)

Thus, the introduction of varying mass distribution with time
introduces an exponential term in the deflection of light equa-
tion not found in static homogeneous spherical gravitational
fields.

Now, as an example of the bending of light, let us consider
a gravitational lens.

Consider a quasar directly behind a galaxy in our line of
sight as shown in Fig. 2.

The distance of closest approach to the time varying
spherical mass distribution corresponds to an angle (σ) given
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as equation (39). From Fig. 2, considering that both α and β
are small, it can be deduced that

σ =
α

2
+ β =

b
d
+

b
D

(40)

and substituting equation (39) yields the impact parameter as

b =
{

2k
c2

(
Dd

D + d

) [
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]} 1
2

.

Hence, the image of the quasar appears as a ring which
subtends an angle

α =
2b
d

or

α =
2
c

{
Dd

d(D + d)

[
exp iω

(
t +

b
cψ1

)
+ exp iω

(
t +

b
cψ2

)]} 1
2

.

5 Conclusion

The results obtained in this study has paved the way for the
theoretical study of homogeneous spherical mass distribu-
tions in which the mass content is varying with time. This will
introduce correction terms found in Schwarzschild’s static
field. It is hoped that using this approach experimentally and
astrophysically more satisfactory expressions and values will
be obtained for gravitational phenomena in the universe.
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