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Lorentzian Type Force on a Charge at Rest. Part II
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Some algebra and seemingly crystal clear arguments lead from the Coulomb force and
the Lorentz transformation to the mathematical expression for the field of a moving
charge. The field of a moving charge, applied to currents, has as consequences a mag-
netic force on a charge at rest, dubbed Lorentzian type force, and an electric field E⃗,
the line integral of which, taken along a closed loop, is not equal to zero. Both con-
sequences are falsified by experiment. Therefore we think that the arguments leading
to the mathematical formulation of the field of a moving charge should be subject to a
careful revision.

1 Citations

If someone asks me what time is, I do not know; if nobody
asks me, I don’t know either. [Rudolf Zelsacher]

2 Introduction

2.1 Miscellaneous

We will follow very closely the chain of thought taken by Ed-
ward Mills Purcell in [1]. We will use the Gaussian CGS units
in order to underline the close relationship between electric
field E⃗ and magnetic field B⃗.

Table 1: Definition of symbols

symbol description

jx, J⃗ current density
I current
A, a area
c speed of light in vacuum
v, v⃗ speed, velocity
ϑ, α angles
ω anglular velocity
Ne(x), ne(x) current electron density,

electron density
R̂ etc. unit vector in the direction of R⃗
F(x, y, z, t), inertial systems in the usual
F′(x′, y′, z′, t′) sense as defined in e.g. [2]
β v

c
E⃗ electric field
B⃗ magnetic field
q,Q, e, p charge
h, a, r,R, s distance
i, k,N,m natural number variables
x, y, z cartesian coordinates
t time

2.2 The electric field E⃗ in F arising from a point charge
q at rest in F′ and moving with v⃗ in F

The electric field E⃗ in F of a charge moving uniformly in F, at
a given instant of time, is generally directed radially outward
from its instantaneous position and given by [1]

E⃗(R⃗, ϑ) =
q(1 − β2)

R2(1 − β2 sin2 ϑ)
3
2

R̂. (1)

R is the length of R⃗, the radius vector from the instanta-
neous position of the charge to the point of observation; ϑ is
the angle between v⃗∆t, the direction of motion of charge q,
and R⃗. Eq. 1, multiplied by Q, tells us the force on a charge
Q at rest in F caused by a charge q moving in F (q is at rest
in F′).

3 Lorentzian type, i.e. magnetic like, force on a charge
Q at rest

3.1 Boundary conditions that facilitate the estimation of
the field characteristics

We have recently calculated the non-zero Lorentzian type
force of a current in a wire on a stationary charge outside
the wire by using conduction electrons all having the same
speed [3]. We now expand the derivation given in [3] to sys-
tems with arbitrary conduction electron densities, i.e. to con-
duction electrons having a broader velocity range. Based on
Eq. 1, describing the field of a moving charge, we derive
geometric restrictions and velocity restrictions useful for our
purposes. These boundary conditions allow the knowledge of
important field characteristics, due to a non-uniform conduc-
tion electron density, at definite positions outside the wire.

3.1.1 The angular dependent characteristics of the field
of a moving charge

For a given β, at one instant of time, the angle ϑc (theta
change), between R⃗ and v⃗∆t, given by
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ϑc = arcsin

[
1 −

(
1 − β2

) 2
3
] 1

2

β
(2)

separates two regions: one where the absolute value of the
field of the moving charge is less than q

R2 and a second where
the absolute value of the field of the moving charge is greater
than q

R2 . For small velocities, e.g. v = 2 · 10−10 [cm/s], ϑc

is ≈ arcsin
√

2
3 or about 54.7°. For v = 2 · 1010 [cm/s], ϑc

is less than 60°. We will later need ϑc to estimate the effect
of the field of conduction electrons at the position of a test
charge Q. In Fig. 1 we have sketched in one quadrant the
regions where the absolute value of the field of the moving
charge is separated by ϑc. 2 · 1010 cm/s or 2c/3 is just an
arbitrarily chosen and of course sufficiently high speed limit
for conduction electrons to be used in our estimations.

ϑc = arcsin

(
1 −

(
1 − β2

) 2
3

) 1
2

β

for v < c

ϑc � arcsin


√

2
3
+
β2

9
+

4β4

81
· · ·


(for v = 2e10[cms−1] ϑc < 60◦)

(for v ≪ c

ϑc = arcsin

√
2
√

3
� 54.7◦

Fig. 1: The angle ϑc separates the region where the absolute value of
the field of a moving charge is greater than q

R2 from the region where
the absolute value of the field of the moving charge is less than q

R2 .

3.1.2 The conduction electron density of a stationary
current in a metal wire

We will use neutral wires and apply an electromotive force
so that currents will flow in the wires. We also have in mind
superconducting wires; at least we cool down the wires to
near 0°[K] to reduce scattering. As in [1] we will restrict our
investigation to a one dimensional current i.e. to velocities
in one direction (vx). A stationary current I, the number of
electrons passing a point in a wire per unit of time, is then
given by

I =
∫

j⃗da⃗ = A (−e) Ne (x) v̄x (x) (3)

where A is the cross section of the wire, j⃗ or component jx

is the current density, Ne(x) is the local conduction electron
density and v̄x(x) is the local mean velocity of the conduction
electrons. For a stationary current div j⃗ = 0. This indicates

that there can be no permanent pile up of charges anywhere
in the wire. From our discussion with regard to ϑc in section
3.1.1 we know that for restricted velocities vx of the conduc-
tion electrons and restricted angles ϑ the absolute value of the
field of the conduction electron e(1−β2)

r2(1−β2 sin2 ϑ)
3
2

, at the position

of the test charge Q, is either greater than e
r2 or less than e

r2 .

3.1.3 The line integral of the field of a moving charge

The field of a moving charge at an instant t0 cannot be com-
pensated by any stationary distribution of charges. The reason
is that for the field of a moving charge in general

∮
E⃗ds⃗ , 0. (4)

We will use this property to estimate whether a variable
electron density ne(x) along a wire can compensate the field
due to the moving conduction electrons. In addition we will
use this fact to show that currents in initially neutral wires
produce electric fields whose line integral along a closed loop
is non-zero.

3.2 The force of a pair of moving charges on a resting
charge

In Fig. 2 we show two charges qn and qp moving in lab and
a test charge Q at rest in lab. The indices n & p were cho-
sen to emphasize that we will later use a negative elementary
charge and a positive elementary charge, and calculate the ef-
fect of such pairs, one moving and the other stationary, on a
test charge Q at rest in lab.

Fig. 2: The force F⃗pair on a resting charge Q caused by the two
moving charges qn and qp. We assign the name F⃗pair to the result of
the calculation of a force on a resting test charge Q, by at least two
other charges having different velocities (including v⃗ = 0⃗).

The force F⃗pair exerted by this pair of charges, of qn and
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qp, on the test charge Q is, according to Eq. 1, given by

F⃗pair = F⃗Qqp + F⃗Qqn =

=

qpQ
(
1 − v⃗

2
p

c2

)
r̂Qqp

r⃗2
Qqp

(
1 − v⃗

2
p

c2 sin2 ϑp

) 3
2

+

qnQ
(
1 − v⃗

2
n

c2

)
r̂Qqn

r⃗2
Qqn

(
1 − v⃗

2
n

c2 sin2 ϑn

) 3
2

.
(5)

We are going to use such pairs of charges – specifically a
conduction electron (−e), and its partner, the nearest station-
ary proton (e) – in a current carrying wire and investigate the
non vanishing field in lab produced by such pairs outside the
wire. “Stationary” (or resting, or at rest) indicates that the
“stationary charges” retain their mean position over time.

3.3 Lorentzian type force, part 1

We consider now two narrow wires isolated along their
length, but connected at the ends, each having length 2a and
lying in lab coaxial to the x-axis of F from x = −a to x = a.
In addition the system has a source of electromotive force ap-
plied so that a current I is flowing through the wires; in one
of the wires I flows in the positive x direction and in the other
wire I flows in the negative x direction. We also have in mind
superconducting wires. On the z-axis of F fixed (stationary)
at (0, 0, h) a test charge Q is located. The system is sketched
in Fig. 3. We will now calculate the Lorentzian type force F⃗Lt

on the stationary test charge Q fixed at (0, 0, h) exerted by the
electrons of the current I and their nearest stationary protons
at an instant t0.

Fig. 3: (a) (b): We show in Fig. 3(a) the two wires carrying the cur-
rent I extended along the x axis of F from x = −a to x = a and the
charge Q at rest in F at (0, 0, h). Additionally on the right-hand side
a magnification of a small element ∆x containing the two wires and
labeled Fig. 3(b) can be seen. Fig. 3(b) shows some moving elec-
trons and for each of these the nearest neighboring proton situated
in the tiny element. We calculate the force on Q by precisely these
pairs of charges.

The two wires are electrically neutral before the current
is switched on. Therefore after the current is switched on we
have an equal number of N electrons and N protons in the
system - the same number N, as with the current switched
off. We look at the system at one instant of lab time t0, after

the current I is switched on and is constant. We consider the
k electrons that make up the current I. For each of these k
electrons ei with i = 1, 2, ..k, having velocity vx,i, we select
the nearest neighboring stationary proton pi with i = 1, 2, ..k.
“Stationary” means that the charges labeled stationary retain
their mean position over time. For each charge of the mobile
electron-stationary proton pair, we use the same r⃗i as the vec-
tor from each of the two charges to Q. We use ϑi = arcsin h

ri
as

the angle between the x-axis and r⃗i for each pair of charges.
As long as the velocity vx,i of a conduction electron is less
than 2 · 1010[cm/s] and the angle ϑi = arcsin h

ri
, between the

x-axis and the vector r⃗i from the current electron to test charge
Q, is greater than 60°(and less than 120°), the contribution of
the current electron to the absolute value of the field at (0,0,h)
is, according to our discussion in section 3.1.1, greater than
e
r2

i
. The contribution of the nearest proton that completes the

pair is e
r2

i
. If we restrict ϑi to between 60°and 120°, we will

have an electric field E⃗ , 0⃗ at the position of Q pointing
towards the wire. The Lorentzian type force F⃗Lt on the sta-
tionary test charge Q is then given by

F⃗Lt = Qe
∑

i


∣∣∣∣∣∣cosϑi

r2
i

∣∣∣∣∣∣ (−1)mi

1 −
(
1 − v

2
x,i
c2

)
(
1 − v

2
x,i
c2 sin2 ϑi

) 3
2

 x̂+

+
sinϑi

r2
i

1 −
(
1 − v

2
x,i
c2

)
(
1 − v

2
x,i
c2 sin2 ϑi

) 3
2

 ẑ

 = S LtŜ .

(6)

The mi (mi = 0 if xei − xQ < 0,mi = 1 if xei − xQ >
0) ensures the correct sign for the x-component of the force.
Eq. 6 shows that an equal Number N of positive and negative
elementary charges (the charges of the wire loop) produces a
force on a stationary charge, when a current is flowing. This
force can be written as

F⃗Lt = Fx,Lt x̂ + Fz,Lt ẑ =

=

√
F2

x,Lt + F2
z,Lt√

F2
x,Lt + F2

z,Lt

(
Fx,Lt x̂ + Fz,Lt ẑ

)
= S LtŜ

(7)

with the unit vector ⃗̂S pointing from the position of the test
charge Q(0, 0, h) to a point X(−a < X < a) on the x-axis. X
will probably not be far from zero, but we leave this open as
the resulting force vector F⃗Lt = S Lt

⃗̂S depends on the local

current electron density in the wire. Note that

(
1−
v2x,i
c2

)
(
1−
v2x,i
c2 sin2 ϑi

) 3
2

is greater than 1 as long as vx,i < 2 · 1010 [cm/s] and 60°<
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ϑi <120°, as was shown in section 3.1.1 This means the field
at (0, 0, h) points to the wire.

3.4 Lorentzian type force, part 2

Next we place the stationary charge Q at the position (b >
a, 0, h), with ϑmax = arctan h

b−a < 54◦ (see Fig. 4).

Fig. 4: If the test charge Q, is located at (b, 0, h) as shown here, with
ϑmax = arctan h

b−a <54°, then the absolute value of the field of each
of the conduction electrons at (b, 0, h) is less than that of a stationary
charge for all velocities 0 < vx < c.

The force on the stationary test charge Q is given by Eq. 6.

But now

(
1−
v2x,i
c2

)
(
1−
v2x,i
c2 sin2 ϑi

) 3
2

is less than 1 for 0 < vx,i < 3 · 1010

[cm/s] and 0◦ < ϑi < 54◦ or 136◦ < ϑi < 180◦ as was shown
in section 3.1.1. This means the field at (b, 0, h) points away
from the wire.

3.5 The line integral of the field of two parallel wires
calculated at one instant t0

We continue by estimating a specific line integral of the elec-
tric field outside the wire along the closed path shown in
Fig. 5.

Fig. 5: Shows the electric field
∑

(E⃗ei + E⃗pi ) due to the moving con-
duction electrons and their partner protons of the system of Fig. 3.
In addition the path 12341 is shown where the line integral of the
electric field

∑
(E⃗ei + E⃗pi ) is estimated. E⃗s + E⃗Q, the field of the

residual stationary charges of the system and the test charge Q, is
not shown because the line integral of the field E⃗s + E⃗Q, along a
closed path is zero.

The electric field of the system is a superposition of the
field of the moving conduction electrons and their stationary

partner protons
∑

(E⃗ei + E⃗pi ), the field E⃗s of the residual sta-
tionary electrons and protons of the wire and the field E⃗Q of
the resting test charge Q. The line Integral of E⃗s + E⃗Q along
every closed path is zero. The line integral of the electric field∑

(E⃗ei + E⃗pi ) due to the moving conduction electrons and their
partner protons is, according to our discussion in section 3.1.1
and the results given by Eq. 6 at positions like (0, 0, h) and
(b, 0, h), less than zero from 1 to 2, zero from 2 to 3 (because
here we have chosen a path perpendicular to the field), less
than zero from 3 to 4 and zero from 4 to 1 (because here we
have again chosen a path perpendicular to the field).

∮
12341

E⃗ds⃗ =
∮

12341

(∑(
E⃗ei+E⃗pi

)
+E⃗s + E⃗Q

)
ds⃗ =

=

[
C
∫ 2

1

(∑
E⃗ei+E⃗pi

)
ds⃗+C

∫ 4

3

(∑
E⃗ei+E⃗pi

)
ds⃗

]
< 0.

(8)

A wire bent like the loop 12341 might be a good device
for the experimental detection of F⃗Lt. As we have mentioned
in section 3.1.2 we do not expect pile-up effects of charges
in the wire because from experiment we know the extreme
precision to which Ohm’s Law, is obeyed in metals. But we
expect a variable electron density ne(x) (not to be confused
with the variable conduction electron density Ne(x)) on the
wires resulting from capacitive and shielding effects, together
with the field component of the moving conduction electrons
directed along the wire. The estimation of the line integral of
the electric field of the system, resulting in Eq. 8, shows, by
being non-zero, that no “stationary” static charge distribution
on the wires is able to compensate the field due to the moving
conduction electrons.

3.6 The force on a charge at rest due to a superconduct-
ing ring

We consider now a superconducting current carrying ring,
with radius a, and assume that one of its conduction elec-
trons ei at t0, at rest in its local inertial frame, has constant
velocity v⃗i = ω⃗i × r⃗i. Then, according to Eq. 5 and Fig. 6 the
Lorentzian type force on a charge Q at rest at (0, 0, h) caused
by this system is given by

F⃗Lt =
∑

i

Qe
r2

i + h2

1 − 1(
1 − β2

i

) 1
2

 cos arctan
a
h

ẑ (9a)

or if v ≪ c

F⃗Lt ≈
∑

i

Qe
r2

i + h2

1 − 1 −
β2

i

2

 cos arctan
a
h

ẑ =

=
∑

i

−Qvi
c

evi
2
(
r2

i + h2
)

c
cos arctan

a
h

ẑ.

(9b)
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Fig. 6: The electrical field, at the position of a charge Q at rest,
caused by one of the charges ei of the current in a superconducting
wire.

As stated above we assume that the current carriers are at
rest in a succession of individual local inertial frames when
circling in the loop; i.e. the movement of the charges is
well described by a polygon, with as many line segments as
you like it. This view is supported by the experimental fact
that currents flow for years in such loops without weakening,
showing that the passage from one inertial frame to the next
happens without much radiation.

3.7 The Field due to a constant electron density in the
parallel wires connected at the ends

We now proceed to the case where the current electron den-
sity Ne(x) is constant along the wires by definition to get an
analytic expression for the force F⃗Lt on a stationary charge.
This was calculated in [3] and here we just rewrite the re-
sult. The Lorentzian type force on a charge Q at rest due to
a system like that shown in Fig. 2 is, by assuming a constant
current electron density, given by

F⃗Lt = −
Qvx

c
2I cosϑmin sin2 ϑmin

hc2 ẑ. (10)

The force described by Eq. 10 is of the same order of
magnitude as magnetic forces, as can be seen by comparing
it to Eq. 11, the result of a similar derivation given in [1]

F⃗ =
qvx
c

2I
rc2 ŷ. (11)

4 Discussion

The one and only way to scientific truth is the comparison
of theoretical conclusions with the experimental results. We
have investigated the consequences of Eq. 1 - the elegant
mathematical formulation of the field of a moving charge. By
applying the field of a moving charge to currents in loops
we derive a magnetic force on a charge at rest outside these
loops. We have dubbed this force “Lorentzian type force”

and state that such a force has never been observed in exper-
iments. In addition such current-carrying systems, when in-
vestigated by using the mathematical expression for the field
of a moving charge, show an electric field whose line integral
along a closed loop is non-zero. Also this prediction has never
been observed by experimental means. We find the example
of the Lorentzian type, i.e. magnetic, force on a charge at rest
due to the superconducting ring (as given in 3.6), which also
has been never observed, to be especially instructive because
nothing disturbs the intrinsic symmetry. The overall conclu-
sion from our investigation is that the arguments leading to
the formula for the field of a moving charge should be subject
to a careful revision.
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