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In this work, the equation which properly governs cavity radiation is addressed once

again, while presenting a generalized form. A contrast is made between the approach

recently taken (P. M. Robitaille. On the equation which governs cavity radiation. Progr.

Phys., 2014, v. 10, no. 2, 126–127) and a course of action adopted earlier by Max

Planck. The two approaches give dramatically differing conclusions, highlighting that

the derivation of a relationship can have far reaching consequences. In Planck’s case,

all cavities contain black radiation. In Robitaille’s case, only cavities permitted to tem-

porarily fall out of thermal equilibrium, or which have been subjected to the action of

a perfect absorber, contain black radiation. Arbitrary cavities do not emit as black-

bodies. A proper evaluation of this equation reveals that cavity radiation is absolutely

dependent on the nature of the enclosure and its contents. Recent results demonstrating

super-Planckian thermal emission from hyperbolic metamaterials in the near field and

emission enhancements in the far field are briefly examined. Such findings highlight

that cavity radiation is absolutely dependent on the nature of the cavity and its walls.

As previously stated, the constants of Planck and Boltzmann can no longer be viewed

as universal.

Science enhances the moral value of life, because it

furthers a love of truth and reverence. . .

Max Planck, Where is Science Going? 1932 [1]

1 Introduction

The equation which governs radiation in an arbitrary cavity

has been presented [2, Eq. 8] by combining Kirchhoff’s law

of thermal emission [3, 4] with Stewart law [5, 6]:

Eν = f (T, ν) − ρν · f (T, ν) , (1)

where Eν corresponds to the frequency dependent emissive

power, ρν to the frequency dependent reflectivity, and f(T, ν)

to the function defined by Max Planck [2, 7, 8].∗ This expres-

sion is valid under assumptions made by the German scientist

in neglecting the effects of diffraction and scattering [8, §2].

At the same time, it implies that all materials used to assemble

blackbodies will act as Lambertian emitters/reflectors. The

total emission will vary with the cosine of the polar angle in

accordance with Lambert’s Law (see e.g. [9, p. 19] and [11,

p. 22–23]). Planck assumes that white reflectors, which are

Lambertian in nature, can be utilized in the construction of

blackbodies (e.g. [8, §61, §68, §73, §78]). But very few ma-

terials, if any, are truly Lambertian emitters/reflectors.

∗The emissivity of an object, ǫν, is equal to its emissive power, E, divided

by the emissive power of a blackbody of the same shape and dimension.

Similarly, the reflectivity, ρν, can be taken as the reflected portion of the

incoming radiation, divided by the total incoming radiation, as often provided

by a blackbody [9, 10]. Like emissivity, the reflectivity of an object is an

intrinsic property of the material itself. Once measured, its value does not

depend on the presence of incident radiation. As a result, Eq. 1 can never be

undefined, since ρν can only assume values between 0 and 1. For a perfect

blackbody, ρν = 0 and ǫν = 1.

Consequently, a fully generalized form of Eq. 1 must take

into account that all of these conditions might not necessarily

be met:

Eν,θ,φ = f (T, ν, θ, φ, s, d,N) − ρν,θ,φ · f (T, ν, θ, φ, s, d,N), (2)

where θ and φ account for the angular dependence of the

emission and reflection in real materials, s and d account for

the presence of scattering and diffraction, respectively, and N

denotes the nature of the materials involved.

Since laboratory blackbodies must be Lambertian emit-

ters [11, p. 22–23], they are never made from materials whose

emissivity is strongly directional. This explains why strong

specular reflectors, such as silver, are not used to construct

blackbodies. It is not solely that this material is a poor emitter.

Rather, it is because all reflection within blackbodies must be

diffuse or Lambertian, a property which cannot be achieved

with polished silver.

It should also be noted that when Eq. 1 was presented in

this form [2], the reflectivity term was viewed as reducing

the emissive power from arbitrary cavities. There was noth-

ing within this approach which acted to drive the reflection.

Within the cavity, the absorptivity must equal the emissiv-

ity. Hence, any photon which left a surface element to ar-

rive at another must have been absorbed, not reflected. The

overall probability of emission within the cavity must equal

the probability of absorption under thermal equilibrium. This

precludes the buildup of reflective power and, thereby, pre-

vents a violation of the 1st law of thermodynamics.

However, are there any circumstances when the reflection

term can be driven? In order to answer this question, it is

valuable to return to the work of Max Planck [8].
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2 Max Planck’s treatment of reflection

In his derivation of Eq. 1,∗ Max Planck had also sought to

remove the undefined nature of Kirchhoff’s law, when ex-

pressed in term of emission and absorption [8, §45–49]. How-

ever, in order to address the problem, he actively placed the

surface of interest in contact with a perfect emitter [8, §45–

49]. In so doing, Planck permitted a perfectly emitting body

to drive the reflection and, thereby, build the radiation within

his cavities, noting in §49 that “the amount lacking in the in-

tensity of the rays actually emitted by the walls as compared

with the emission of a black body is supplied by rays which

fall on the wall and are reflected there”. In §45, he had in-

formed the reader that the second medium was a blackbody.

It is for this reason that Planck insists that all cavities must

contain black radiation.

Thus, despite the advantage of expressing Eq. 1 in terms

of reflection, Planck abandoned the relationship he had pre-

sented in §49 [8], as reflection became inconsequential if it

could be driven by a carbon particle. He subsequently sum-

marized “If we now make a hole in one of the walls of a size

dσ, so small that the intensity of the radiation directed to-

wards the hole is not changed thereby, then radiation passes

through the hole to the exterior where we shall suppose there

is the same diathermanous medium as within. This radiation

has exactly the same properties as if dσ were the surface of

a black body, and this radiation may be measured for every

color together with the temperature T” [8, §49].

The problem of radiation emitted by an arbitrary cavity

had not been solved, because Planck ensured, throughout his

Theory of Heat Radiation [8], that he could place a minute

particle of carbon within his perfectly reflecting cavities in

order to release the “stable radiation” which he sought [12].

He advanced that the carbon particle simply had a catalytic

role [8, 12]. In fact, since he was placing a perfect emitter

within his cavities at every opportunity [8, 12], he had never

left the confines of the perfectly absorbing cavity, as repre-

sented by materials such as graphite or soot. His cavities

all contained black radiation as a direct result. Perhaps this

explains why he did not even number Eq. 1 in his deriva-

tion. Since he was driving reflection, all cavities contained the

same radiation and Eq. 1 had no far reaching consequences.

Planck’s approach stands in contrast to the derivation of

Eq. 1 presented recently [2]. In that case, particles of carbon

are never inserted within the arbitrary cavities. Instead, the

emissivity of an object is first linked by Stewart’s law [5,6] to

its reflectivity, before a cavity is ever constructed

ǫν + ρν = κν + ρν = 1 . (3)

∗Planck obtains I = E + (1 − A)I = E + RI, where E corresponds to

emitted power, R(= ǫ) is the fraction of light reflected and I(= f (T, ν)) is the

blackbody brightness which, in Planck’s case, also drives the reflection [8,

§49]. This is because he places a carbon particle inside the cavity to produce

the black radiation.

This is how the emissivity of a real material is often mea-

sured in the laboratory. The experimentalist will irradiate the

substance of interest with a blackbody source and note its re-

flectivity. From Stewart’s law (Eq. 3), the emissivity can then

be easily determined.

It is only following the determination of the emissivity

and reflectivity of a material that the author constructs his ar-

bitrary cavity. As such, the recent derivation of Eq. 1 [2],

does not require that materials inside the cavity can drive the

reflectivity term to eventually “build up” a blackbody spec-

trum. This is a fundamental distinction with the derivation

provided by Max Planck [8, §49].

The emissivity of a material is defined relative to the emis-

sivity of a blackbody at the same temperature. To allow,

therefore, that reflectivity would “build up” black radiation,

within an arbitrary cavity in the absence of a perfect emit-

ter, constitutes a violation of the first law of thermodynam-

ics (see [2] and references therein). Planck himself must

have recognized the point, as he noted in §51 of his text that

“Hence in a vacuum bounded by perfectly reflecting walls

any state of radiation may persist” [8].

Consequently, one can see a distinction in the manner in

which Eq. 1 has been applied. This leads to important dif-

ferences in the interpretation of this relationship. For Planck,

all cavities contain black radiation, because he has insisted on

placing a small carbon particle within all cavities. The parti-

cle then actively drives the reflection term to produce black

radiation.

In contrast, in the author’s approach, arbitrary cavity ra-

diation will never be black, because a carbon particle was

not placed within the cavity. Emissivity and reflectivity are

first determined in the laboratory and then the cavity is con-

structed. That cavity will, therefore, emit a radiation which

will be distinguished from that of a blackbody by the pres-

ence of reflectivity. This term, unlike the case advocated by

Max Planck, acts to decrease the net emission relative to that

expected from a blackbody.

In this regard, how must one view arbitrary cavities and

which approach should guide physics? Answers to such ques-

tions can only be found by considering the manner in which

blackbodies are constructed and utilized in the laboratory.

3 Laboratory blackbodies

Laboratory blackbodies are complex objects whose interior

surfaces are always manufactured, at least in part, from nearly

ideal absorbers of radiation over the frequency of interest

(see [13], [14, p. 747–759], and references therein). This fact

alone highlights that Kirchhoff’s law cannot be correct. Ar-

bitrary cavities are not filled with blackbody radiation. If this

was the case, the use of specialized surfaces and components

would be inconsequential. Blackbodies could be made from

any opaque material. In practice, they are never constructed

from surfaces whose emissive properties are poor and whose
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emissivity/reflectivity are far from Lambertian.

Sixty years ago, De Vos summarized black body science

as follows: “Resuming, it must be concluded that the formu-

lae given in the literature for the quality of a blackbody can

be applied only when the inner walls are reflecting diffusely

to a high degree and are heated quite uniformly” [15]. De

Vos was explicitly stating that mathematical rules only apply

when a cavity is properly constructed. Even if the tempera-

ture was uniform, the walls must have been diffusely reflect-

ing. Everything was absolutely dependent on the nature of

the walls. Lambertian emitters/reflectors had to be utilized.

Specialized materials were adopted in the laboratory, in sharp

contrast to Kirchhoff’s claims (see [2] and references therein).

At the same time, there is another feature of laboratory

blackbodies which appears to have been overlooked by those

who accept universality and Planck’s use of reflection to pro-

duce black radiation.

Laboratory blackbodies (see [13], [14, p. 747–759], and

references therein) are heated devices: “In photometry and

pyrometry often use is made of blackbodies i.e. opaque hol-

low bodies which are provided with one or more small holes

and whose walls are heated uniformly” [15]. They tend to

be cylindrical or spherical objects heated in a furnace, by im-

mersion in a bath of liquid (water, oil, molten metal), through

electrical means like conduction (where resistive elements are

placed in the walls of the cavity) and induction (where elec-

tromagnetic fields are varied), and even by electron bombard-

ment [13–15].

The question becomes, when does the heating in a labo-

ratory blackbody stop? For most experiments, the answer is

never. Once the desired temperature is achieved, additional

heat continues to be transferred to the blackbody with the in-

tent of maintaining its temperature at the desired value. The

consequences of this continual infusion of energy into the

system are ignored. Since temperature equilibrium has been

achieved, scientists believe that they have now also reached

the conditions for thermal equilibrium. The two, however,

are completely unrelated conditions.

4 Theoretical considerations

As an example, an object can maintain its temperature, if it

is heated by conduction, or convection, and then radiates an

equivalent amount of heat away by emission. In that case,

it will be in temperature equilibrium, but completely out of

thermal equilibrium. For this reason, it is clear that heated

cavities cannot be in thermal equilibrium during the measure-

ments, as this condition demands the complete absence of net

conduction, convection, or radiation (neglecting the amount

of radiation leaving from the small hole for discussion pur-

poses).

Planck touched briefly on the subject of thermal equilib-

rium in stating, “Now the condition of thermodynamic equi-

librium required that the temperature shall be everywhere the

same and shall not vary with time. Therefore in any given

arbitrary time just as much radiant heat must be absorbed

as is emitted in each volume-element of the medium. For the

heat of the body depends only on the heat radiation, since,

on account of the uniformity in temperature, no conduction

of heat takes place” [8, §25]. Clearly, if the experimental-

ists were adding energy into the system in order to maintain

its temperature, they could not be in thermal equilibrium, and

they could not judge what the effect of this continual influx of

energy might be having on the radiation in the cavity.

4.1 Consequences of preserving thermal equilibrium

Consider an idealized isothermal cavity in thermal equilib-

rium whose reflection has not been driven by adding a car-

bon particle. Under those conditions, the emissivity and ab-

sorptivity of all of its surface elements will be equal. Then,

one can increase the temperature of this cavity, by adding an

infinitesimal amount of heat. If it can be assumed that the

walls of the cavity all reach the new temperature simultane-

ously, then the emissivity of every element, ǫν, must equal

the absorptivity of every element, κν, at that instant. The

process can be continued until a much higher temperature is

eventually achieved, but with large numbers of infinitesimal

steps. Under these conditions, reflection can play no part, as

no energy has been converted to photons which could drive

the process. All of the energy simply cycles between emis-

sion and absorption. The cavity will now possess an emissive

power, E, which might differ substantially from that set forth

by Kirchhoff for all cavities. In fact, at the moment when

the desired temperature has just been reached, it will simply

correspond to

Eν = ǫν · f (T, ν) , (4)

because the emissivity of a material remains a fundamental

property at a given temperature. This relationship will deviate

from the Planckian solution by the extent to which ǫν deviates

from 1.

4.2 Consequences of violating thermal equilibrium

At this stage, an alternative visualization can be examined. It

is possible to assume that the influx of energy which enters

the system is not infinitesimal, but rather, causes the emissiv-

ity of the cavity to temporarily become larger than its absorp-

tivity. The cavity is permitted to move out of thermal equilib-

rium, if only for an instant. Under these conditions, the tem-

perature does not necessarily increase. The additional energy

can simply be converted, through emission, to create a reflec-

tive component. Thermal equilibrium is violated. Emissivity

becomes greater than absorptivity and the difference between

these two values enters a reflected pool of photons. A condi-

tion analogous to

ǫν = κν + δρν (5)

has been reached, where δρν is that fraction of the reflectivity

which has actually been driven.
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The emissive power might still not be equal to the Kirch-

hoff function in this case, depending on the amount of pho-

tons that are available from reflection. If one assumes that the

radiation inside the cavity must be governed in the limiting

case by the Planck function, then the emissive power under

these circumstances will be equal to the following:

Eν = (ǫν + δρν) · f (T, ν) . (6)

The cavity is still not filled with blackbody radiation, as

the reflective term has not yet been fully driven. Nonetheless,

the process can be continued until δρν = ρν and the reflective

component has been fully accessed. At the end of the process,

Eq. 3 becomes valid in accordance to Stewart’s Law [5, 6].

The temperature has not yet increased, but the energy which

was thought to heat the cavity has been transformed to drive

the reflective component.

Finally, thermal equilibrium can be re-established by lim-

iting any excess heat entering the system. The reflected pho-

tons will bounce back and forth within the cavity. Balfour

Stewart referred to these photons as “bandied” [5] and, for

historical reasons, the term could be adopted. Thus, given

enough transfer of energy into the system, and assuming that

the material is able to continue to place excess emitted pho-

tons into the reflected pool, then eventually, the cavity might

become filled with black radiation, provided that emission

and reflection are Lambertian. In that case, the Planckian re-

sult is finally obtained:

Eν = (ǫν + ρν) · f (T, ν) . (7)

In practice, when a blackbody is being heated, some re-

flected photons will always be produced at every temperature,

as the entire process is typically slow and never in thermal

equilibrium. However, for most materials, the introduction

of photons into the reflected pool will be inefficient, and the

temperature of the system will simply increase. That is the

primary reason that arbitrary cavities can never contain black

radiation. Only certain materials, such as soot, graphite, car-

bon black, gold black, platinum black, etc. will be efficient in

populating the reflected pool over the range of temperatures

of interest. That is why they are easily demonstrated to be-

have a blackbodies. Blackbodies are not made from polished

silver, not only because it is a specular instead of a diffuse

reflector, but because that material is inefficient in pumping

photons into the reflected pool. With silver, it is not possible

to adequately drive the reflection through excessive heating.

The desired black radiation cannot be produced.

In order to adequately account for all these effects, it is

best to divide the reflectivity between that which eventually

becomes bandied, δρν,b, and that which must be viewed as

unbandied, δρν,ub:

ρν = δρν,b + δρν,ub . (8)

The unbandied reflection is that component which was

never driven. As such, it must always be viewed as subtract-

ing from the maximum emission theoretically available, given

applicability of the Planck function. With this in mind, Eq. 1

can be expressed in terms of emissive power in the following

form:

Eν = (1 − δρν,ub) · f (T, ν) , (9)

where one assumes that the Planckian conditions can still ap-

ply in part, even if not all the reflectivity could be bandied. In

a more general sense, then the expression which governs the

radiation in arbitrary cavities can be expressed as:

Eν = (1 − δρν,θ,φ,ub) · f (T, ν, θ, φ, s, d,N) . (10)

In this case, note that f (T, ν, θ, φ, s, d,N) can enable ther-

mal emission to exceed that defined by Max Planck. The

specialized nature of the materials utilized and the manner

in which the cavity is physically assembled, becomes impor-

tant. In this regard, Eqs. 1, 9, and 10, do not simply remove

the undefined nature of Kirchhoff’s formulation when consid-

ering a perfect reflector, but they also properly highlight the

central role played by reflectivity in characterizing the radia-

tion contained within an arbitrary cavity.

5 Discussion

Claims that cavity radiation must always be black or normal

[7,8] have very far reaching consequences in physics. Should

such statements be true, then the constants of Planck and

Boltzmann carry a universal significance which provide tran-

scendent knowledge with respect to matter. Planck length,

mass, time, and temperature take on real physical meaning

throughout nature [8, §164]. The advantages of universal-

ity appear so tremendous that it would be intuitive to protect

such findings. Yet, universality brings with it drawbacks in

a real sense, namely the inability to properly discern the true

properties of real materials.

Moreover, because of Kirchhoff’s law and the associated

insistence that the radiation within a cavity must be indepen-

dent of the nature of the walls, a tremendous void is cre-

ated in the understanding of thermal emission. In this re-

spect, Planckian radiation remains the only process in physics

which has not been linked to a direct physical cause. Why is

it that a thermal photon is actually emitted from a material

like graphite or soot?

This question has not yet been answered, due to the be-

lief that Kirchhoff’s law was valid. Thus, Kirchhoff’s law

has enabled some to hope for the production of black radia-

tion in any setting and in a manner completely unrelated to

real processes taking place within graphite or soot. It is for

this reason that astronomers can hold that a gaseous Sun can

produce a thermal spectrum. Such unwarranted extensions of

physical reality are a direct result of accepting the validity of

Kirchhoff’s formulation. Real materials must invoke the same

mechanism to produce thermal photons. Whatever happens
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within graphite and soot to generate a blackbody spectrum

must also happen on the surface of the Sun.

The belief that arbitrary materials can sustain black radi-

ation always results from an improper treatment of reflection

and energy influx. In Max Planck’s case, this involved the

mandatory insertion of a carbon particle within his cavities.

This acted to drive reflection. In the construction of labora-

tory blackbodies, it involves departure from thermal equilib-

rium as the inflow of energy enables the emissivity to drive

the reflection. In the belief that optically thick gases can emit

blackbody radiation [16], it centers upon the complete dis-

missal of reflection and a misunderstanding with respect to

energy inflow in gases [17].

Relative to the validity of Kirchhoff’s Law, it is also pos-

sible to gain insight from modern laboratory findings. Recent

experiments with metamaterials indicate that super-Planckian

emission can be produced in the near field [18–20]. Such

emissions can exceed the Stefan-Boltzmann law by orders of

magnitude [18–20].

Guo et al. summarize the results as follows: “The usual

upper limit to the black-body emission is not fundamental and

arises since energy is carried to the far-field only by propa-

gating waves emanating from the heated source. If one allows

for energy transport in the near-field using evanescent waves,

this limit can be overcome” [18]. Beihs et al. states that, “Ac-

cordingly, thermal emission is in that case also called super-

Planckian emission emphasizing the possibility to go beyond

the classical black-body theory” [19].

Similar results have been obtained, even in the far-field,

using a thermal extraction device [21, 22]. In that case, the

spatial extent of the blackbody is enhanced by adding a trans-

parent material above the site of thermal emission. A four-

fold enhancement of the far-field emission could thus be pro-

duced. In their Nature Communications article, the authors

argue that this does not constitute a violation of the Stefan-

Boltzmann law, because the effective “emitting surface” is

now governed by the transmitter, which is essentially trans-

parent [21]. However, this was not the position advanced

when the results were first announced and the authors wrote:

“The aim of our paper here is to show that a macroscopic

blackbody in fact can emit more thermal radiation to far field

vacuum than P = σT 4 S ” [22].

In the end, the conclusion that these devices do not violate

the Stefan-Boltzmann relationship [21] should be carefully

reviewed. It is the opaque surface of an object which must

be viewed as the area which controls emission. Kirchhoff’s

law, after all, refers to opaque bodies [3, 4]. It is an extension

of Kirchhoff’s law beyond that previously advanced to now

claim that transparent surface areas must now be considered

to prevent a violation of the laws of emission.

In this regard, Nefedov and Milnikov have also claimed

that super-Planckian emission can be produced in the far-

field [23]. In that case, they emphasize that Kirchhoff’s law

is not violated, as energy must constantly flow into these sys-

tems. There is much truth in these statements. Obviously,

modern experiments [18–23] fall short of the requirements

for thermal equilibrium, as the cavities involved are heated

to the temperature of operation. But given that all laboratory

blackbodies suffer the same shortcomings, the production of

super-Planckian emission in the near and far fields [18–23]

cannot be easily dismissed. After all, in order for Planck to

obtain a blackbody spectrum in every arbitrary cavity, he had

to drive the reflection term, either by injecting a carbon par-

ticle or by permitting additional heat to enter the system, be-

yond that required at the onset of thermal equilibrium.

An interesting crossroads has been reached. If one as-

sumes that modern experiments cannot be invoked, as they

require an influx of conductive energy once temperature equi-

librium has been reached, then the same restriction must be

applied to all laboratory blackbodies. Yet, in the absence of

bandied reflection, very few cavities indeed would adhere to

Kirchhoff’s law. In fact, many cavities can never be filled with

black radiation, even if one attempts to drive the reflection

term. That is because certain materials are not conducive to

emission and prefer to increase their temperature rather than

drive reflection. Arbitrary cavities do not contain black radi-

ation, and that is the measure of the downfall of Kirchhoff’s

law.

Taken in unison, all of these observations, even dating

back to the days of Kirchhoff himself, highlight that the uni-

versality of blackbody radiation has simply been overstated.

The emissive characteristics of a cavity are absolutely depen-

dent on the nature of the cavity walls (see [13], [14, p. 747–

759], and references therein). This has broad implications

throughout physics and astronomy.
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This work is dedicated to our mothers on whose knees we

learn the most important lesson: love.
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