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The theoretical analysis of the existence of a limit mass for compact astronomic ob-

jects requires the solution of the Einstein’s equations of general relativity together with

an appropriate equation of state. Analytical solutions exist in some special cases like

the spherically symmetric static object without energy sources that is here considered.

Solutions, i.e. the spacetime metrics, can have a singular mathematical form (the so

called Schwarzschild metric due to Hilbert) or a nonsingular form (original work of

Schwarzschild). The former predicts a limit mass and, consequently, the existence of

black holes above this limit. Here it is shown that, the original Schwarzschild met-

ric permits compact objects, without mass limit, having reasonable values for central

density and pressure. The lack of a limit mass is also demonstrated analytically just

imposing reasonable conditions on the energy-matter density, of positivity and decreas-

ing with radius. Finally the ratio between proper mass and total mass tends to 2 for

high values of mass so that the binding energy reaches the limit m (total mass seen by a

distant observer). As it is known the negative binding energy reduces the gravitational

mass of the object; the limit of m for the binding energy provides a mechanism for stable

equilibrium of any amount of mass to contrast the gravitational collapse.

1 Introduction to nonsingular Schwarzschild metric

The fate of extremely compact objects in the universe is ruled

by the particular solutions of the Einstein’s equations. As it

is true that no all the mathematical theorems and statements

have a corresponding meaning in the physical world, at the

same time there is not a general rule, other than the verifi-

cation by means of experimental and observational data, to

establish, a priori, which mathematical solution must be dis-

carded and which must be accepted.

In the case of the basic static model for compact objects,

in the theory up to date the collapse is ruled by a specific so-

lution (called Schwarzschild solution but not given explicitly

by Schwarzschild, coming from the Hilbert’s interpretation

instead) that contains mathematical and thus physical singu-

larities leading to a mass limit for ordinary compact objects

and to the consequent black hole hypothesis (generalization

to rotating or charged objects contains as well the features of

singularity and horizon surface and it is not necessary in this

context).

However, a different interpretation of the solution (non-

singular), particularly the original Schwarzschild solution,

cannot be excluded if the completely different consequences

(the nonexistence of mass limit and thus of black holes) are

not yet demonstrated to be inconsistent with observational

data.

1.1 Possible solutions to the static problem

Karl Schwarzschild in 1916 [1, eq. 14, page 194] gave an ex-

act solution in vacuum to Einstein’s field equation determin-

ing the line element for systems with static spherical symme-

try (in units such that c = G = 1):

ds2 =

(

1− α
R(r)

)

dt2− dR(r)2

1− α
R(r)

−R(r)2
(

dθ2 + sin2θ dφ2
)

, (1)

where α is a constant depending on the value of the mass, that

can be obtained from the newtonian limit, and

R(r) = (r3 + σ)1/3 (2)

where σ (indicated with ρ in the original article) is a sec-

ond constant to be determined and r is the same radial vari-

able of the spherically symmetric Minkowski spacetime. Ma-

thematically, there are two possible solutions that satisfy Ein-

stein’s field equation in vacuum (Rµν = 0): one is given by

the class of infinite values of R(r) such that [2, 3]

R(r) = (|r − r0|n + αn)1/n
(3)

with arbitrary r0 and r , r0, the other is given by setting

R(r) = r. (4)

It is worth to note that all the solutions of the class (3) can

be obtained one from another by means of a simple coordi-

nate transformation as must be in general relativity, while the

solution (4) cannot be obtained from (3) and viceversa with

a simple coordinate transformation. So, since the actual so-

lution must be of course unique, the actual solution must be

chosen among the form (3) and the form (4). At this stage,

the only request that Rµν = 0 cannot discriminate about these

solutions, additional considerations must be examined: in the
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following it will be shown that, since R(r) is related to the

Gaussian curvature, it cannot be set equal to the radial co-

ordinate r as in (4) because this brings to unphysical conse-

quences.

The choices made, for example, by Schwarzschild [1]

(r0 = 0, r > r0, n = 3), by Brillouin [4] (r0 = 0, r > r0,

n = 1) and by Droste [5] (r0 = α, r > r0, n = 1) belong to

the class of solutions of the first kind (3); all the solutions of

this class share the same constant α in the denominator (or,

like in the Droste’s solution, the additional condition for va-

lidity that r > α) that prevents the metric to become singular

and to change signature so that they could be called a class of

“nonsingular” solutions.

The other possibility is the “singular” solution (4), due

to the contribution by Hilbert [6], leading to the so called

“Schwarzschild Solution”, that from now on will be called

Schwarzschild-Hilbert or “singular” solution, that sets n = 1,

r0 = α in (3), so that σ = 0 in (2) i.e. R = r; this is simi-

lar to the Droste’s solution but with no limitation on r so that

0 6 r 6 ∞. The line element in this case is the well known

Schwarzschild (-Hilbert) metric

ds2 =

(

1 − α
r

)

dt2 − dr2

1 − α
r

− r2
(

dθ2 + sin2θ dφ2
)

, (5)

where r is (supposed to be) the usual radial coordinates (but

it is actually related to the Gaussian curvature as it will be

shown later) running from zero to infinity and α is determined

from the Newtonian potential in the limit r → ∞, so that

α = 2m where m is the mass in geometrized units while its

complete expression would be m = GM/c2.

The consequences of the line element (5) are well known,

among them the existence of an “event horizon”, a not remov-

able singularity in r = 0, the change in the sign of the g00 and

g11 elements of the metric when 0 6 r 6 2m and the existence

of a mass limit for equilibrium of massive neutron cores [7]

and the consequent black hole hypothesis.

There is an open question about if there is an actual differ-

ence between all these solutions, leading to different physical

consequences. An example of this discussion can be find on

references [2, 3, 8, 9].

The present article will not enter deep into the question,

instead it must be intended as a contribute for understanding

the possible physical consequences, on compact objects, ap-

plying the nonsingular metric (1 and 2).

1.2 Some characteristics of the Schwarzschild metric

This article, will start from a “nonsingular” solution, the one

given by K. Schwarzschild [1] (1 and 2) (from now on, sim-

ply, Schwarzschild solution), that set (eq. 13 in [1])

σ = α3 = 8m3 (6)

so that the line element of the Schwarzschild Solution (1),

using the coordinate r, becomes

ds2 =

(

1 −
α

(r3 + σ)1/3

)

dt2 −
r4(r3 + σ)−4/3

1 − α

(r3 + σ)1/3

dr2−

− (r3 + σ)2/3
(

dθ2 + sin2θdφ2
)

,

(7)

where σ has been explicitly left in order to compare all the

subsequent formulas for this Schwarzschild metric (7) to the

ones derived from the Schwarzschild-Hilbert metric (5), by

simply setting σ = 0.

A first glance at the metric (7) indicates that there is no

singularity at r = 2m, no “event horizon” and no change of

sign (and of nature of the light cone) in the g00 and g11 ele-

ments of the metric. The “problem” has been moved to the

origin r = 0 with the choice σ = α3. Moreover, the behavior

of Schwarzschild metric, at the origin, is totally different from

the one of Schwarzschild-Hilbert metric: in this latter, indeed,

the presence of r in the denominator produces a mathemati-

cal, and consequently physical, not removable singularity, in

the former there is just a smooth vanishing of the g00 and g11

metric elements, since in Schwarzschild metric (7)

lim
r→0
g00 = 0; lim

r→0
g11 = 0. (8)

It worths to note that the expression of the “time” element

g00 in the limit r → 0 is analogous to the limit r → 2m of the

same element in metric (5), so that there is a coordinate time

(time measured by a distant observer) going to infinite while

a radially ingoing object would approach r = 0.

Both singular (4) and nonsingular (3) class of solutions

give similar results in the weak field limit, that is the limit

where all the experimental proofs for general relativity are

performed. For example, Schwarzschild, applied his metric

(7) to solve the problem of the observed anomaly in the per-

ihelion of Mercury. He found the exact solution ( [1] eq.18

p.195) and noticed that the approximate Einstein’s solution is

the exact one by substituting the Einstein radial coordinate r

with (r3+α3)1/3 = r(1+α3/r3)1/3; since the term within paren-

thesis differs from 1 by a quantity of the order of 10−12, the

actual level of precision of the measurements cannot make a

distinction between the two kind of metrics. Quite a different

behavior appears in the strong field limit as it will be shown

later.

1.3 Different nature of r and different centers of spheri-

cal symmetry for the two kind of metrics

The further analysis to discriminate among these two kind

of metrics involves the nature of the r coordinate that repre-

sents two very different quantities in the two metrics. In effect

can be demonstrated that, in the Schwarzschild metric (1), r

is the usual radial coordinate analogue of the coordinate in
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Minkowski space and r = 0 is the actual center of the config-

uration with a finite curvature: in the derivation of metric (1),

Schwarzschild never changes the nature of r (see [1] eq.7)

that corresponds to the radial coordinate of the Minkowski

space. r = 0 corresponds to the center of the distribution and

this is demonstrated if one looks at a curvature invariant, the

Kretschmann scalar, that is maximized at r = 0 as it is re-

quired. In effect, considering the nonsingular Schwarzschild

solution, its expression is

Rkr = RµνλξR
µνλξ =

12α2

(

r3 + α3
)2

(9)

that has a maximum finite value in r = 0 of Rkr(0) = 12/α4.

At the same time, the Gaussian Curvature is defined by

KS =
R1212

g
=

1

R2
=

1

(r3 + α3)2/3
(10)

so that for r = 0⇒ KS = 1/α2 so KS is finite at the center.

On the other side, the r of the Schwarzschild-hilbert met-

ric (5) it is not the radial coordinate neither a distance at all

but it is, actually, the square of the inverse of the Gaussian

curvature of a spherically symmetric geodesic surface in the

spatial section of the spacetime manifold because

KS H =
R1212

g
=

1

r2
. (11)

Where are the centers of spherical distribution for the two

kind of metric? The answer to this question can be given

by the quantity that represents the proper distance Rp(r) =
∫

g11dr.

In the Schwarzschild-Hilbert case (5),

Rp(r) =

∫

g11dr =

∫

1
√

1 − α
r

dr =

=
√

r
√

r − α + α ln
[

2
(√

r +
√

r − α
)]

+C

(12)

where C is a constant. The center rc of the distribution is

found setting the proper distance equal to zero (Rp(rc) = 0)

that happens for rc = α and C = −α ln
(

2
√
α
)

. Finally the

expression for the proper distance is [2, 3]

Rp(r) =
√

r
√

r − α + α ln

( √
r +
√

r − α
√
α

)

. (13)

So, in the Schwarzschild-Hilbert metric α ≡ 2m < r 6 ∞,

while the range of the proper distance is 0 6 Rp 6 ∞, there is

no meaning for r 6 2m coherently with its nature connected

with the Gaussian curvature and the center of the distribution

is rc = 2m.

This means that, if is given a Minkowski spacetime, whe-

re E3 is its Euclidean space, the center of the spherical sym-

metry is rc = 0 and r coincides with the proper distance Rp

and with the radius of Gaussian curvature RG, r = Rp = RG,

considering the metric manifold M3, that is the spatial part

of Schwarzschild-Hilbert spacetime, then the central point

Rp(rc) = 0 corresponds to the point rc = 2m in E3 that is

any point on a spherical surface centered in r = 0 with radius

r = 2m. Only in this way there is a one to one correspondence

between all points of E3 and M3.

In the Schwarzschild case (7) instead,

Rp(r) =

∫

g11dr =

∫

√

√

√

√

√

√

√
r4

(

r3 + α3
)− 4

3

1 − α
(

r3 + α3
)

1
3

dr =

=
(

r3 + α3
)− 1

3 ×
√

(

r3 + α3
)

4
3 − α

(

r3 + α3
)

+

+α ln

[

2
(

r3 + α3
)

1
6
+ 2

√

(

r3 + α3
)

1
3 − α

]

+C.

(14)

The center of the distribution rc if found setting Rp(rc) = 0

that is for rc = 0 and C = −α ln
(

2
√
α
)

so that the expression

for the proper distance is

Rp(r) =
(

r3 + α3
)− 1

3

√

(

r3 + α3
)

4
3 − α

(

r3 + α3
)

+

+α ln

























(

r3 + α3
)

1
6
+

√

(

r3 + α3
)

1
3 − α

√
α

























.

(15)

In conclusion, in Schwarzschild metric (1) r is the actual

radial coordinate that goes from 0 to∞ (whole manifold) and

r = 0 is recognized to be the center where the Kretschmann

scalar is maximized (9) and the Gaussian Curvature KS (r) =

1/R(r)2 is finite since it goes from KS (0) = 1/α2 to KS (∞) =

0. In Schwarzschild-Hilbert metric, (5) instead, r has nothing

to do with the radial coordinate or distance but it is actually

related to the Gaussian curvature KS H = 1/r2 and it is defined

only from 2m to ∞ as recognized by Droste [5].

2 Metric inside matter and equilibrium equations

Let’s consider a mass of degenerate matter (without source of

energy [10]) in a finite volume, the full treatment consists in

solving Einstein’s equations (equilibrium equations) together

with an appropriate equation of state for the matter. There are

well known studies dedicated to the analysis of equilibrium in

the strong field limit, for massive compact objects in the envi-

ronment of the singular Schwarzschild-Hilbert metric, where

neutron massive cores of neutron stars have been considered,

imposing different equations of state for the neutron matter.

Anyway, all these different equations of state, from the pi-

oneer and fundamental work of Oppenheimer and Volkoff [7]

to the more realistic models [11] [12], share an important

common characteristic: all these models, applied to the sin-

gular metric (5), predict some theoretical upper limit to a
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mass in equilibrium due to the intrinsic relativistic effect of

the metric itself, and a consequent final collapse above this

limit. The difference between these approaches regards the

value of the limit that can change from 0.7 solar masses in

the Oppenheimer-Volkoff (O-V) model to few solar masses

in the other models [13]. Above these limits nothing can stop

the object from the final collapse inside its “Schwarzschild”

radius 2m and then, because of the changing of sign, up to

a not avoidable final singularity, where curvature reaches an

infinite value and the known physics meets its limits.

In this article, one of these models will be considered, in

particular the O-V model in the environment of the nonsin-

gular Schwarzschild metric (7) in the form valid inside the

matter. The O-V model is not quite realistic because it con-

siders the neutrons as a Fermi gas; however, no matter which

model is considered, all the models predict a limit to the mass

because of the singular metric, while it will be shown that in a

nonsingular metric even the O-V model, that otherwise gives

the sharper limit to the mass (≈ 0.7 of solar mass), does not

show it, instead it gives the equilibrium radius for any value

of the mass.

The procedure will follow the original one given by Op-

penheimer and Volkoff so that the results can be directly com-

pared. The difference will be that the nonsingular Schwarz-

schild metric inside matter will be applied instead of the sin-

gular one and the equations derived from the latter can be

obtained from the former setting σ = 0.

Let’s consider the static metric (7) with spherical symme-

try, valid in empty space and set the g00 and g11 elements in

the general exponential form:

ds2 = eν(r)dt2 − eλ(r)dr2 −
(

r3 + σ
)2/3 (

dθ2 + sin2θdφ2
)

. (16)

Solving Einstein’s equations (see Appendix A) the metric

inside the matter is found:

ds2=













1− 2m(r)
(

r3 + 8m3
)1/3













dt2−
r4

(

r3 + 8m3
)−4/3

1− 2m(r)
(

r3 + 8m3
)1/3

dr2 −

−
(

r3 + 8m3
)2/3 (

dθ2 + sin2θdφ2
)

.

(17)

The system of equilibrium equations becomes:

dp(r)

dr
= −

(p(r) + ̺(r))
[

m(r) + 4π
(

r3 + σ
)

p(r)
]

(

r3 + σ
)4/3

r2













1 − 2m(r)
(

r3 + σ
)1/3













dm(r)

dr
= 4π̺(r)r2



















































. (18)

where σ = 8m3 and

m(r) =
1

2

(

r3 + 8m3
)1/3













1 − e−λ
r4

(

r3 + 8m3
)4/3













.

If one setsσ = 0 in the first equation of (18), then the Tolman-

Oppenheimer-Volkoff equation (A-4) can be obtained; equa-

tions (18) together with an equation of state ̺ = ̺(p) consti-

tute the system to be integrated.

3 Equation of state and numerical integration

Following the procedure by Oppenheimer and Volkoff [7],

the matter is considered to consist of particles with rest mass

µ0 obeying Fermi statistics, neglecting thermal energy and

forces between them; the equation of state can be put in the

parametric form

̺ = K (sinh(t) − t) ,

p =
1

3
K (sinh(t) − 8 sinh(t/2) + 3t) ,

where K = πµ4
0
c5(4h3 and t = 4 log( p̂/µ0c+ [1+ ( p̂/µ0c)2]1/2)

where p̂ is the maximum momentum in the Fermi distribution

related to the proper particle density N/V = 8π p̂3/(3h3).

Setting K = 1/4π the units of length a and of mass b are

fixed such that, for neutron gas,

a =
1

π

(

h

µ0c

)2/3
c

(µ0G)1/2
= 1.36 × 106cm (19)

and b = c2a/G = 1.83 × 1034g.

Finally the system of adimensional equations, renaming

the adimensional mass m(r) ≡ u(r), to be integrated are

du

dr
= r2 (sinh(t) − t)

dt

dr
= − 4(sinh(t) − 2 sinh(t/2))

r3 + 8m3

r2

[

(

r3 + 8m3
)1/3
− 2u

]

×

×

[

1
3

(

r3 + 8m3
)

(sinh(t) + 8 sinh(t/2) + 3t) + u
]

cosh(t) − 4 cosh(t/2) + 3











































































. (20)

This system is the analogous of the system integrated by

Oppenheimer and Volkoff ( [7], Eqs. 18 and 19) which can

be obtained setting σ ≡ α3 ≡ 8m3 = 0.

The procedure followed by Oppenheimer and Volkoff first

fixes the value t0 for the parameter t when r = 0 (determin-

ing central energy density and pressure), then the equations

in [7] are numerically integrated for several finite values of

t0. Another boundary condition can be obtained setting of

u(0) ≡ u0 = 0. The equations are integrated till a value of

r = rb for which t (and consequently the pressure) drops to 0,

representing the border radius of the matter distribution; the

corresponding value u(rb) = m is then, the value of the mass

that can stay in equilibrium with a radius rb and the imposed

central density.

In the original paper (O-V) the first 4 results for t0 equal

to 1, 2, 3 and 4 are reported in a table (table I in [7], reported
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Table 1: Comparison with Oppenheimer Volkoff table [7]; numbers

not in parenthesis are in units a and b defined in (19).

m(Ms) t0(̺0(1014g/cm3)) rb (km)

O-V 0.033 (0.30) 1.000 (1.014) 1.550 (21.1)

Eqs. (20) 0.033 (0.30) 1.006 (1.033) 1.506 (20.49)

O-V 0.066 (0.60) 2.000 (9.418) 0.980 (13.33)

Eqs. (20) 0.066 (0.60) 1.835 (6.923) 1.001 (13.61)

O-V 0.078 (0.71) 3.000 (40.62) 0.700 (9.52)

Eqs. (20) 0.078 (0.71) 2.166 (12.376) 0.861 (11.71)

here in table 1) together with an asymptotic value: the char-

acteristics of the results is that, starting from t0 = 1, the mass

is increasing for increasing t0 (the central density) but soon,

for t0 = 3, the mass reaches its maximum value calculated to

be Mmax = 0.71 solar masses.

Increasing further t0, causes a decreasing of values for the

mass (see [7], Fig. 1) so, for m < Mmax there are two values

for central density but only the lower value must be consid-

ered to describe stable neutron stars; the maximum mass is

thus considered the maximum possible mass for a stable equi-

librium configuration of neutron stars with a Fermi equation

of state as obtained by Oppenheimer and Volkoff. Different

equations of state give different values of the maximum mass

(till some units of solar masses) but anyway, as it will be seen

later, a limit exists and is due to the use of the singular metric.

In our case, the equations to be integrated (20) came from

the Schwarzschild nonsingular metric (17) so results can be

quite different: in particular, there is an additional parameter

that is the constant mass m, as seen by a distant observer. The

integration procedure must then be modified: first, the param-

eter m is set and a prove of integration is performed starting

from a low value of the central parameter t0; integration on r

ends at r = rb, the border radius, where t(rb) = 0 (null pres-

sure): if the starting value t0 is set too low, then the resulting

mass would be u(rb) < m. If this would be the case, then it

would be necessary to increase t0 to the minimum value such

that u(rb) = m. This minimum value t0 together with m fixed

and rb found, will be the correct values for central density

and pressure, mass and radius of the configuration in stable

equilibrium.

For low values of the mass, i.e. for weak gravitational

fields, results are expected to be similar to those of O-V while

for increasing mass values the nonsingular metric should lead

to results very different from those resulting from the singu-

lar one. In table I, the results are compared with the first three

values of O-V table. It can be noted that for the lower mass

(0.30 Ms), almost the same values are obtained for central

density and radius, while on increasing the mass, the two ap-

proaches diverge and the nonsingular one leads to a “softer”

equilibrium, with lower central density and greater radius,

with respect to the O-V calculation.

If the mass is further increased, the two metrics behave in

a complete different way: the O-V equations show a decreas-

Fig. 1: Central density and equilibrium radius vs. mass: (a) central

density shows a maximum; (b) equilibrium radius shows a mini-

mum, straight line represents the so called Schwarzschild radius for

that mass.

ing mass and a mass above the maximum found limit 0.71Ms

cannot be sustained in equilibrium. On conversely, the non-

singular Schwarzschild metric will permit equilibrium for in-

creasing masses and will not have a limit mass. The central

density indeed will meet a maximum limit and, then, will de-

crease for increasing masses. At the same time the radius,

instead of continuously decreasing for increasing masses as

in O-V case, will show a minimum to keep the equilibrium

configuration.

Let’s first consider the behavior of various parameters for

low masses: in Fig. 1 values of central density ρ0 and radius

rb for low masses (up to 20 solar masses) are plotted; turning

zones are clearly visible before the value of 2 solar masses

in which the central density reaches a maximum and the ra-

dius a minimum. In particular, the central density reaches the

maximum value of 1.048 × 1016g cm−3 at 1.84 solar masses

while the radius reaches the minimum value of 6.172 km at

1.47 solar masses. It can be noted, in Fig. 1(b), that, in this

zone, the equilibrium radius of the mass is below the value

rb < 2m where 2m here is the constant in the denominator

of the nonsingular metric and not a limit like the so called

“Schwarzschild” radius for the singular metric.

The behavior of ρ0 and rb is, thus, totally different from

the results obtained by Oppenheimer and Volkoff for the equi-

librium with the singular metric; an interpretation for this be-

havior could derive from recalling the concept of proper mass
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Mp, linked to the concept of gravitational binding energy EB:

the total mass m, i.e. the mass seen by a distant observer,

is defined by m =
∫ rb

0
4π̺(r)r2dr but if one integrates the

energy-density ̺ over the proper “local” volume, the proper

mass Mp of the system can be defined.

The proper volume element dτ is defined from dτ2 =

gi jdxidx j where i, j = 1, 2, 3 are only spatial coordinates.

The proper volume from the O-V singular metric (5) then is

dτS = 4πr2(1 − 2m/r)−1/2dr and the proper volume from the

actual Schwarzschild nonsingular metric (7) dτNS = 4πr2(1−
2m/(r3 +σ)1/3)−1/2dr; coherently can be defined respectively

as two proper masses MP:

MP
S =

∫ rb

0

̺4πr2(1 − 2m/r)−1/2dr (21)

and

MP
NS =

∫ rb

0

̺4πr2(1 − 2m/(r3 + σ)1/3)−1/2dr. (22)

The physical meaning of proper mass is connected with

the difference MP − m = EB where EB is the gravitational

binding energy ( [14] p. 126). In Fig. 2 the completely differ-

ent behavior of the binding energy is shown, in the cases of

singular solution and nonsingular solution: in the first case,

the binding energy increases dramatically (together with the

increasing of the central density to unphysical values) and

above the maximum mass limit of about 0.7 solar masses the

function becomes multivalued.

On the other side, in the nonsingular case, the binding

energy increases smoothly with increasing mass and does not

indicate any mass limit. In Fig. 2 only low mass values are re-

ported but it will be shown later that, in the nonsingular case,

the binding energy for higher mass values increases linearly

with the mass and, considering that the ratio MP/m in Fig. 3

tends→ 2, the binding energy tends to the value m of the rest

mass.

Central (̺0) and average ̺AV ≡ M/( 4
3
πr3

b
) densities have

a similar behavior: starting from values of ̺0(0.184Ms) =

3.29 × 1013g/cm3 and ̺AV (0.184Ms) = 5.40 × 1012g/cm3,

reaching the maximum values of ̺0(1.84Ms) = 1.0476 ×
1016g/cm3 and ̺AV (2.30Ms) = 3.688× 1015g/cm3 and finally

reaching the values for the last considered mass, ̺0(3.68 ×
106Ms) = 1.243×1010g/cm3 and ̺AV (3.68×106Ms) = 8.687×
109g/cm3.

Behavior evidences the presence of a maximum for both

the densities and a decreasing for increasing masses: the cen-

tral density converges to the average density values which

decrease because volume grows with radius with an higher

power than the mass.

Integration of the system (20) admits solution with an

equilibrium radius for any amount of mass: in Fig. 3, higher

values of mass are considered till, as an example, a value

around 4 million of solar masses as it is supposed to be con-

centrated in the Milky Way’s center.

Fig. 2: Gravitational binding energy vs. mass: comparison between

Oppenheimer-Volkoff results [7] (multivalued line with circles) and

this article results (squares).

Fig. 3: Ratio between proper mass and mass vs. mass logarithm:

limit tends to value 2 corresponding to an efficiency of 100% of

mass conversion in gravitational binding energy

Together with the density decreasing with mass, there is

another peculiar behavior, the one referred to the ratio of

proper mass on mass: in Fig. 3 it is shown that this ratio tends

to the value 2, meaning that there ia a 100% efficiency in con-

verting mass into binding energy. The total mass of the com-

pact object includes both the rest-mass energy and the nega-

tive binding energy so that the mass of the collapsed object

is smaller than the sum of the component particles [15]. For

neutron stars this mass deficit can be as large as 25% [16] but

here it increases till 100% above 1 thousand of solar masses

(depending on the equation of state) and this can be the mech-

anism to support stable equilibrium for such objects.

4 Inequality for nonexistance of a limit mass

Numerical results show that there is not a mass limit for equi-

librium. This result can be seen also analytically trying to

find an upper limit for the mass, independently from the spe-

cific equation of state. This limit exists in the case of singular
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metric and it is possible to see that this limit does not exist

in the case of nonsingular metric following the procedure ex-

pressed, for example, by R.M. Wald [14, p. 130].

A first less sharp limit exists for the singular metric as

necessary condition for the metric to be static: a metric is

said to be static if it is stationary and, in addition, exists a

spacelike hypersurface Σ (orthogonal to the timelike Killing

vector field ξα); in order for Σ to be spacelike the necessary

condition for staticity is that the radial element of the metric

g11 would be greater than zero (in the following calculation,

it will be used the Wald notation of g11 ≡ h(r) and g00 ≡ f (r),

with the Suffix S to indicate the expression from the singular

metric and NS for the nonsingular one).

So for the two metrics (5) and (7) it will be

hS (r) =

(

1 − 2m(r)

r

)−1

(23)

and

hNS (r) = r4
(

r3 + σ
)−4/3

(

1 − 2m(r)

(r3 + σ)1/3

)−1

. (24)

The necessary condition for stability implies that, for a

given mass M and equilbrium radius rb, h(rb) > 0 so, it

clearly requires a limit for M only in the singular case, that

is M < rb/2 (eq. 6.2.32 in [14]) while, in the nonsingular

case, hNS (rb) > 0 is always satisfied for any value of M and

rb (considering that σ ≡ 8M3).

This limit for M (for the singular metric) can be sharpened

using the condition g00 ≡ f (r) > 0 that imposes the Killing

field ξα to be timelike everywhere. The term f (r) has the

form, for the singular and nonsingular metric, respectively

fS (r) =

(

1 − 2m(r)

r

)

fNS (r) =

(

1 − 2m(r)

(r3 + σ)1/3

)



































. (25)

Since f (r) must be greater than zero everywhere, it could

seem that it would be necessary to know the specific equation

of state for matter but, actually, the only conditions that must

be assumed are very basic i.e. the density must be such that

̺ > 0 and d̺/dr 6 0 while there is no need for whatsoever

assumption about pressure P.

Applying these conditions, the following inequalities are

obtained (see Appendix B): in the singular case it is found an

upper mass limit

M 6
4

9
rb , (26)

in the nonsingular case, instead, the following inequality is

found:

1 −












8M3

r3
b
+ 8M3













1
3

>
1

9













1 −
8M3

r3
b
+ 8M3













. (27)

Since it is always true that 0 6 8M3/(r3
b
+ 8M3) 6 1, the

inequality for the nonsingular case (27), i.e. the condition of

stability, is always satisfied for any values of both M and rb so

that there is no upper limit for the mass, to have equilibrium,

whatever would be the, reasonable, equation of state.

5 Conclusions

In conclusion, the application of the class of nonsingular sta-

tic spherically symmetric metrics (particularly the Schwarz-

schild solution [1]) to the problem of hydrostatic equilibrium

gives completely different solutions from those of the singular

case. In this latter, there is a mass limit (whose value depends

from the specific state equation) for dense cores of degen-

erate matter: above this limit, nothing can stop the config-

uration from a final gravitational collapse with formation of

event horizon and inner physical singularity. In the case of

nonsingular metric (that does not include the possibility of

an event horizon) instead, the equilibrium is always reached

whatever would be the amount of mass.

The application with a Fermi gas state equation, as in

the Oppenheimer-Volkoff work [7], shows that central den-

sity has the same behavior, for increasing mass, than average

density i.e. a maximum (with reasonable physical value), be-

fore reaching the 2 solar masses and then a decreasing. The

equilibrium radius of the system shows a minimum before

the 2 solar masses then grows with increasing masses but re-

maining well below the so called “Schwarzschild radius” for

that mass which, in the nonsingular metric environment, is

not the dimension of an event horizon but only a parameter

connecting the general relativistic metric with the newtonian

one. Proper mass of the system tends to the limit of twice

the mass. This means that the negative binding energy tends

to the limit of m counterbalancing the gravitational mass m.

This is a mechanism that can stop gravitational collapsing and

that can sustain stable equilibrium.

Considering experimental observations, weak field expe-

riments give same results, within errors, for the singular and

nonsingular metrics, while for strong fields, the nonsingular

metric admits stable configuration of greater amount of mass

while singular metrics admits black hole formation. Few ob-

servational, indirect, evidences for black holes existence have

been performed in years but it seems that an alternative hy-

pothesis of very compact degenerate matter configurations,

permitted by nonsingular metrics, could be compatible with

observations: let’s consider, for example, a single nonrotating

compact object of 9.2 solar masses (m=1 in units of (19)), in

the singular metric, it would be a black hole, no matter of

which state equation is used, and a “Schwarzschild radius”

rs = 27.17 km would define the horizon event whose sur-

face would have an infinite gravitational redshift and would

surround a pointlike singularity.

The application of nonsingular metric (with a Fermi equa-

tion of state) instead, would give a very compact object, of
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radius rb = 13.23km, made by ordinary (degenerate) matter

with a central density ̺0 = 13.23 × 1015g/cm3; the density

value is not far from the ordinary nuclear density, moreover a

more realistic state equation would keep density value within

reasonable physical limit.

Gravitational redshift factor f =
√−g11 (the ratio be-

tween wavelength observed at infinity and wavelength emit-

ted at distance r) at the surface of the matter configuration

would be f = 1.165. This redshift would correspond, in the

black hole case, to a redshift of a photon emitted ad distance

r = rs f 2/( f 2 − 1) = 3.8rs. This difference, theoretically,

could be observable but total luminosity would be so faint not

to permit direct observations while indirect observations due

to, for example, the accretion disk surrounding these com-

pact objects, would be very similar. The existence of com-

pact massive (several solar masses) objects could justify why

observed emissions from individuated neutron stars and black

hole candidates are so similar [17] despite the totally different

characteristics of a hard surface and an event horizon.

Recent observations involving magnetic fields of quasars

also put in doubt the existence of inner super-massive black

holes [18]. It must be remarked that at the state of the art there

is still no observational proof of a black hole event horizon

[19].

Lack of single compact objects of very great mass it is

due more to mechanism of formation of such object than to

some mass limit, anyway in the galactic’s centers there is

gravitational evidence for compact objects of millions of so-

lar masses. Let’s resume how it would be such an object in

the nonsingular model with a Fermi gas state equation (others

EOS would not change the qualitative features): considering

an object 3.6 millions of solar masses, it would have a radius

of about 58, 000 km that is the half percent of its estimated

“Schwarzschild radius” in the black hole hypothesis, a cen-

tral density ̺0 = 1.24 × 1010g/cm3 and a central pressure

P0 = 7.3 × 1016 Pa both smoothly decreasing outward.

Sagittarius A, the radio point source associated with the

dark mass located at the center of the Milky Way, is the best

studied black hole candidate to date, but till now has not be

possible to verify or to exclude the presence of a horizon [20].

The horizon existence has been inferred because a surface

emission, to remain undetected, would require large radiative

efficiencies, greater than 99.6% [21] anyway, this is actually

the phenomenon predicted by the application of nonsingular

metric, because, as seen in Fig. 3, the limit value of 2 for the

ratio MP/M means an efficiency limit of about 100%. This

could be justified, actually, by a not exotic object having a

hard surface, emissions and gravitational effects compatible

with observations, and that could be permitted because the

contribution of the negative binding energy.
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Appendix A

The only non vanishing components of the Einstein Tensor G

are G0
0
, G1

1
and G2

2
= G3

3
. Considering a matter that supports

no transverse stresses and has no mass motion then the energy

momentum components are [22] T 1
1
= T 2

2
= T 3

3
= −p and

T 0
0
= ̺ where p is the pressure and ̺ is the macroscopic

energy density measured in proper coordinates. So Einstein’s

equations are

G0
0 = 8πT 0

0 = 8π̺ = e−λ
[

λ′r2

r3 + σ
− r4

(r3 + σ)2
−

−
4rσ

(r3 + σ)2

]

+
1

(r3 + σ)2/3

(T00)

G1
1 = 8πT 1

1 = 8πp = e−λ
[

ν ′r2

r3 + σ
+

r4

(r3 + σ)2

]

−

− 1

(r3 + σ)2/3

(T11)

G2
2 = 8πT 2

2 = e−λ
[

(ν ′ − λ′)r2

2(r3 + σ)
−
λ′ν ′

4
+
ν ′ 2

4
+

+
2rσ

(r3 + σ)2
+
ν ′′

2

]

+
1

(r3 + σ)2/3

(T22)

where p, ̺, λ and ν are functions of r and the primes indi-

cates a differentiation with respect to r. Since T 1
1
= T 2

2
then

(T 1
1
− T 2

2
) × 2/r = 0 and from equations (T00) it is easy to

verify that

d

dr

(

−T 1
1

)

+
(

T 0
0 − T 1

1

) ν ′

2
=

(

T 1
1 − T 2

2

) 2

r
= 0 (A-1)

so that this latter equation can be read

dp

dr
= −

p + ̺

2
ν ′. (A-2)

Equations (T00), (T11) and (A-2) constitute the system of

equations to be solved and correspond to the ones in Oppen-

heimer Volkoff article [7, Eqs. 4,3 and 5] if σ is set equal to 0;

an opportune equation of state ̺ = ̺(p) must also be included

in the system.

Eliminating ν ′ in (T11) and (A-2), the hydrostatic equi-

librium equation in exponential form is

dp

dr
= − p + ̺

2
×

×
[

8πp eλ
(r3 + σ)

r2
+ eλ

(r3 + σ)1/3

r2
− r2

(r3 + σ)

]

.

(A-3)

If it is set σ = 0 and the singular metric (5) (inside the

matter) is considered where eλ(r) = (1 − 2m(r)/r)−1 (and con-

sequently m(r) = 1
2
r(1−e−λ)) then the Tolman-Oppenheimer-

Volkoff equilibrium equation is obtained

dp

dr
= −

(p(r) + ̺(r))
[

m(r) + 4πr3 p(r)
]

r2

(

1 −
2m(r)

r

) . (A-4)

In our case (A-3) instead, it is possible to give the correct

physical meaning to m(r) setting, for the nonsingular metric

inside the matter,

eλ(r) =
(r3 + σ)−4/3

1 − 2m(r)

(r3 + σ)1/3

r4; (A-5)

in effect, at the border r = rb there will be continuity with the

metric in vacuum (7) and (6) so that

eλ(rb) = eλ =
r4(r3 + 8m3)−4/3

1 − 2m

(r3 + 8m3)1/3

and m(rb) will assume its value m as seen by an external ob-

server

m(rb) =
1

2

(

r3
b+8m3

)1/3





















1−e−λ
r4

b
(

r3
b
+8m3

)4/3





















= m. (A-6)

Finally the Schwarzschild metric inside the matter (in conti-

nuity with (7) where it is set α = 2m(r) and σ = 8m3 so that

σ = α3 outside the matter) will be

ds2 =













1 − 2m(r)
(

r3 + 8m3
)1/3













dt2−

−
r4

(

r3 + 8m3
)−4/3

1 − 2m(r)
(

r3 + 8m3
)1/3

dr2−

−
(

r3 + 8m3
)2/3 (

dθ2 + sin2θdφ2
)

.

(A-7)

So, with eλ(r) given by (A-5), the equilibrium equation

(A-3) (that is the merging of the two Einstein’s equations

(T11) and (A-2)) and the other Einstein’s equation (T00) will

become respectively

dp(r)

dr
= −

(p(r) + ̺(r))
[

m(r) + 4π(r3 + σ)p(r)
]

(

r3 + σ
)4/3

r2













1 − 2m(r)
(

r3 + σ
)1/3













dm(r)

dr
= 4π̺(r)r2























































, (A-8)

where σ = 8m3.
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Appendix B

Pressure P can be eliminated from Einstein’s equations con-

sidering that G1
1
− G2

2
= 0, this, together with the definition

of h(r) (23) leads to the following equation for the singular

metric (using the notation by Wald, eq. 6.2.34 in [14])

d

dr















r−1hS (r)−1/2
d f

1/2

S
(r)

dr















=

=
[

fS (r)hS (r)
]1/2 d

dr

[

m(r)

r3

]

(B-1)

while, for the nonsingular metric

d

dr

[

(r3 + σ)−1/3hNS (r)−1/2 d fNS (r)1/2

dr

]

=

=
(r3 + σ)2/3

r2

[

fNS (r)hNS (r)
]1/2 d

dr

[

m(r)

r3 + σ

]

.

(B-2)

The right sides for both equations are proportional to the

derivative with respect to r of the average density, so because

the condition d̺/dr 6 0, the left sides must be both less or

equivalent to 0. Integrating the inequalities for the left sides,

inward from the border rb to a generic radius r we obtain

1

rh
1/2

S
(r)

d fS (r)1/2

dr
>

M

r3
b

, (B-3)

1

(r3 + σ)1/3h
1/2

NS
(r)

d f
1/2

NS
(r)

dr
>

M

r3
b
+ σ
. (B-4)

These inequalities can be integrated again inward from

rb to 0. The condition d̺/dr 6 0 implies that m(r) cannot be

smaller than the value it would have for a uniform density star

so, for the singular case, m(r) > Mr3/r3
b

and, for the nonsin-

gular one, m(r) > M(r3+σ)/(r3
b
+σ), so that inequalities (B-3

and B-4) become: for the singular case (Wald, eq. 6.2.39)

f
1/2

S
(0) 6

3

2

(

1 − 2M

rb

)1/2

− 1

2
(B-5)

and for the nonsingular case

f
1/2

NS
(0) 6

3

2













1 − 2M

(r3
b
+ σ)1/3













1/2

− 1

2













1 − 2Mσ2/3

r3
b
+ σ













(B-6)

(as usual for σ = 0 the two cases are equivalent). Finally, the

condition f 1/2(0) > 0 implies that, for the singular case, the

necessary condition for staticity involves a maximum limit

for the mass: from (B-5)

M 6
4

9
rb . (B-7)

For the nonsingular case instead, the stability condition

implies, from (B-6) and inserting the value σ ≡ 8m3, the

inequality

1 −












8M3

r3
b
+ 8M3













1
3

>
1

9













1 −
8M3

r3
b
+ 8M3













. (B-8)
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