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This paper investigates the Gödel’s exact solution of the Einstein equations which

describes a stationary homogeneous cosmological Universe inducing closed timelike

curves CTCs). This model is generally dismissed because it exhibits a rotational sym-

metry and it requires a non zero cosmological constant in contradiction with the current

astronomical observations. If the cosmological term is assumed to be slightly variable,

we show that this metric can be compatible with the Hubble expansion, which makes

the Gödel model a viable representation of our Universe.

Introduction

In his original paper [1], Kurt Gödel has derived an exact so-

lution to Einstein’s field equations in which the matter takes

the form of a pressure-free perfect fluid (dust solution). This

R
4 manifold is homogeneous but non-isotropic and it exhibits

a specific rotational symmetry which allows for the existence

of closed time like curves since the light cone opens up and

tips over as the Gödel radial coordinate increases. In addition,

it implies a non zero cosmological term and a constant scalar

curvature, therefore it doesnot admit a Hubble expansion in

the whole, which tends to contradict all current observations.

We suggest here to stick to the Gödel model which we

consider as the true Universe, and we state that the Hubble

expansion can yet be maintained in a particular location with

specific coordinates transformations, where the Gödel rota-

tion is unobservable.

In this distinguished location, our derivations lead to an

open Universe without cosmological term and as a result, no

future singularity will ever appear in this local World.

Our model however, is bound to a main restriction: for

physical reasons, it provides a solution which holds only for

the existence of the cosmic scale factor, within the Gödel

metric.

This improved Gödel Universe which we present here,

has nevertheless the advantage of agreeably coping with the

observational facts.

Some notations

Space-time indices: 0, 1, 2, 3.

Newton’s gravitation constant: G.

The velocity of light is c = 1.

Space-time signature: −2.

1 Homogeneous space-times

1.1 Roberston-Walker space

Our actual observed Universe is spatially homogeneous: if

we can see these observations identically in different direc-

tions, the model is said isotropic. The Robertson-Walker met-

ric is an exact spherically symmetric solution. This prop-

erty would imply that the Universe admits a six-parameter

group of isometries whose surfaces of transitivity are space-

like three-surfaces of constant curvatures. (An action of a

group is transitive on the manifoldM, if it can map any point

of M into any other point of M.) The spatial metric is ex-

pressed by

dl2 =
dr2

1 + r2/F2
+ r2

(

sin2 θ dϕ2 + dθ2
)

. (1.1)

In the full RW model F(t) is called the cosmic scale factor

which varies with the (cosmic) proper time t of the whole

space.

For an open (infinite) Universe, with negative curvature

K(t) =
k

F2
, where k = −1. (1.2)

and the three-spaces are diffeomorphic to R3.

The standard formulation is given by

(ds2)RW = F2
(

dη2–dχ2 − sinh2 χ
(

sin2 θ dϕ2 + dθ2
)

)

(1.3)

with the usual parametrizations

dt = F dη and r = F sinhχ . (1.4)

In the RW Universe, the matter with mean density ρ is non

interacting (dust) and the energy-momentum tensor is that of

a pressure free perfect fluid:

Tab = ρ ua ub . (1.5)

From the corresponding field equations we arrive at the

temporal coordinate [2]

η = ±

∫

dF

F

√

[

8πG
3
ρ F2 + 1

]

, (1.6)

F = F0 (cosh η − 1) , (1.7)

with

F0 =
4πGρF3

3
, (1.8)

Where the ± sign depends on the light emitted either from the

coordinates origin or reaching this origin.
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1.2 The Gödel metric

The Gödel line element is generically given by

(ds2)G = B2
[

dx2
0 − dx2

1 +
e2x1

2
dx2

2 – dx2
3 +

+ 2e2x1 (dx0 + dx2)

]

, (1.9)

where B > 0 is a constant in the original formulation.

This space-time has a five dimensional group of isome-

tries which is transitive. It admits a five dimensional Lie al-

gebra of Killing vector fields generated by a time translation

∂x0
, two spatial translations ∂x1

, ∂x2
plus two further Killing

vector fields:

∂x3
–x2∂x3

and 2ex1∂x0
+ x2∂x3

+













e2x1 −
x2

2

2
∂x2













.

In all current papers, the Gödel metric is always described

as the direct sum of the metric

(ds2)G1
= B2

[

dx2
0 − dx2

1 + dx2
2

e2x1

2
+

+ 2ex1 (dx0 + dx2)

]

(1.10)

on the manifoldM1 = R3 and

(ds2)G2
= B2(−dx2

3) (1.11)

on the manifoldM2 = R1.

This means that in the usual treatments, in order to ana-

lyze the properties of the Gödel solution it is always sufficient

to consider onlyM1. The coordinate dx3 is deemed irrelevant

and is thus simply suppressed in the classical representation,

which in our opinion reveals a certain lack of completeness.

In what follows, we consider the complete solution, where we

assign a specific meaning to dx3.

Let us remark that the Gödel space is homogeneous but

not isotropic.

1.3 Classical features of Gödel’s metric

Computing the connection coefficients Γ c
ab

from the gab given

in (1.9) eventually yield

R00 = 1, R22 = e2x1 , R02 = R20 = ex1 . (1.12)

All other Rab vanish.

Hence:

R =
1

B2
. (1.13)

The unit vector (world velocity) following the x0-lines is

shown to have the following contravariant components

1

B
, 0, 0, 0

and the covariant components

B, 0, Bex1 , 0

so we obtain

Rab =
1

B2
ua ub . (1.14)

Since the curvature scalar is a constant, the Gödel field

equations read

(Gab)G = Rab −
1

2
gabR = 8πGρ ua ub + Λgab , (1.15)

where Λ is the cosmological term which is here inferred as

−4πGρ, i.e.:

1

B2
= 8πGρ , (1.16)

Λ = −
R

2
= −

1

2B2
. (1.17)

We next define new coordinates (t, w, φ) onM1 by

Ex1 = cosh 2w + cosφ sinh 2w , (1.18)

x2 ex1 =
√

2 sin φ sinh 2w , (1.19)

tan
1

2

(

φ +
x0 − 2t
√

2

)

= e−2w tan
φ

2
. (1.20)

This leads to the new line element

(ds2)G = 4B2
((

dt2–dw2–dy2 + sinh4 w − sinh2 w
)

dφ2 +

+ 2
√

2 sinh2 w dφ dt
)

(1.21)

which exhibits the rotational symmetry of the solution about

the axis w = 0, since we clearly see that the gab do not depend

on θ. Gödel inferred that matter everywhere rotates with the

angular velocity 2
√

4πGρ.

Let us consider the reduced Gödel metric

(ds2)G1
= 4B2

((

dt2 − dw2 + sinh4 w − sinh2 w
)

dφ2 +

+ 2
√

2 sinh2 w dφ dt
)

.

All light rays emitted from an event on the symmetry axis

reconverge at a later event on this axis, with the null geodesics

forming a circular cusp [3].

If a curve c is defined by sinh4 w = 1, that is

c = ln(1 +
√

2), (1.22)

hence, any circle w > ln(1+
√

2) in the plane t = 0, is a closed

timelike curve.
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2 The modified Gödel metric

2.1 Conformal transformation

Now we will assume that the Λ-term is slightly varying with

the time t, so B is also variable through the dust density. See

(1.16) for detail.

By setting

y = r coshw, (2.1)

where r is another radial parameter, we choose:

B =
1

2















1 –
L0

2
√

t2–y2















2

(2.2)

where L0 is a constant whose meaning will become apparent

in the next sub-section. B is now identified with a conformal

factor.

Note: one of the Kretschmann scalar is no longer an in-

variant

Rabcd Rabcd =
6

B4
(2.3)

which reflects the fact that the Gödel space-time may be not

fully homogeneous.

Anticipating on our postulate, we will state that the vari-

ation of B is only localized in a certain region of the Gödel

model. TheΛ-term remains constant throughout the complete

metric as initially derived, thus preserving its homogeneity.

2.2 The postulate

Our fundamental assumption will now consist of considering

our observed Universe as being local. By local we mean that

the rotation φ is unobservable since we assume that our world

is situated at

w = 0.

Our (local) Universe is now becoming isotropic.

In this case, the Gödel metric reduces to a standard con-

formal solution where the light cone is centered about the t-

axis:

(ds2)G =

[

1 −
L0

2
√

t2 − r2

] 4
(

dt2–dr2
)

. (2.4)

We now make the following transformations

L0 = F0 (2.5)

with F0 defined in (1.8)

r =
F0

2
eη sinhχ , t =

F0

2
eη coshχ , (2.6)

F0

2
eη =

√
t2–r2 , (2.7)

tanhχ =
r

t
, (2.8)

and we retrieve the Roberston-Walker metric for an open Uni-

verse with the sole radial coordinate r:

(ds2)RW = F2(η)
[

dη2 – dχ2
]

. (2.9)

Remark: The Weyl tensor of the Gödel solution

Cab
cd = Rab

cd +
R

3
δa

[ c δ
b

d ] + 2δ
[ a

[ c
R

b ]

d ]
(2.10)

which has Petrov type D, vanishes for (2.9). Indeed, the

equivalent metric (2.4) implies that Cab
cd
= 0 for this con-

formally flat space-time.

Our observed Universe would then be devoid of the Weyl

curvature which explains why it is purely described in terms

of the Ricci tensor alone. In this view, Einstein was perhaps

an even more exceptional visionary mind than is yet currently

admitted.

2.3 Hubble expansion

In our local world, the null geodesics are obviously given by

(ds2)RW = 0, that is

dη = ± dχ (2.11)

and integrating

χ = ±η + const. (2.12)

Let us place ourselves at t(η), where we observe a light

ray emitted at χ where its frequency is ν0. In virtue of (2.12),

the emission time will be t(η−χ), and we observe an apparent

frequency given by:

ν =
ν0 F (η − χ)

F (η)
. (2.13)

As F (η) increases monotonically, we have ν < ν0 which

is the expression of a red shifted light. Most observed red

shifts are rather small, so that F (η − χ) can be expanded as a

Taylor series about t(η− χ) = t(η) and we finally get, limiting

to the first two terms

F (η − χ) = F (η) +
[

t (η − χ) − t (η)
]

F′(η) (2.14)

= F (η)
{

1 + H0

[

t (η − χ) − t (η)
]

}

(2.15)

where F′ denotes differentiation with respect to η

H0 =
F′(η)

F (η)
(2.16)

is the present numerical value of Hubble constant.

The Gödel solution has a non-zero cosmological term, but

not the local RW metric.

This agrees with the fact that our open local Universe has

a singularity in the past and no singularity in the future [4], in

accordance with astronomical observations.
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Concluding remarks

Closed timelike curves turn out to exist in many other exact

solutions to Einstein’s field equations.

It would seem that the first model exhibiting this property

was pioneered by C. Lanczos in 1924 [5], and later rediscov-

ered under another form by W. J. Van Stockum in 1937 [6].

However, unlike the Gödel solution, the dust particles

of these Universes are rotating about a geometrically distin-

guished axis.

Even worse, the matter density is shown to increase with

radius w, a feature which seriously contradicts all current ob-

servations.

In this sense, the Gödel metric appears as a more plausible

model characterizing a broaden Universe which is compatible

with our astronomical data, provided one is prepared to accept

the fact that our observed world is purely local.
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