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One of the greatest challenges in particle physics is to determine the first principles
origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor
states to the mass states. This first principles derivation of both the PMNS and CKM
matrices utilizes quaternion generators of the three discrete (i.e., finite) binary rotational
subgroups of SU(2) called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R3

and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3]
represented by four quark families in R4. The traditional 3×3 CKM matrix is extracted
as a submatrix of the 4×4 CKM4 matrix. The predicted fourth family of quarks has not
been discovered yet. If these two additional quarks exist, there is the possibility that the
Standard Model lagrangian may apply all the way down to the Planck scale.

1 Introduction

The very successful Standard Model (SM) local gauge group
SU(2)L × U(1)Y × SU(3)C defines an electroweak (EW) in-
teraction part and a color interaction part. Experiments have
determined that the left-handed EW isospin flavor states are
linear superpositions of mass eigenstates. One of the greatest
challenges in particle physics is to determine the first princi-
ples origin of the quark and lepton mixing matrices CKM and
PMNS that relate the flavor states to the mass states.

In a recent article [1] I derived the lepton PMNS mix-
ing matrix by using the quaternion (i.e., spinor) generators of
three specific discrete (i.e., finite) binary rotational subgroups
of the EW gauge group SU(2)L × U(1)Y , one group for each
lepton family, while remaining within the realm of the SM
lagrangian. All the derived PMNS matrix element values are
within the 1σ range of the empirically determined absolute
values.

The three lepton family groups, binary rotational groups
called [3,3,2], [4,3,2], and [5,3,2], (or 2T, 2O, and 2I), have
discrete rotational symmetries in R3. Each group has two de-
generate basis states which must be taken in linear superposi-
tion to form the two orthogonal fermion flavor states in each
family, i.e., (νe, e), (νµ, µ), and (ντ, τ).

In order to have a consistent geometrical approach toward
understanding the SM, I have proposed in a series of arti-
cles [2–4] over several years that the quark flavor states rep-
resent discrete binary rotational groups also. However, one
must move up one spatial dimension from R3 to R4 and use
the related four discrete binary rotational subgroups [3,3,3],
[4,3,3], [3,4,3], and [5,3,3], (or 5-cell, 16-cell, 24-cell, and
600-cell), for the quarks, thereby dictating four quark fami-
lies. Recall that both R3 and R4 are subspaces of the unitary
space C2.

Therefore, following up the success I had deriving the
neutrino PMNS matrix, the CKM mixing matrix should be
derivable by using the same geometrical method, i.e., based
upon the quaternion generators of the four groups of specific
discrete rotational symmetries. In this quark case, however,

first one determines a 4×4 mixing matrix called CKM4 and
then extracts the appropriate 3×3 submatrix as the traditional
CKM matrix.

These seven closely-related groups representing specific
discrete rotational symmetries dictate the three known lep-
ton families in R3 and four related quark families in R4, the
fourth quark family still to be discovered. That is, neither
leptons nor quarks are to be considered as point objects at
the fundamental Planck scale of about 10−35 meters. If this
geometrical derivation of both the PMNS and CKM mixing
matrices is based upon the correct reason for the mixing of
flavor states to make the mass states, then one must recon-
cile the empirical data with the prediction of a fourth quark
family.

My proposal that leptons are 3-D entities and that quarks
are 4-D entities has several advantages. There is a clear dis-
tinction between leptons and quarks determined by inherent
geometrical properties such as explaining that leptons do not
experience the color interaction via SU(3)C because gluons
and quarks would involve 4-D rotations associated with the
three color charges defined in R4. Also, one now has a geo-
metrical reason for there being more than one family of lep-
tons and of quarks. In addition, the mass ratios of the funda-
mental fermions are determined by the group relationships to
the j-invariant of the Monster Group. These physical proper-
ties and many other physical consequences are discussed in
my previous papers.

2 Review of the PMNS matrix derivation

This section reviews the mathematical procedure used in my
2013 derivation [1] of the PMNS matrix from first principles.
One constructs the three SU(2) generators, the U1 = j, U2 =

k, and the U3 = i, (i.e., the Pauli matrices in quaternion form),
from the three quaternion generators from each of the discrete
subgroups [3,3,2], [4,3,2], and [5,3,2]. As you know, the three
Pauli matrices, i.e., the quaternions i, j, and k, can generate
all rotations in R3 about a chosen axis or, equivalently, all
rotations in the plane perpendicular to this axis. For example,
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Table 1: Lepton Family Quaternion Generators U2

Fam. Grp. Generator Factor Angle◦

νe,e 332 − 1
2 i − 1

2 j + 1√
2
k -0.2645 105.337

νµ,µ 432 − 1
2 i − 1√

2
k + 1

2 j 0.8012 36.755

ντ,τ 532 − 1
2 i − ϕ2 j + ϕ

−1

2 k -0.5367 122.459

the quaternion k is a binary rotation by 180◦ in the i-j plane.
The complete mathematical description [5] for the gener-

ators operating on the unit vector x in R3 extending from the
origin to the surface of the unit sphere S2 is given by Rs =

i x Us where s = 1, 2, 3 and

U1 = j, U2 = −icos
π

q
− jcos

π

p
+ ksin

π

h
, U3 = i, (1)

with h = 4, 6, 10 for the three lepton flavor groups [p,q,2],
respectively. Their U2 generators are listed in Table 1.

My three lepton family binary rotational groups, [3,3,2],
[4,3,2], and [5,3,2], all have generators U1 = j and U3 = i, but
each U2 is a different quaternion generator operating in R3.
One obtains the correct neutrino PMNS mixing angles from
the linear superposition of their U2’s by making the total U2 =

k, agreeing with SU(2). This particular combination of three
discrete angle rotations is now equivalent to a rotation in the
i-j plane by the quaternion k.

The sum of all three U2 generators should be k, so there
are three equations for the three unknown factors, which are
determined to be: -5.537, 16.773, and -11.236. Let the quan-
tity ϕ = (

√
5+1)/2, the golden ratio. The resulting angles in

Table 1 are the arccosines of these factors (normalized), i.e.,
their projections to the k-axis, but they are twice the rotation
angles required in R3, a property of quaternion rotations.

Using one-half of these angles produces

θ1 = 52.67◦, θ2 = 18.38◦, θ3 = 61.23◦, (2)

resulting in mixing angles

θ12 = 34.29◦, θ13 = −8.56◦, θ23 = −42.85◦. (3)

The absolute values of these mixing angles are all within the
1σ range of their values for the normal mass hierarchy [6–11]
as determined from several experiments:

θ12 = ±34.47◦, θ13 = ±8.73◦, θ23 = ±(38.39◦−45.81◦). (4)

The experimental 1σ uncertainty in θ12 is about 6%, in θ13
about 14%, and θ23 has the range given. The ± signs arise
from the squares of the sines of the angles determined by the
experiments.

For three lepton families, one has the neutrino flavor states
νe, νµ, ντ, and the mass states ν1, ν2, ν3, related by the PMNS

matrix Vi j  νeνµ
ντ

 =
 Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3
Vτ1 Vτ2 Vτ3


 ν1ν2
ν3

 .
The PMNS entries are the products of the sines and cosines
of the derived angles (3) using the standard parametrization
of the matrix, producing: 0.817 0.557 −0.149e−iδ

−0.413 − 0.084eiδ 0.605 − 0.057eiδ −0.673
−0.383 + 0.090eiδ 0.562 + 0.061eiδ 0.725

 .
For direct comparison, the empirically estimated PMNS

matrix for the normal hierarchy of neutrino masses is 0.822 0.547 −0.150 + 0.038i
−0.356 + 0.0198i 0.704 + 0.0131i 0.614
0.442 + 0.0248i −0.452 + 0.0166i 0.774


Comparing the Ve3 elements from each, the phase angle δ is
confined to be 0◦ ≤ δ ≤ ±14.8◦, an angle in agreement with
the T2K collaboration value of δ ≈ 0 but quite different from
other proposed δ ≈ π values.

3 The CKM4 matrix derivation

The success of the above geometrical procedure for deriving
the lepton PMNS matrix by using the quaternion generators
from the 3 discrete binary rotation groups demands that the
same approach should work for the quark families in R4 using
the 4 discrete binary rotation groups [3,3,3], [4,3,3], [3,4,3],
and [5,3,3]. If this procedure succeeds in deriving the CKM
matrix elements as a 3×3 submatrix of CKM4, then a fourth
sequential quark family, call its quark states b’ and t’, exists
in Nature.

These 4 binary rotational groups for the quark family fla-
vors each have rotation subgroups of SO(4) = SO(3) × SO(3),
and they also have the double covering SU(2) × SU(2). The
SO(4) is the rotation group of the unit hypersphere S3 in R4,
with every 4-D rotation being simultaneous rotations in two
orthogonal planes.

The only finite (i.e., discrete) quaternion groups are [12]

2I, 2O, 2T, 2D2n, 2Cn, 1Cn (n odd) (5)

with the 2 in front meaning binary (double) group, the dou-
ble cover of the normal 3-D rotation group by SU(2) over
SO(3). Mathematically, the 4 discrete binary groups for the
quark families each can be identified as (L/LK ; R/RK) with
the homomorphism L/LK = R/RK . Here L and R are specific
discrete groups of quaternions and LK and RK are their ker-
nels.

P. DuVal [13] established that one only needs the cyclic
groups 2Cn and 1Cn when considering the four discrete ro-
tational symmetry groups, i.e., the ones I am using for the
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quark families. Essentially, vertices on the 4-D regular poly-
tope can be projected to be a regular polygon on each of the
two orthogonal planes in R4.

There will be 6 quaternion generators for each of the 4
groups, producing simultaneous rotations in two orthogonal
planes. The two sets of Pauli matrices for producing contin-
uous rotations can be identified as i, j, k, and another i, j, k,
but they act on the two different S2 spheres, i.e, in the two or-
thogonal planes. One can consider this 4-D rotational trans-
formation as the result of a bi-quaternion operation [14], or
equivalently, a bi-spinor or Ivanenko-Landau-Kähler spinor
or Dirac-Kähler spinor operation.

For three quark families, one has the “down” flavor states
d’, s’, b’, and their mass states d, s, b, related by the CKM
matrix. This quark mixing matrix for the left-handed compo-
nents is defined in the standard way as

V = ULD†L, (6)

but for four quark families the mathematics is a little different,
for one must consider the bi-quaternion case in which there
will be Bogoliubov mixing [14], producing two subfactors for
each component, i.e.,

UL = Wu
14,23Wu

12,34, DL = Wd
14,23Wd

12,34 (7)

with the Wu and Wd factor on the right mixing the 1st and 2nd
generations and, separately, mixing the 3rd and 4th genera-
tions. The Bogoliubov mixing in the factor on the left mixes
the 1st and 4th generations and, separately, the 2nd and 3rd
generations. Therefore, the CKM4 matrix derives from

VCKM4 = ULD†L = Wu
14,23Wu

12,34(Wd
14,23Wd

12,34)†. (8)

The product Wu
12,34Wd†

12,34 is given by

Wu
12,34Wd†

12,34 =


x1 y1 0 0
z1 w1 0 0
0 0 x2 y2
0 0 z2 w2

 .
The upper left block is an SU(2) matrix that mixes genera-
tions 1 and 2 while the lower right block is an SU(2) matrix
that mixes generations 3 and 4. Each 2x2 block relates the
rotation angles and the phases via[

x y
z w

]
=

[
cosθ eiα −sinθ eiβ

sinθ eiγ cosθ eiδ

]
.

The 4×4 matrix that achieves the Bogoliubov mixing has
four possible forms for the four possible isospin cases obey-
ing SU(2) × SU(2): (0, 0), (1/2, 0), (0, 1/2), and (1/2, 1/2).
The (1/2, 1/2) is the one for equal, simultaneous, isospin 1/2
rotations in the two orthogonal planes for CKM4:

Wu,d
14,23 =

1
√

2


1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

 .

Table 2: Quark Family Discrete Group Assignments for U2

Fam. Grp. Generator Angle◦ Factor Angle◦

u,d 333 exp[2πi/5] 72 1.132 81.504
c,s 433 exp[2πi/8] 45 1.132 50.940
t,b 343 exp[2πi/12] 30 1.132 33.960
t’,b’ 533 exp[2πi/30] 12 1.132 13.584

Multiplying out these three 4×4 bi-quaternion mixing matri-
ces, one determines that

VCKM4 =
1
2


x1 + x2 y1 + y2 x1 − x2 y1 − y2
z1 + z2 w1 + w2 z1 − z2 w1 − w2
x1 − x2 y1 − y2 x1 + x2 y1 + y2
z1 − z2 w1 − w2 z1 + z2 w1 + w2


in which the phases α, β, γ, δ have been ignored.

One determines the angles θ1 and θ2 from the quaternion
generators of the 4 discrete binary rotation groups for the
quark families. Projections of each of the four discrete sym-
metry 4-D entities onto the two orthogonal planes produces
a regular polygon [5, 13] with the generator iexp[2πj/h], as
given in Table 2, where the h values are 5, 8, 12, 30, for the
[3,3,3], [4,3,3], [3,4,3], and [5,3,3], respectively.

Again, we need to determine the contribution from each
group generator that will make the sum add to 180◦, i.e., make
their collective action produce the rotation U2 = k. Expanding
out the exponentials in terms of sines and cosines reveals four
unknowns but only two equations. Alternately, because the
four rotation angles sum to only 159◦, we can use the same
factor for each group, i.e., the ratio 180◦/159◦ = 1.132.

In the last column of Table 2 are the normalized angles
which are twice the angle required. Therefore, taking the ap-
propriate half-angle differences produces the mixing angles

θ1 = 15.282◦, θ2 = 10.188◦. (9)

Substituting the cosines and sines of these two derived angles
into the CKM4 matrix form above produces a mixing matrix
symmetrical about the diagonal. Remember that I have ig-
nored up to eight possible phases in the 2x2 blocks.

VCKM4 =


0.9744 0.2203 0.0098 0.0433
0.2203 0.9744 0.0433 0.0098
0.0098 0.0433 0.9744 0.2203
0.0433 0.0098 0.2203 0.9744

 .
One can compare the upper left 3×3 submatrix to the most

recent estimated absolute values [7]

VCKM =

 0.9745 0.2246 0.0036
0.2244 0.9736 0.0415
0.0088 0.0407 0.9991

 .
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Note that most of these estimated VCKM values are probably
good to within a few percent but some could have uncertain-
ties as large as 10% or more.

Of concern are my low values of 0.2203 for Vus and Vcd.
However, according to the Particle Data Group (2013) there
are two possible values [7]: 0.2253 and 0.2204, the latter from
tau decays. Also, my derived symmetric CKM4 matrix Vub

value is high while the Vtd value is reasonable, i.e., Vtd at
0.0098 compares well with the estimated value of 0.0088.

The Vtb element of CKM4 is 0.9744, quite a bit smaller
than the suggested 0.9991 Vtb value for the 3×3 CKM matrix.
However, if one imposes the unitarity condition on the rows
and columns of the extracted CKM, the new value for this Vtb

matrix element would be 0.999, in agreement.
My final comment is that if one calculates CKM using

only the first three quark groups [3,3,3], [4,3,3], and [3,4,3],
the resulting 3×3 CKM matrix will disagree significantly with
the known CKM matrix. Therefore, one cannot eliminate
a fourth quark family when discrete rotational subgroups of
SU(2) are considered.

4 Discussion

In the SM the EW symmetry group is the Lie group SU(2)L

× U(1)Y . This local gauge group operating on the lepton and
quark states works extremely well, meaning that all its predic-
tions agree with experiments so far. However, in this context
there is no reason for Nature to have more than one fermion
family, and certainly no reason for having 3 lepton families
and at least 3 quark families. As far as I know, the normal
interpretation of the SM provides no answer that dictates the
actual number of families, although the upper limit of 3 lep-
ton families with low mass neutrinos is well established via
Z0 decays and via analysis of the CMB background.

My geometrical approach with discrete symmetries alters
the default reliance upon SU(2) and its continuous symmetry
transformations, for I utilize discrete binary rotational sub-
groups of SU(2) for the fundamental fermion states, a differ-
ent subgroup for each lepton family and for each quark fam-
ily. In this scenario one can surmise that the enormous suc-
cess of the SM occurs because SU(2)L ×U(1)Y is acting like a
mathematical “cover group” for the actual underlying discrete
rotations operating on the lepton states and quark states.

Assuming that the above matrix derivations are correct,
the important question is: Where is the b’ quark of the pre-
dicted 4th quark family? In 1992 I predicted a top quark
mass of about 160 GeV, a b’ quark mass of 65–80 GeV, and
a t’ quark at a whopping 2600 GeV. These mass predictions
were based upon the mass ratios being determined by the j-
invariant function of elliptic modular functions and of frac-
tional linear transformations, i.e., Möbius transformations.
Note that all seven discrete groups I have for the fermions are
related to the j-invariant and Möbius transformations, which
have direct connections to numerous areas of fundamental

mathematics.
With a predicted b’ mass that is much smaller than the top

quark mass of 173.3 GeV and even smaller than the W mass
at 80.4 GeV, one would have expected some production of the
b’ at LEP, Fermilab, and the LHC. Yet, no clear indication of
the b’ quark has appeared.

Perhaps the b’ quark has escaped detection at the LHC
and lies hidden in the stored data from the runs at 7 TeV
and 8 TeV. With a mass value below the W and Z masses,
the b’ quark must decay via flavor changing neutral current
(FCNC) decay channels [16] such as b’→ b + γ and b’→ b
+ gluon. The b’ could have an average lifetime too long for
the colliders to have detected a reasonable number of its de-
cays within the detector volumes and/or the energy and angle
cuts. However, the b’ quark and t’ quark would affect certain
other decays that depend upon the heaviest “top” quark in a
box diagram or penguin diagram.

Another possibility is that a long lifetime might allow the
formation of the quarkonium bound state b’-anti-b’, which
has its own specific decay modes, to bb-bar, gg, γγ, and WW*
→ ννℓℓ. Depending upon the actual quarkonium bound state,
the spin and parity JPC = 0++ or 0−+.

And finally, there is an important theoretical problem as-
sociated with the mismatch of three lepton families to four
quark families, e.g., the famous triangle anomalies do not
cancel in the normal manner. Perhaps my fundamental lep-
tons and quarks, being extended particles into 3 and 4 dimen-
sions, respectively, can avoid this problem which occurs for
point particles. Someone would need to work on this possi-
bility.

5 The bigger picture!

We know that the SM is an excellent approximation for under-
standing the behavior of leptons, quarks, and the interaction
bosons in the lower energy region when the spatial resolution
is less than 10−24 meters. At smaller distance scales, perhaps
one needs to consider a discrete space-time, for which the
discrete binary rotation groups that I have suggested for the
fundamental particles would be appropriate. Quite possibly,
with this slight change in emphasis to discrete subgroups of
the local gauge group, the SM lagrangian will hold true all
the way down to the Planck scale.

If indeed the SM applies at the Planck scale, then one can
show [2] that the Monster group dictates all of physics! The
surprising consequence: The Universe is mathematics and is
unique. Indeed, we humans are mathematics!

This connection to the Monster Group is present already
in determining the lepton and quark mass ratios, which are
proportional to the j-invariant of elliptic modular functions,
the same j-invariant that is the partition function for the Mon-
ster Group in a quantum field theory [17].

The mathematics of these discrete groups does even more
for us, for there is a direct connection [2] from the lepton
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groups [3,3,2], [4,3,2], [5,3,2], and the quark groups [3,3,3],
[4,3,3], [3,4,3], [5,3,3], in R3 and R4, respectively, via spe-
cial quaternions called icosians to the discrete space R8. One
then brings in another R8 for relativistic space-time trans-
formations. The two spaces combine into a 10-D discrete
space-time obeying the discrete symmetry transformations of
“Weyl” SO(9,1) =Weyl E8 ×Weyl E8. This proposed unique
connection to “Weyl” SO(9,1) was a surprise to me because
one has two 8-D spaces combining to make a 10-D space-
time! Its direct and unique relationship to the SM certainly is
a welcome replacement to the 10500 ways for M-theory.

Finally, among the advantages to having a fourth family
of quarks is a possible explanation of the baryon asymmetry
of the Universe (BAU). From the CKM and the PMNS ma-
trices, one learns that the predicted CP violation (CPV) is at
least 10 orders of magnitude too small to explain the BAU.
That is, the important quantity called the Jarlskog value is
much too small. But a 4th quark family resolves this is-
sue [18] because substituting the fourth quark family mass
values into the Jarlskog expression increases the CPV value
by more than 1013! Voilà. One now has penguin diagrams
distinguishing the particle and antiparticle decays with suffi-
cient difference to have the particle Universe we experience.

6 Conclusion

The quark mixing matrix CKM4 has been derived using four
quark families. Using quaternion generators from four spe-
cific related discrete binary rotational groups [3,3,3], [4,3,3],
[3,4,3], and [5,3,3], I have derived the quark CKM4 and its
CKM submatrix. However, neither quark of the 4th quark
family has been detected at the colliders. Their appearance
could mean that the Standard Model lagrangian might be a
good approximation to the ultimate lagrangian all the way
down to the Planck scale if space-time is discrete.
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