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Trapping Regions for the Navier-Stokes Equations
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In 1999, J. C. Mattingly and Ya. G. Sinai used elementary methods to prove the exis-

tence and uniqueness of smooth solutions to the 2D Navier-Stokes equations with peri-

odic boundary conditions. And they were almost successful in proving the existence and

uniqueness of smooth solutions to the 3D Navier-Stokes equations using the same strat-

egy. In this paper, we modify their technique to obtain a simpler proof of one of their

results. We also argue that there is no logical reason why the 3D Navier-Stokes equa-

tions must always have solutions, even when the initial velocity vector field is smooth;

if they do always have solutions, it is due to probability and not logic.

1 Introduction

In this paper, we examine the three-dimensional Navier-

Stokes equations, which model the flow of incompressible

fluids:

∂ui

∂t
+

∑

j=1,2,3

u j

∂ui

∂x j

= ν∆ui −
∂p

∂xi

i = 1, 2, 3

∑

i=1,2,3

∂ui

∂xi

= 0







































, (1)

where ν > 0 is viscosity, p is pressure, u is velocity, and t > 0

is time. We shall assume that both u and p are periodic in

x. For simplicity, we take the period to be one. The first

equation is Newton’s Second Law, force equals mass times

acceleration, and the second equation is the assumption that

the fluid is incompressible.

Mattingly and Sinai [5] attempted to show that smooth

solutions to 3D Navier Stokes equations exist for all initial

conditions u(x, 0) = u0(x) ∈ C∞ by dealing with an equivalent

form of the Navier-Stokes equations for periodic boundary

conditions:
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where the vorticity ω(x, t) = ( ∂u2
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Their strategy was as follows: Represent the equations (2)

as a Galerkin system in Fourier space with a basis {e2πikx}k∈Z3 .

A finite dimensional approximation of this Galerkin system

can be associated to any finite subset Z of Z3 by setting

u(k)(t) = ω(k)(t) = 0 for all k outside of Z. For each fi-

nite dimensional approximation of this Galerkin system, con-

sider the system of coupled ODEs for the Fourier coefficients.

Then construct a subset Ω(K) of the phase space (the set

of possible configurations of the Fourier modes) so that all

points in Ω(K) possess the desired decay properties. In addi-

tion, construct Ω(K) so that it contains the initial data. Then

show that the dynamics never cause the sequence of Fourier

modes to leave the subset Ω(K) by showing that the vector

field on the boundary ofΩ(K) points into the interior ofΩ(K).

Unfortunately, their strategy only worked for the 3D

Navier-Stokes equations when the Laplacian operator ∆ in

(2) was replaced by another similar linear operator. (Their

strategy was in fact successful for the 2D Navier-Stokes equa-

tions.) In this paper, we attempt to apply their strategy to the

original equations (1).

2 Navier-Stokes equations in Fourier space

Moving to Fourier space where
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let us consider the system of coupled ODEs for a finite-

dimensional approximation to the Galerkin-system corres-

ponding to (1),
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where Z is a finite subset of Z3 in which u(k)(t) = p(k)(t) =

= 0 for each k ∈ Z3 outside of Z. Like the Mattingly and

Sinai paper, in this paper, we consider a generalization of this

Galerkin-system:
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where α > 2. Multiplying each of the first three equations by

ki for i = 1, 2, 3 and adding the resulting equations together,

we obtain
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since
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the above calculated expression for p(k) in terms of u into (6)

we obtain
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3 A new theorem

Now, we state and prove the following theorem:

Theorem: Let {u(k)(t)} satisfy (10), where α > 2.5. And let

1.5 < s < α − 1. Suppose there exists a constant C0 > 0

such that |u(k)(0)| 6 C0|k|
−s, for all k ∈ Z3. Then there exists

a constant C > C0 such that |u(k)(t)| 6 C|k|−s, for all k ∈ Z3

and all t > 0. (The constants, C0 and C, are independent of

the setZ defining the Galerkin approximation.)

Proof: By the basic energy estimate (see [1,2,7]), there exists

a constant E > 0 such that for each t > 0 and for any finite-

dimensional Galerkin approximation defined by Z ⊂ Z3, we

have
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We will show that if K is chosen large enough, any point

starting in Ω(K) cannot leave Ω(K), because the vector field

along the boundary ∂Ω(K) is pointing inward, i.e., Ω(K) is a

trapping region. Since the initial data begins inΩ(K), proving

this would prove the theorem.

We pick a point on ∂Ω(K) where ℜ(u
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i
) or ℑ(u
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i
) =

±C|k̄|−s for some k̄ ∈ Z such that |k̄| > K and some i ∈

{1, 2, 3}. (For definiteness, we shall assume that ℜ(u
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i
) =

C|k̄|−s, but the same line of argument which follows also ap-

plies to the other possibilities.) Then the following inequali-

ties hold when K is chosen large enough:
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This establishes that the vector field points inward along

the boundary of Ω(K) for all t > 0. So the trajectory never at

any time leavesΩ(K). Then we have the desired estimate that

|u(k)(t)| 6 C|k|−s for all t > 0. �

4 Discussion

Just as in the 1999 paper by Mattingly and Sinai [5], an exis-

tence and uniqueness theorem for solutions follows from our

theorem by standard considerations (see [1,2,7]). The line of

argument is as follows: By the Sobolev embedding theorem,

the Galerkin approximations are trapped in a compact subset

of L2 of the 3-torus. This guarantees the existence of a limit

point which can be shown to satisfy (10), where Z = Z3.

Using the regularity inherited from the Galerkin approxima-

tions, one then shows that there exists a unique solution to the

generalized 3D Navier-Stokes equations where α > 2.5.

The inequality (12) in the proof of our Theorem is not

necessarily true when α = 2. Because of this, there is noth-

ing preventing the solutions to (10) from escaping the region

Ω(K) when α = 2. Hence, there is no logical reason why the

standard 3D Navier-Stokes equations must always have solu-

tions, even when the initial velocity vector field is smooth; if

they do always have solutions, it is due to probability (see [6])

and not logic, just like the Collatz 3n + 1 Conjecture and the

Riemann Hypothesis (see [3, 4]). Of course, it is also possi-

ble that there is a counterexample to the famous unresolved

conjecture that the Navier-Stokes equations always have so-

lutions when the initial velocity vector field is smooth. But as

far as the author knows, nobody has ever found such a coun-

terexample.
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