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The geometric properties of General Relativity are reconsidered as a particular nonlin-

ear interaction of fields on a flat background where the perceived geometry and coordi-

nates are “physical” entities that are interpolated by a patchwork of observable bodies

with a nonintuitive relationship to the underlying fields. This more general notion of

gauge in physics opens an important door to put all fields on a similar standing but

requires a careful reconsideration of tensors in physics and the conventional wisdom

surrounding them. The meaning of the flat background and the induced conserved

quantities are discussed and contrasted with the “observable” positive definite energy

and probability density in terms of the induced physical coordinates. In this context, the

Dirac matrices are promoted to dynamic proto-gravity fields and the keeper of “phys-

ical metric” information. Independent sister fields to the wavefunctions are utilized in

a bilinear rather than a quadratic lagrangian in these fields. This construction greatly

enlarges the gauge group so that now proving causal evolution, relative to the physical

metric, for the gauge invariant functions of the fields requires both the stress-energy

conservation and probability current conservation laws. Through a Higgs-like coupling

term the proto-gravity fields generate a well defined physical metric structure and gives

the usual distinguishing of gravity from electromagnetism at low energies relative to

the Higgs-like coupling. The flat background induces a full set of conservation laws

but results in the need to distinguish these quantities from those observed by recording

devices and observers constructed from the fields.

1 Introduction

The theories (special and general) of relativity arose out of

an extension of notions of geometry and invariance from the

19th century. Gauge freedom is an extension of such ideas

to “internal” degrees of freedom. The gauge concept follow

from the condition that quantities that are physically real and

observable are generally not the best set of variables to de-

scribe nature. The observable reality is typically a function

of the physical fields and coordinates in a fashion that makes

the particular coordinates and some class of variations in the

fields irrelevant. It is usually favored that such invariance be

“manifest” in that the form of the equations of motion are evi-

dently independent of the gauge. Implicit in this construction

is the manifold-theory assumption that points have meaning

and coordinate charts do not. We are interested in the largest

possible extension of these ideas so that points themselves

have no meaning and gauge equivalence is defined by map-

pings of one solution to another where the observers built of

the underlying fields cannot detect any difference between

solutions. This is the largest possible extension of the intu-

itive notion of relativity and gauge. It will be essential to

find a mathematical criterion that distinguishes this condition

rather than simply asserting some gauge transformation ex-

ists on the lagrangian and seeking the ones that preserve this.

This leads us to consider a more general “intrinsic” reality

than the one provided by manifold geometry but, to give a

unified description of the gravitational fields and the fields

that are seen to “live on top of” the manifold structure it

induces requires we provide an underlying fixed coordinate

structure. The physical relevance, persistence and uniqueness

of this will be discussed, but the necessity of it seems un-

avoidable.

Initially we need to reconsider some aspects of the partic-

ular fields in our study: the metric, electromagnetic and Dirac

fields. The Dirac equation is interesting as a spinor construc-

tion with no explicit metric but an algebra of gamma-matrices

that induce the Minkowskii geometry and causal structure.

There are many representations of this but the algebra is rigid.

The general way to include spinors in spacetime is to use a

nonholonomic tetrad structure and keep the algebra the same

in each such defined space. We are going to suggest an ini-

tially radical alteration of this and abandon the spinor and

group notions in these equations and derive something iso-

morphic but more flexible that does not require the vierbein

construction. It is not obvious that this is possible. There are

rigid results that would seem to indicate that curvature ne-

cessitates the use of vierbeins [1]. These are implicitly built

on the need for ψ itself to evolve causally with respect to the

physical metric (in distinction with the background metric).

We will extend the lagrangian with auxiliary fields so that this

is not necessary but only that the gauge invariant functions of

the collective reality of these fields evolve causally. This is a

subtle point and brings up questions on the necessity of the

positive definiteness of energy, probability, etc. as defined by

the underlying (but not directly observable) flat space.
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Let us begin with a brief discussion of the Dirac equation

and this modification. The Dirac equation is the fundamen-

tal description for electrons in quantum theory. It is typically

derived in terms of causality arguments and the need for an

equation of motion that is first order in time, as was Dirac’s

approach, or, more formally, in terms of representation theory

of the Lorentz group. These arguments are discussed many

places [2–4]. While this is a powerful description and has

led to the first inclination of the existence of antiparticles, it

has its own problems. Negative energy solutions have had to

be reconciled by Dirac’s original hole theory or through the

second quantization operator formalism. Most are so steeped

in this long established perspective and impressed by its suc-

cesses that it gets little discussion.

A monumental problem today is that of “unification” of

quantum theory and gravity. There are formal perturbative

approaches to this and some string theory approaches as well.

In quantum field theory we often start with a single particle

picture as a “classical field theory” and then use canonical

quantization or path integral methods. For this reason, it is

good to have a thorough understanding of the classical theory

to be built upon. We will show that, by making some rather

formal changes in traditional lagrangians, some great simpli-

fications can result. The cost is in abandoning the notions

that the fields corresponding to nature are best thought of as

evolving on the “intrinsic” geometry induced by a metric and

that spacetime is a locally Lorentzian manifold. In place of

this is a trivial topological background and a reality induced

by fields which encodes the observable reality and apparent

coordinates (induced by collections of objects) and metrical

relationships in a non-obvious fashion. Usual objections to

such a formalism in the case of a gravitational collapse are

addressed by adherence to the time-frozen or continued col-

lapse perspective.

A main purpose of this article is to illustrate an alter-

nate interpretation of the Dirac equation. In the course of it,

we will make gravity look much more like the other bosonic

fields of nature and give a true global conservation law (that

is generally elusive in GR). Our motivation begins with a re-

consideration of the spinor transformation laws and the role

of representation theory. This approach will greatly expand

the gauge invariance of the system. In place of the metric gµν
as the keeper of gravitational information, we will let the γ

matrices become dynamic fields and evolve. Our motivation

for this is that, for vector fields, the metric explicitly appears

in each term and variation of it, gives the stress-energy ten-

sor. The only object directly coupling to the free Dirac fields

is γ. Additionally, γµ bears a superficial resemblance to Aµ

and the other vector bosons. Since g ∼ γγ we might antic-

ipate that the spin of this particle is one rather than two as

is for the graviton theories which are based explicitly on gµν.

It is because we only require our generalized gauge invariant

functions to obey causality and that these conserved quanti-

ties, while exact, are not directly observable so do not have to

obey positive definiteness constraints that this approach can

be consistent.

We will be able to show that this construction can give GR

evolution of packets in a suitable limit and obeys causal con-

straints of the physical metric. It is not claimed that the evo-

lution of a delocalized packet in a gravitational field agrees

with the spinor results in a curved spacetime. This will un-

doubtably be unsatisfactory to those who believe that such a

theory is the correct one. In defense, I assert that we do not

have any data for such a highly delocalized electron in a large

nonuniform gravitational field and that the very concept of

spinor may fail in this limit. As long as causality holds, this

should be considered an alternate an viable alternative theory

of the electron in gravity. The purely holonomic nature of the

construction is pleasing and necessary for a theory built on a

flat background. A unification of gravity in some analogous

fashion to electroweak theory would benefit from having a its

field be of the same type. One might naturally worry about the

transformation properties of ψa and γ
µ

ab
in this construction.

Under coordinate transformations of the background, ψa be-

haves as a scalar not a spinor and γ
µ

ab
is a vector. One should

not try to assign to much physical meaning to this since these

transformations of the structure are passive. Active transfor-

mations where we leave the reality of all the surrounding and

weakly coupled fields the same but alter the electron of inter-

est can be manifested by changes in both ψ and γ (and A) so

that the local densities and currents describing it are boosted

and those of the other fields are not. The usual active boost

ψ′
b
= S (Λ)baψa is included as a subset of this more general

gauge change.

There has been work from the geometric algebra perspec-

tive before [5] in trying to reinterpret the Dirac and Pauli

matrices as physically meaningful objects. Since the author

has labored in isolation for many years searching for a phys-

ical meaning for the apparent geometric nature of physical

quantities this did not come to his attention until recently.

However, there are significant differences in the approach pre-

sented here and the easy unification with gravity that follows

seems to depend on abandoning group representation theory

in the formulation. Most importantly, one has a new notion of

gauge freedom as it relates to the reality expressed by particle

fields (i.e. the full gauge independent information associated

with it). Coupling destroys the ability to associate the full “re-

ality” of the electron with the wavefunction. We will see that

this can get much more entangled when one includes gravity

and, with the exception of phase information, the only con-

sistent notion of a particle’s reality comes from the locally

conserved currents that can be associated with it. Here will

involve multiple field functions not just ψa as in the free par-

ticle case.

The dominant approaches to fundamental physics has

been strongly inspired by the mathematical theory of mani-

folds where a set of points is given a topology and local co-

ordinate chart and metric structure. The points have a reality
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in this construction and the charts are grouped into atlases so

that coordinates are “pure guage” and no physical reality is

associated with them. We frequently say that the invariance

of the field’s equations requires that we have a metric invari-

ant action be a scalar. It can be shown somewhat easily [6]

that this is not true and that most lagrangians that give many

common (local) field equations are neither invariant nor lo-

cal. In the following we enlarge the class of physically equiv-

alent fields to the set of fields that evolve in such a fashion

where the “observers” built from the fields cannot distinguish

one description from another. This includes simple spacetime

translations of a flat space of the entirety of fields and far more

general deformations of the fields which do not preserve the

underlying set of points.

The underlying space is chosen trivially flat with the ηµν

metric. This begs the question of how general curved co-

ordinates resulting from the effective curvature induced by

the field gµν(γ) relate to it and how the causally connected

structure induced by the fields evolves through this flat back-

ground. In this picture the “physical coordinates” seen by

observers are measures induced by “candles,” specifically

highly independent localized objects and radiators, that in-

duce his perception of his surroundings. Clocks are induced

by atomic oscillations and other local physical processes.

Collective displacements and alterations of the fields on the

underlying flat space that preserve the preserved reality are

considered alternate representations of the same physical re-

ality rather than an active transformation of it to a new and

distinct one, as one would expect from the usual manifold

founded perspective.

At the foundations of manifold inspired physics are ten-

sors and their transformation rules under coordinate changes.

In this case we have little interest in the transformations with

respect to the underlying flat space and all fields are treated

as trivial tensors with respect to it. The interesting case of ap-

parent curvature must then be measured with respect to these

local candles. The vector properties of functions of a field,

like the current j
µ
(0)
= ψ̄(0)γ

µψ(0), are then the collective result

of active transformations of the ψ(i), γ and underlying coor-

dinates that leave the nearby candles’ (labelled by i) gauge

invariant features unchanged and a transformation of the field

ψ(0) so that the resulting current j(0) appears to move through

a full set of Lorentz boosts and rotations relative to measure-

ments using these candles.

This is a significant departure from the usual geometry in-

spired approach. Not surprisingly many formulas will appear

(deceptively) similar to usual results despite having very dif-

ferent meaning since they will all be written with respect to

the underlying flat structure not some “physical coordinates”

with respect to some fixed point set induced by the candles.

The mystery of how we arrive at a geometric seeming reality

and at what energy scale we can expect this to fail is a main

motivation for this article. Conservation laws follow from

the usual ten Killing vectors of flat space but the meaning of

these conservation laws (and their form in terms of observable

quantities) is unclear. Even the positive definiteness of quan-

tities like energy and mass density are not assured and failure

of them do not carry the same consequences as in usual met-

ric theories. The symmetry responsible for mass conservation

is the same one as for probability so such a situation raises

more questions that must be addressed along the way. We

have been nonspecific about the details of what determines

equivalent physical configurations. Aside from the geometry

induced by candles the gauge invariant quantities that we pre-

sume are distinguishable by observers are those induced by

conserved currents such as mass and stress-energy. It is not

obvious why such should be the case. A working hypothesis

is that all observers are made up of long lasting quasilocal-

ized packets of fields that determine discrete state machines

and these are distinguished by localized collections of mass,

charge and other conserved quantities.

In this article we only discuss these as classical theories in

a 4D spacetime. Of course, the motivation is for this to lead

to a general quantum theory. There is a lot of work on reinter-

pretation of quantum theory as a deterministic one. Everyone

who works on this has his favorite approach. The author here

is no exception and has in mind a resolution that is consistent

with the theory in [7] that gives QM statistics assuming that

particular far-from-eigenstate wavefunctions describe classi-

cal matter that arise in an expanding universe with condensing

solids. The motivations behind the following constructions is

not just to get some insight on unification but to take steps

to resolve some of the fundamental contradictions of quan-

tum field theory, such as Haag’s theorem, and to give a solid

justification for the calculations of field theory that have been

successful.

The structure of the article will be as follows. Invariance

and the nature of causality are discussed and contrasted with

the usual flat background approach in §2. This is especially

subtle since the “physical” metric, reality and coordinate fea-

tures are encoded in this construction in nonobvious ways,

the gauge group is large and some conserved quantities and

expected positive definiteness of quantities can change with-

out altering the physically observable results. Next we will

elaborate in §3 on the transformation properties of the fields

and promotion of the gamma matrices to holonomically de-

scribed proto-gravity fields in causally consistent manner and

in §4 give a discussion on the “reality” induced by fields. In

§5 we modify the Dirac lagrangian with an auxiliary field φ

to replace the awkward ψ̄ = ψ∗γ0 with its extra γ0 factor un-

contracted in any tensorial fashion, and demonstrate causality

of the gauge invariant functions of the field.∗ In §6, a sister

∗We typically vary ψ and ψ∗ independently in the lagrangian to get equa-

tions of motion but then constrain them to be so related (though we should

show this constraint is propagated as well). Here we make no such restriction

and allow ψ and φ to be independent fields with no constraints on the initial

data. In the flat space case, the case of φ = γ0ψ∗ gives the usual results and

shows many other cases (i.e. ψ, φ initial data pairs) are gauge related to this.
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field to γ is introduced that allows a similar lagrangian for the

proto-gravity fields (when a Higgs-like construction is used)

as for the electromagnetic field and that gives General Rela-

tivity in a suitable limit. This similarity suggests a pairing of

the electromagnetic and proto-gravity fields in a manner rem-

iniscent of the electroweak theory. §7 gives a discussion of

the global conservation laws that arise due to symmetries of

the flat background.

2 Roles of invariants in physics

The mathematical theory of invariants arose in the 19th cen-

tury and the intuition derived from them made a physical ap-

pearance with the work of Mach [8] and Einstein [9]. Since

then they have played a preeminent role both in formulat-

ing theory and solving particular problems. The geometrody-

namic approach to General Relativity is to assume some un-

derlying geometry that is locally special relativity and posit

that this geometric structure and its associated transforma-

tion laws are the natural way to look at the world. “Flat

background” approaches are generally to look at small post-

Newtonian corrections to the universe for nearly flat spaces

where gravity is playing a small role [10]. In more dramatic

configurations this formalism seems hopelessly flawed.

Wormholes are topologically forbidden from such a descrip-

tion. Black holes with their singularities have infinite metric

curvature at the center and the interior of the event horizon

causally decouples in one direction from the exterior.

There is an old and out-of-favor view of black holes that

goes back to Oppenheimer [11] whereby the infalling mat-

ter gets redshifted to an effective asymptotic standstill so that

no singularity or horizon ever forms. This is often called the

“time-frozen” picture. For many this is considered equivalent

to lagrangian evolution where the particles fall in finite proper

time to the center. It is usually neglected that this implies a

transfinite amount of external observer time must elapse for

this to occur. This implies that we have assumed that in the

entirety of external observer time, no collective action occurs

to interfere with black hold formation before the event hori-

zon forms. Furthermore, an infalling pair of charges on oppo-

site nodes will be seen as a dipole field for all future time in

the time-frozen case. The lagrangian approach would suggest

that these fall to the center and form a spherically symmetric

charge distribution as suggested by the “no-hair” conjecture.

This latter picture has no physical relevance for the external

observers, so the author is firmly in the time-frozen camp.

The importance of this point of view is that there are no

exotic topologies to get in the way of assuming that one has

a flat background. The “geometric” aspects of gravity are

some yet to be explained feature of a field that evolves in an

equivalent fashion to all the other fields of nature. Let us

now take the point of view that there is a flat background and,

In the case of a nontrivial gravity field, we allow the possibility that no such

mapping may exist.

rather that looking at perturbations of it as gµν = ηµν + h̃µν,

the field hab sits on top of it and is coupled to the other fields,

including the kinetic terms, in the fashion of a metric. Let this

background have the flat space metric ηµν so that coupling, for

the electromagnetic case, is of the form

L =
(

∂αAβ − C
γ
αβAγ

)

hαα
′
hββ

′ (

∂α′Aβ′ −C
γ′

α′β′Aγ′

)

,

where the connection-like C tensor is yet to be defined. Im-

portantly, these are not considered to be indices that trans-

form as co and contravariant tensors under the metric h. All

the objects here are flat space η-tensor objects. This seem-

ingly bazaar construction gives causal cones for the evolution

that are not the flat space cones defined by ηµν. The coordi-

nate labels t̂, x̂, ŷ, ẑ give coordinate directions. We expect that

the (x, y, z) set are h-spacelike in the sense that hi juiu j > 1

for all u in the span of x̂, ŷ, ẑ. The forward timelike direc-

tion has a positive projection on t̂ even if the cone is so tilted

that htt > 0. Thus it gives a positive evolution direction for a

future on the background.

In general, any reasonable equation of motion for h should

preserve this set of conditions and evolve in our coordinate

time variable t for all values. In the case of black hole for-

mation the metric tends to asymptotically converge on a de-

generate state leading to a set of equations that are very ill-

conditioned. How to treat this situation numerically is still

unclear but the presence of a flat η-background means that

we have a full set of conservation laws so these may provide

an avenue to evolve without such problems [12]. We will not

be answering the question of general persistence of evolution

of the equations as it seems to be a very hard problem (as

most nonlinear PDE solution existence problems are) but it is

very important. Failure of this to hold would be destructive

to such a theory. It is taken as an article of faith that such a

set of initial data can be evolved for all coordinate time with

time steps taken uniformly at all locations. In other words,

cones may narrow and tilt but they will never intersect with

our spatial coordinate slices.

The role of gauge invariance in physics is analogous to an

equivalence class in mathematics. In mathematics we have

some set of structures we wish to preserve and there can be

classes of elements that act the same under them. In physics,

we may have a set of fields that evolve under the equations of

motion in such a way that there are classes that retain some

set of properties under evolution. We usually describe the set

by a gauge transformation that joins each subclass. It is not

clear that nature is really blind to which element of the class

we are choosing. One could choose a representative element

and claim that this is the “correct” one and be no worse for it.

In the case of the Dirac field ψ and the electromagnetic field

A each has a set of gauge transformations as free fields. The

Dirac field has only a global phase transformation however,

when coupled to the electromagnetic field, it acquires some

local gauge freedom A → A + ∇χ in that the phase ϕ →
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ϕ − χ. This is what we mean by “promoting” a global to a

local symmetry.

In the following we will replace the quadratic lagrangian

with a bilinear one by replacing ψ̄ = ψ∗γ0 with a new field φ.∗

This is the motivation for the title. We are really only aban-

doning γ0 in this sense as a factor in defining ψ̄. The fields γµ

are all retained as what might be loosely called a “spin 1” en-

coding of the gravitational field. We now need to ask what are

the physically distinguishable states of the system. It is natu-

ral to argue that the conserved quantities give the only unam-

biguous physical quantities that we can distinguish. Phase is

complicated in that it gives current and relative cancellation

due to interference. One can define a ψ by the mass density

ρ and the current j. When the density is over a compact set

this is enough to fix the phase up to a constant. For our new

set we will have conservation laws that depend on ψ, φ and

γ. The γ0 is still present but now a dynamical field. This trio

of fields now collectively determines the conserved currents.

Naturally this is a massive expansion of the gauge group. In

the “flat space” case we can choose γµ to be the Dirac matri-

ces in some representation and φ = γ0ψ∗ and obtain the usual

Dirac results.

The Noether charge symmetries here correspond to space-

time symmetries and phase transformations. When we con-

sider the quantum analogs of such fields the importance of

positive definite norm is important. This is because it is given

the role of a probability for a measurement so must be posi-

tive definite and normalizable. This fails in the classical the-

ory of Dirac particles but is “fixed up” in the quantum field

theory by choices for the commutation relations of the op-

erators and their action on the vacuum ground state (as with

the Gupta-Bluer formalism [13]). In this classical theory we

are not necessarily concerned with this for this reason but the

same symmetry generates mass and charge conservation so it

still is important. Interestingly, this symmetry holds in curved

space as we propagate hyperbolic spacelike slices even when

there is no spacetime symmetry.

One way the Dirac field is incorporated into curved space-

time is to fix γµ set to be a particular representation and use

vierbein fields (tetrad formalism). This preserves the desired

norm properties above and ensures local packets move cor-

rectly. There is little choice in this approach if one is to use

wavefunction evolution from a quadratic lagrangian [1]. To

be fair, no one knows what the evolution of an electron is

on such scales. We expect packets to move along geodesics

but if some negative norm or mass density entered we then

must defer to experiment to validate or reject this. The prob-

abilistic interpretation seems hopeless but consider that true

“observers” as machines that measure the results are them-

selves built from such fields. If quantum evolution is a deter-

ministic feature as decoherence advocates suggest, then the

∗Such a construction also introduces a large set set of nonlocal conser-

vations laws. [6]

probability is unity by the evolution and a change in posi-

tive definite norm means that the action of our measurement

devices must obey a modified rule that preserves this. This

should be kept in mind when we consider questions about the

conserved quantities. Negative energy and mass regions of

quantum bodies in highly curved regions my not be forbid-

den by nature as much as we forbid it by our assumptions

about the essential meaning of such quantities.

For evolution on such a flat η-background that mimics

gravity, we must then ask what kinds of transformations cor-

respond to the general coordinate transformations we are used

to in GR. Firstly, just as information has come to be consid-

ered a physical state in quantum information theory, coordi-

nates and time should be thought of as physical conditions

given by the kinds of candles afforded by local atoms and

clusters that triangulate our spacetime. We may as well think

of “physical coordinates” (i.e. non η-background coordinate

changes) as made of material bodies that are small enough

to give insignificant perturbations to the general dynamics.

To actively boost to another RF (reference frame) we con-

sider a local current relative to some other standard currents

that define the frame and choose the new current so the rela-

tive local motion matches. To passively boost to another RF

we consider a transformation of the underlying η-background

coordinates. Since the physically causal light cones induced

by hµν in its coupling to the other fields A, ψ, etc. are not

the cones induced by η we must take care to maintain the

t̂-forward direction of the cones under such changes. The

tensor field constructions made with the usual forms ψ̄γ
µ
D
ψ,

etc. will now be of the form jµ = φγµψ so that their trans-

formation properties under η-background coordinate changes

are tensorial. This is, however, not very interesting because

it does not relate to our physical observers and their physi-

cal coordinates that relate to the function hµν. Many active

transformation of the field trio φ, γ, ψ give the same boosted

current. If we make the change purely with γ and assume our

metric function hµν is built from them, this will change other

terms in the equations of motion.

There remains the many possibilities of transforming the

pair ψ, φ to give a new current function without altering the

local observed geometry. Passive transformations based on

allowable background coordinate changes can be done by

changing the η-background coordinates or altering the fields

ψ, φ in a manner that gives a shifted (on the background co-

ordinates) set of currents and conserved densities that evolve

in an isomorphic fashion to the original fields. The possi-

bility of having shifted and deformed sets of fields on the

background space with the same observable reality is a novel

extension over the manifold approach where the points have

reality and we assign and transform fields there based on co-

ordinate changes and other gauges. It is analogous to having a

set of fields onR4 and shifting the set by a 4-vector vµ to give a

new equivalent universe of solutions in the equivalence class;

an obviously true equivalence that is not present by positing a
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manifold with fields. We now allow this full set of equivalent

representations of such a universe.

3 Transformation rules

The theory of spinors arose naturally out of Dirac’s alge-

braic attempts to reconcile causality with the first order equa-

tions that seem to describe nonrelativistic electrons. Inter-

estingly, Schrödinger originally attempted the, later named,

Klein-Gordon equation to describe electrons but could not

get the fine structure right [4]. He settled on a diffusion-

like equation that was first order in time and second order

in spatial derivatives. Pauli adapted it to include spin but, as

for most such equations, signal propagation speeds diverge.

Dirac introduced a pair of spinors and a linear first order op-

erator that when “squared” gave the Klein-Gordon equation

for each component, thus ensuring causality.

His treatment introduces a set of γ
µ

ab
matrices that are con-

sidered fixed and constitute representations of the SL(2,C)

group which is a two-fold covering group of the SO+(3, 1)

group. More explicity, this gives a map of complex valued

bi-spinors
(

a

b

)(

c

d

)

to real 4-vectors so that each 4×4 complex

matrix action corresponds to a Lorentz transformation and

compositions among these is preserved by this mapping. In

the humblest of terms, we can decompose a general free state

ψa into a basis of free progressive wave solutions eikµxµua(k)

where we can define a general Lorentz transformation Λ
µ′

ν

through the coordinate and algebraic action S (Λ)abψb(Λx).

We define this action so that the current jµ is transformed by

a boost and interpret it as the actively boosted free plane wave

of positive energy. Note that S (Λ)abψb(x) , ψa(Λx).

The Dirac lagrangian has a (seemingly) symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ, (1)

where ψ̄ = ψ∗γ0. This inconvenientγ0 is generally considered

necessary to give Lorentz invariance. We can see that without

it we would get inconsistent equations of motion for ψ and ψ∗

if we vary them independently.

The operator S (Λ)ab performs a transformation of ψa so

that the lagrangian is invariant and the resulting current is

boosted as

j′α(x′) =
(

ψ′(x′)∗γαψ′(x′)
)

=
(

(Sψ(x))∗γαSψ(x)
)

=
(

ψ(x)∗S ∗γαSψ(x)
)

=
(

ψ(x)∗γ
′αψ(x)

)

= Λαβ

(

ψ∗(x)γβψ(x)
)

= Λαβ jβ(x).

(2)

The Dirac theory allows us to think of the complex 4-spinors

ψa at each point as indicating the local direction of the lo-

cal current of the particle corresponding to it. To achieve

this it has been necessary to introduce negative energy so-

lutions. The negative energy solutions are reinterpreted as

positrons and given a positive mass through the details of

canonical quantization since they are generally deemed unde-

sirable. One reason to reconsider this point is that net positive

energy initial data may maintain this property and negative

energy states do not necessarily provide an avenue for some

subset of the space to fall to negative infinite energy at the

expense of heating the rest of the system. Such a result would

depend on the details of the coupling and dynamics. Local net

negative energy density in solutions arising from positive lo-

cal energy physically arising states would produce problems

but it is not clear that this ever arises except in extreme cases

where pair production becomes available.

Other conservation laws such as the conservation of prob-

ability (which arise from the same global phase symmetry

that give mass and charge conservation) have similar prob-

lems. In an “emergent” theory of quantum measurement we

do not need a probability operator (or any operators at all).

The probabilities arise from measurements with the kinds of

macroscopic yet still quantum mechanical matter that con-

stitutes the classical world [7]. In this approach, the initial

data and evolution equations generate their dynamics in a de-

terministic fashion and the probabilistic features arise from

the long lived partitioning of the classical world into subsets

indexed by the delocalized objects that interact with it. De-

tails of when this is a consistent procedure are discussed in

ref. [7]. For this reason, we do not seek to validate or build

upon arguments that start with an “interpretation” of particu-

lar expressions since we ultimately expect the evolution and

interactions to independently determine the expressions that

give all observable results.

One of the frustrating aspects of the Dirac equation as it

stands is that it is not clear how we should alter its form in

general coordinates. One can use the local frame approach

and assume the Dirac matrices are members of the same rep-

resentation in each one. A spinorial connection then indicates

how nearby spinors are related as a consequence of geometry.

If we allow the matrices to become functions of space and

time with only the spacetime indices changing this gives a

simple approach but then it is not clear how we recover local

Klein-Gordon (KG) evolution of each component and what

the locally boosted fields should be. If we continue with the

spinor approach and let the γµ(x) matrices be fixed and alter

the spinor fields instead then we need a transformation that is

a kind of “square root” of the Lorentz vector transformation.

This is how we get the actively boosted solutions in flat space.

In curved spacetime, there is no global notion of a boost so

the former perspective seems more valuable. Ultimately, we

specify a configuration by the spacetime metric and the fields

on it but the metric will be a function of the γµ matrix fields

(and some associated dual fields) that only give geodesic mo-

tion below some energy bound.

In the early days of the Dirac equation, interpretations

have evolved from a proposed theory of electrons and protons

to that of electrons and positrons with positrons as “holes”

in an infinitely full electron “sea” to that of electrons with
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positrons as electrons moving “backwards in time.” The first

interpretation failed because the masses of the positive and

negative energy parts are forced to be equal. The second was

introduced out of fear that the negative energy solutions of

the Dirac equations would allow a particle to fall to endlessly

lower energies. The last was introduced as a computational

tool. The negative mass solutions were to be reinterpreted

as positive mass with negative charge. Necessary computa-

tional fixes associated with this idea are subtly introduced

through the anticommutation relations used in the field the-

ory approach to fermions and the properties of the supposed

ground state [13]. If we are going to seek a classical field

theory approach to this problem we need another mechanism.

For the moment, we assume the γmatrices are those of the

Dirac representation. Standard treatments allow any selection

of 4×4 matrices that represent the SO+(3,1) group. Here we

choose a specific representation because we are going to let

the γ’s be fields and let these other choices be a kind of gauge

freedom until some interaction restricts us to a specific subset.

The Dirac lagrangian has a (seemingly) symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ (3)

where ψ̄ = ψ∗γ0. This is generally considered necessary to

give Lorentz invariance. The Dirac matrices satisfy the con-

dition

{γµ, γν} = −2ηµν, (4)

where η =Diag(−,+,+,+). This suggests that we could view

the metrical properties of the space as encoded in γ rather than

invoking a metric η. The metric has ten independent parame-

ters at each point and γ has 4 × 10 or 43 parameters, depend-

ing on chosen symmetry constraints but we need to satisfy 44

equations. If we trace the suppressed spin indices then there

are only 10 equations and a general metric can be encoded

in the γµ set. However, eqn. 4 is the identity we require to

convert the Dirac equation into a KG one that demonstrates

causality in each component. This is a loose end in deriving

geodesic motion for a packet to show that we get observed

motion in the classical GR limit and an important considera-

tion in what follows.

In anticipation of a future unification theory one cannot

help but notice the greater similarity of γ
µ

ab
(x) to Aµ(x) and

the other vector boson fields than any of these to the metric

gµν. For now we simply leave this as constant but accept that

it can have its own transformation properties as a one-vector.

In contrast, all the “spinor” labels are considered as having

only scalar transformation properties. The bispinors ψa now

transform as scalars. To emphasize their new properties and

that they still have a collective reality as a four-tuple of func-

tions we term it a “spinplet.” The mixed objects γ
µ

ab
we con-

sider a vector object with extra labels and, by analogy, label

it a “vectorplet.”

There are some surprising implications of this. The equa-

tions are unchanged but the transformation properties are now

different. Since the γ
µ
ab

’s can vary with position, we expect a

much larger equivalence class of electron-gravity field pairs,

{ψ, γ}, that correspond to the same underlying reality. We

can boost the system by Λ
µ
αγ

α. This gives the same ψa fields

at every point but the physically measurable jν currents are

altered. Of course we still have the traditionally boosted so-

lutions S (Λ)ψ(0)(Λx) that have this same current so we have a

degeneracy in the pairs (Λγ, ψ(0)) and eiφ(γ, S (Λ)ψ(0)) and all

other states with the same current and net phase. This is not

the result of a discrepancy in the active vs. passive coordinate

transformations we observe in a fixed representation but an

additional degeneracy in the equivalent physical descriptions.

We have only used the current jµ to distinguish states and we

expect that there will be some other conserved quantities, like

stress-energy, that will physically subdivide this set into dis-

tinct equivalence classes. Since there are so many degrees of

freedom in the set of γ
µ
ab

(x)’s we anticipate that the set is still

significantly enlarged.

4 Reality and gauge

The AB effect gives a simple example of how the “reality” of

an electron is not sufficiently described by the wavefunction

of the electron itself. In this case, the current is a function of

both ψ and A as J = i~∇ψ + eA. This construction is use-

ful in sorting out various apparent contradictions in electro-

magnetism. If we want to investigate the radiation reaction

or questions of “hidden momentum” [14, 15] one can build

a packet that spreads slowly compared to the effects of ex-

ternal fields and see how the self field and lags contribute to

the actual motion. The power of it is that there is no am-

biguity in the gauge as for a hodge-podge lagrangian like
1
2
mv2+ jA− 1

4
FF [16] because the physical current of a packet

is the gauge invariant J not the naive j = mv. The AB effect

seems like a topological effect because it is viewed through

the lens of ψ being the pure descriptor of the reality of the

electron and as a stationary effect. In driving a solenoidal

current to create a circulating A field we accelerate J with a

transient circulating E field. Part of the current is made up

of the phase gradient of ψ and part from A itself. The field

and the acceleration moves outwards from the current source

at the speed of light and the resulting equilibrated current be-

comes a function of the final magnetic flux. This circulating

current must gain all of its curl from A. The ψ can only con-

tribute to an irrotational flow so general charge packet motion

requires a contribution from A. This suggests we might gen-

erally want a more nuanced distinction of particle reality than

merely a function of each individual field in a lagrangian that

has been nominally assigned to the particle type alone.

In flat space without gravity or interactions, we can con-

sider packets of fields that are widely separated based on type.

These can then evolve separately and the type of field and the

reality implied by it are synonymous. There can still be some

gauge freedom but the packets and any interesting properties
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that one might observe are contained in the same support. The

observables are, at best, the gauge invariant properties such

as stress-energy or current. Allowing interactions, this reality

gets complicated in two ways. Firstly, the conserved currents

may now involve aspects of more than one kind of field and

second, there are now constraints that must be obeyed. These

are generally defined by elliptic PDEs such as ∇ · E = ρ that

are propagated by the dynamic equations.∗

If we now include gravity in the form of a γµ field that has

some gauge freedom that mixes with the reality of the wave-

fuction ψ then we cannot make the above separation. The

gravitational field is everywhere so no isolation of packets

is possible. The reality of the electron is now a function of

ψ and any γ-like fields that have global extent. This is in

contrast with the case where the gravitational information is

completely specified in the gµν field. Since this has no gauge

freedom beyond that of coordinate changes, the packet mo-

tion of a wavefunction is affected by it yet the reality of the

electron is still entirely determined by the values of ψ in the

packet itself.

For the case where multiple fields determine a single re-

ality, when is it really viable to call one set of quantities the

“electron current” versus some combination of quantities that

strictly depend on multiple types of fields? In the case of

the Dirac and electromagnetic field (in flat space with con-

stant γ matrices), the density of the field is only a function

of ψ so that we have at least one component of the 4-current

that is entirely specified by the wavefunction. This allows us

a uniquely associate j0 with the electron field ψ and so call

it the “electron-density.” The stress-energy terms similarly

have T 00 as a simple function of ψ alone. If every conserved

quantity can be associated this way, we have a well-defined

mapping between the fields and conserved quantities. If we

are interested in more exotic lagrangians than can be formed

by the “minimal” prescriptions from the free quadratic cases,

we will need to be mindful of the possibility that the currents

may not necessarily be so associated with one particular field.

Although this discussion may feel somewhat pedantic, it

is important to make this distinction and not get trapped in

the vague lore that sometimes accompanies discussions in

physics. For example, it is often said that we must have “man-

ifestly invariant” lagrangians to get relativistically consistent

results. This is not true not only in the obvious sense that

∗This is purely a classical theory of delocalized fields so we do not have

the problem of “self-energy” or the “particle not feeling its own fields.” In

the many body case, the fields presumably are made of many constituent ones

with only the “center of mass” motion as visible to us. This allows us to have

a wavefunction of a charged particle that does not spread under the influence

of the field generated by it, as in the classical particle case [15]. However,

the self force and momentum are subtle concepts in that such a composite

charge must have both mbare and mem components. Only mbare is localized

and mem is spread over the range the static fields. The contribution to the

electromagnetic momentum in Ma = (mbare + mem)a = Fext in the force law

is actually provided by a self field of the radiation field traversing the support

of the charge.

they can be rearranged in a nonobvious invariant form. One

can conceivably write down a set of fields that gives a class

of solutions whereby the degrees of freedom and invariance

is with respect to the observers built of other physical fields.

Here we can imagine inducing a set of “physical coordinates”

based on local packets of long lasting separated objects that

define a grid. With the right time evolution parameterization,

we would expect the form of the equations to be invariant with

respect to such a coordinate set. The overall class of equiva-

lent solutions should allow for local field changes that induce

independent observable current changes with the appropriate

degrees of freedom for the observed dynamic freedom of the

system. In general, we only need observers to see the world

with such symmetry (such as Lorentz) but it need not hold

with respect to the coordinates. As long as the constituent

fields of the observers and the external reality “covary” to-

gether, then the observers see exactly the same thing. Allow-

ing such dynamics can enlarge the equivalence classes at the

cost of a more complicated relationship between coordinates

and observable reality.

Generally we seek a quadratic free field lagrangian and

then gauge and Lorentz invariant couplings between them.

The Dirac lagrangian is usually presented in the superficially

symmetric form

LD = iψ̄γµ∂µψ − mψ̄ψ. (5)

The appearance of the γ0 is displeasing if we are to interpret

the µ indices as spacetime indices. This particular form is of-

ten considered important because it gives a positive definite

probability density. In an “emergent” approach to quantum

theory where the probabilities are defined by the evolution

equations in a deterministic fashion, this is not important.

Probability will automatically be conserved by the normal-

ization over the resulting paths that bifurcate the histories of

recording devices and observers as indexed by the delocal-

ized particle’s coordinates [7] regardless of whether there is a

“nice” operator that describes it. More importantly, we need

the eom of ψ and ψ∗ to be consistent. This dictates that the

γ0 appear in this expression. By using a representation where

γ0γµγ0 = γµ the variations of the action give equivalent equa-

tions of motion.

To achieve a lagrangian that is manifestly invariant us-

ing this “vector-plet” interpretation we introduce an auxiliary

field φ that, in flat space, can be chosen to be ψ∗γ0. For

the usual Dirac equation this condition is propagated. One

should wonder if this will give a true isomorphism with phys-

ical results. We are interested in the propagation of conserved

quantities as mass, charge. . . and some local phase informa-

tion. This brings us to a subtle point. Even in nonrelativistic

quantum mechanics, the “reality” of interacting particles is

not completely given by the corresponding fields themselves.

This is most clearly observed in the AB effect. Often this

is viewed as an important example of topology and gauge in
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physics. It is more simply understood as an expression of

the electron current being not simply a function of the elec-

tron wavefunction alone. A similar property is observed in

the London skin depth in superconductors. The only way an

electron current can obtain rotational flow is through the vec-

tor field ~A or through the appearance of discrete vortices. The

moral here is that angular momentum, among other conserved

quantities, is defined by a collective set of fields so it makes

no sense to associate with one particular particle. “Spin” is

now a kind of angular momentum that exists through the col-

lective local reality of this new vector-plet graviton and two

fermion spinplet fields. By abandoning this usual concept of

a spinor we will obtain an isomorphic theory that has signifi-

cant generalizations.

5 Bilinear modification

To resolve the complications arising from the hidden γ0 in the

usual Dirac lagrangian, let us replace ψ̄with an associated yet

independent field φ and see when it evolves in a consistent

fashion when we simplify to the Dirac representation. Con-

sider the Dirac-limiting lagrangian density we can choose us-

ing only the complex valued ψ, φ and γα (with gµν an implicit

function of it) is of the form

L = i
(

φaγ
µ

ab
∂µψb − ∂µφaγ

µ

ab
ψb

)

− 2mφaψa. (6)

For constant γ’s chosen to be the Dirac representation, then

variation δφ yields iγµ∂µψ − mψ = 0. Variation by δψ yields

−i(∂φ)γµ − mφ = 0. If we choose φa = γ0
ab
ψ∗

b
then this is

equivalent to the Dirac equation solution for φ.

When we consider the gauge equivalent states this intro-

duces some additional considerations. For example, if the

support of ψ and φ are disjoint then there is no net mass or

current density. Such a state is evidently a vacuum despite

the nontrivial values of the functions and evolution equations.

Here we see that our notions of the physical meaning we at-

tach to functions as describing the reality of a particle is less

trivial than usual.

So far we have not explicitly included any measure or

metric and the action of∇µγν is ambiguous without it. We can

make formal definitions of these by using eqn. 4 as a guide.

The pair of functions,

gµν = − 1

4
Tracγ

(µ
ab
γ
ν)
bc

gµν = Inv

(

− 1

4
Tracγ

(µ

ab
γ
ν)
bc

)































(7)

to define the metric in terms of γ are evidently complicated

when explicitly constructed but they do give us trial defini-

tions for gµν(γ) and its inverse in terms of γµ that can specify a

completely general metric field. Another possible objections

is that the form of γµ with indices raised as a contravariant

object is opposite that of the covariant form that Aµ enters the

lagrangian especially the interaction terms qψ̄γµAµψ which

gives us pause when considering the possibility of treating γµ

and Aµ as analogous fields where no a priori metric exists.

Since we are interested in a theory that includes electrons,

positrons, photons and gravity with the electromagnetic and

gravitational fields on an equivalent footing we will will need

to make a further modification. It will be convenient to let the

natural form of γ be a lowered index object γµ and introduce

a contravariant sister field λν that generates gµν in the same

fashion that γµ generates gµν. It is not automatic that these be

inverse functions despite the suggestive notation but we will

show that they do so in sufficiently low energy cases for a

particular lagrangian. We expect the following relations to be

able hold in the flat space limit

gµνδac = −
1

2
{λµ, λν} = −λ(µ, λν)

gµνδac = −
1

2
{γµ, γν} = −γ(µ, γν)



























. (8)

It is very important to distinguish between this case, which

arises in deriving the Klein-Gordon results that demonstrate

causality for the Dirac components and the traced result. The

arbitrary metric field gµν(x) = − 1
8
Tr{γµ(x), γν(x)} can be de-

fined in terms of γ
µ

ab
(x)’s but the untraced result for gµν(x)δac

cannot. This will be central to what follows.

We like to have the metric appear explicitly in all the

terms of the lagrangian for the reason it gives us something

to vary in obtaining a conservation law for stress-energy. One

way to do this is is to use the lagrangian

Le = i
(

gµνφaγµ:ab∂νψb − gµν(∂µφa)γν:abψb

)

− 2mφaψa, (9)

where the colon separates spacetime from scalar indices. We

define gµν = − 1
4
Trλ(µ, λν). The evolution equations are given

by the variations δφ

i
(

gµνγµ:ab∂νψb + g
µν∇µ(γν:abψb)

)

− 2mψa = 0

igµνγµ:ab∂νψb +
1

2
igµν(∇µγν:ab)ψb − mψa = 0























(10)

and δψ

igµν(∇µφb)γν:ba +
1

2
igµνφb(∇µγν:ba) + mφa = 0 (11)

so that φ evolves as ψ with m→ −m and γ→ γT.∗

Since we are about to determine the motion of the con-

served gauge invariant stress energy associated with the fields

and it is deeply connected with geometry, we make a brief

segue to derive this conserved quantity. A general action con-

tains both a lagrangian and a measure that can be related to

the metric

S =

∫

d4xL
√
−g·· . (12)

∗Note that this does not mean that the energy of the rest field is m (c = 1).

The energy is a function of the triple of fields (ψ, φ, γ) as we see next.
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Incorporating general relativity, the lagrangian density is gen-

erally written

L = 1

2κ
R(g) +Lfields, (13)

where κ = 8πG and the first term gives the Riemann curvature

and the second gives the field terms that do not depend only

on the metric. The conservation laws arise from varying the

metric δgµν from which we obtain

Gµν = 8πGT µν = −κ −2
√−g··)−1

δLfields(
√−g··)−1

δgµν
. (14)

Since ∇µGµν = 0 as an identity we have ∇µT µν = 0. This

is a local conservation law. To obtain a global one we need

a spacetime with persistent Killing vectors corresponding to

continuous symmetries. The action of gravity typically de-

stroys these as global conservation laws, however, if G → 0

and the initial data is chosen to be flat then these exist and

persist so we have the usual global symmetric conservation

laws. This justifies this as a general method of deriving con-

servation laws with symmetric stress-energy tensors for fields

on flat space when all the fields present are tensorial. Of

course, we expect any such conservation law to correspond

to a symmetry. In this case, we can vary the coordinates lo-

cally and this leaves the quantity L√g·· invariant. Since all

the derivatives are covariant, we can replace a passive coor-

dinate change on an open set with an active transformation of

the metric field gµν. Varying gµν is therefore equivalent to a

general small variation in the local coordinates. Of course,

we are considering these as fields on a flat background so that

they change in a rather simple fashion relative to the coor-

dinate changes and we should include a coordinate measure√−η and this underlying space generates full set of ten con-

served quantities (see §3).

The (symmetric) stress tensor is usually defined by∗

Tµν = − 2

(
√−g··)−1

δ
(

Lfields

(√−g··
)−1

)

δgµν

= −2
δ (Lfields)

δgµν
+ gµνLfields

= 2i
(

φaγ(µ:ab∂ν)ψb − (∂(µφa)γν):abψb

)

+ gµν

[

i
(

gαβφaγα:ab∂βψb

− gαβ(∂αφa)γβ:abψb

)

− 2mφaψa

]

= 2i
(

φaγ(µ:ab∂ν)ψb − [∂(µφa]γν):abψb

)

,

(15)

where we have varied with respect to gµν and assumed γµ is a

field independent of it in anticipation of gµν being a function

of λµ.

∗Here we make the choice of taking the determinant with respect to the

“contravariant” metric g(γµ) in anticipation of later work. This explains the

power -1 this expression.

We can similarly examine the continuous symmetry given

by the globally constant phase changes ψ → eiθψ and φ →
e−iθφ to get the conserved current

jν = 2igµνφaγµ:abψb (16)

so that ∇ν jν = 0. Here we see this current also depends on

all three fields so that the vanishing of any one of them on a

region necessitates the entirety of the physical reality vanish.

We will now consider the implications of packet motion

given these two conservation laws. Firstly, when we say

“packet” we are not referring to a packet of localized ψ or

φ as much as a localized region where the reality associated

with these fields through Tµν and jµ are nonzero. Let us also

consider a packet that is devoid of internal stress and rotation

and where the pressure is minimal. For such a packet with

sufficiently uniform interior we can average over the current

to give 〈 jµ〉 ≈ mv µ where m2 is the averaged gµν jµ jν density

and, assuming the packet preserves its structure as it moves,

vi is the local coordinate velocity of the packet. We can then

define v0 by the relation gµνv
µvν = −1. The conservation law

tells us that ρ is conserved. v µ is well defined to the extent

packet motion is so.

From 〈T µ0〉 we can define a velocity u that carries the en-

ergy in a localized packet so that 〈T µ0〉 ≈ m′u(µu0). Since

a vanishing of the current on a region implies vanishing of

stress-energy as well we have that v = u and that 〈T µ0〉 ≈
m
′(µv0) = αm(µv0). Since there are no internal stresses, 〈T µν〉 ≈

αmv µvν. By combining these expressions we derive that these

“macroscopic” variables are

vν =
〈T µν〉
α 〈 jµ〉

m = α2 〈 jµ〉 〈 jν〉
〈T µν〉































, (17)

where these are actually several equations (repeated indices

are not summed) that are all equal by the conditions above.

Now consider the parcel averaged stress-energy conserva-

tion law. Applying ∇µ jµ = 0 we have

〈∇µT µν〉 = 〈∇µ( jµvν)〉
= 〈(∇µ jµ)vν + jµ∇µvν〉
= m′ 〈∇vv〉 = 0,

(18)

which indicates the gauge invariant aspects (i.e. the reality) of

the parcel follows geodesic motion. This is not entirely sur-

prising given that it is known that the conservation laws gen-

erally dictate that classical particles follow geodesics though

the proofs are generally quite difficult [18]. The “geodesics”

here are generally curved paths in our underlying coordinate

space but appear as geodesics in the geometry most apparent

to observers.

In the next section for a theory of “lepto-electro-gravity”

we have two covariant gauge fields and one contravariant one.
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These have trivial transformation laws in the flat background

coordinates but we maintain this distinction because it seems

more relevant for observers. In this sense we think of it as

a “2+1” theory. One contravariant field is always necessary

to match the covariant derivatives that must arise in any dif-

ferential equation. The electron field is described by a (φ, ψ)

pair of fields that embody its reality with a very large gauge

group and the meaning of the reality they describe depends

not only on the metric but the covariant gravity field γµ. We

will see that these have properties that are distinct from the

positive energy positrons so we will require another pair of

fields for their description. Along the way we will introduce

a lagrangian that exists as a purely polynomial expression and

removes the need for complicated nonanalytic measures and

rational inverse matrix functions.

6 Electro-gravity lagrangian

Here we seek a lagrangian that encompasses electrons,

positrons, electromagnetism and gravity and seek to have

equations that are polynomial rather than complicated ratio-

nals that arise from the operation of taking the inverse of the

metric. For this reason we define the function g : V → T
whereV is the set of vector-plet objects λ

µ

ab
and γµ:ab andT is

the set of corresponding contravariant or covariant 2-tensors

gµν and gµν respectively. Specifically,

g(A, B) = −1

8
Tr(AB + BA).

We will establish a lagrangian that gives Dirac particle motion

in the flat space limit, electromagnetism and a form for GR

that gives a simple parallel between the motion of the gravi-

tational fields, γν and the electromagnetic ones Aν that allows

gravity to obtain the nonlinear “geometric” features of GR.

Since we are interested predominantly in positive energy

solutions we will need to introduce a separate action term Λp

for positrons that have positive mass but a reversal of sign

of the charge in the coupling. We can write the lagrangian

for the covariant gravitational field γ by substitution into the

Einstein-Hilbert lagrangian. Alternately, we can choose it to

have a similar form of the actionΛ′g as the other vector poten-

tial ΛA and the coupling terms ΛeλA, ΛpλA will involve both

the contravariant gravitational field λ and the vector poten-

tial. Finally, there will need to be some way for the covariant

and contravariant gravitational fields to relate to one another.

This will be accomplished by a Higgs-like interaction term

Λc. The general action is then defined as

S =
∫

d4xL√−g =
∫

d4x Λ

=
∫

d4x (Λg + Λλ + ΛA + Λe + Λp

+ΛeλA + ΛpλA + Λc),

(19)

where we will define Λλ shortly.

Since the measure is a nonanalytic function of the metric

but this is not retained in the usual equations of motion. We

will find that this is also true here. For reasons as above we

use the λ fields in defining the measure.

The electron part of the action is given by the substitutions

Λe = Le

(
√

g··(λ)
)−1

=

[

i
(

gµν(λ)φaγµ:ab∇νψb − gµν(λ)(∇µφa)γν:abψb

)

− 2mφaψa

]

(
√

g··(λ)
)−1

(20)

where we have, harmlessly, replaced the ordinary with co-

variant derivatives since the act on spinplet objects which are

essentially scalars. Variation with the measure present allows

their action on higher tensors to give the appropriate covariant

connection terms. This is one indication of how the physics

itself can generate the geometric aspects of gravity rather than

imposing it by fiat in the formulation of the theory’s founda-

tions.

The positron portions of the lagrangian is of the same

form as Λe but with a different pair of fields φ̃, ψ̃. The dis-

tinction comes in the form of the interaction terms. The usual

minimal coupling prescription gives

ΛeλA = − qφaλ
µ

ab
Aµψb

ΛpλA = + q φ̃aλ
µ

ab
Aµψ̃b















. (21)

It is only the sign of the charge in the interaction terms that

distinguishes positrons from electrons and it only appears in

the couplings.

The gravitational part of the action can be defined by a

simple extension of the Einstein-Hilbert action

Λg =
1

2κ
R

(

gµν(γ), gµν(λ)
) (√

g··(λ)
)−1

. (22)

R is defined in terms of gµν(γ), gµν(λ) and the connections

implicit in the expression are defined by

Γαµν =
1

2
gασ(λ)

(

gµσ,ν(γ) + gσν,µ(γ) − gµν,σ(γ)
)

(23)

and their derivatives. We expect that some induced con-

straints force g(γ)g(λ) = δ. To have this done as a result of

field interactions we exploit a “Higgs-ish” mechanism with

the coupling term

Λc = M
∣

∣

∣ gµν(γ) gνρ(λ) − δρµ
∣

∣

∣

2
(24)

for a sufficiently large mass M. When the energies in the

other terms are much smaller this drives the relation between

γ and λ to hold so that the solutions become “geometric.”

Specifically, while it is easy to enforce causality if all evolu-

tion fields obey some equation such as gµν∂µ∂νφ + . . . where

gµν is a metric with signature +2, the geometric case indicates

that slowly spreading packets in regions of slowly varying

spacetime move along geodesics. When such a relation holds
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our lagrangian has a form that can be interpreted as coordi-

nate invariant in that the derivatives act on the tensor fields

with covariant derivatives with the Γs induced by the metric

gµν = −4−1Trγ(µγν). In the next section we will see that we

can also interpret the system to live on a flat background and

derive global conservation laws.

The other gauge fields all come from lagrangians that

have electromagnetic form FµνFµν where Fµν = ∂µAν − ∂νAµ.

Specifically,

ΛA = gµα(λ)gνβ(λ)(∂µAν − ∂νAµ)

× (∂αAβ − ∂βAα)
(
√

−g··(λ)
)−1

.
(25)

It is not necessary to use covariant derivatives here since an-

tisymmetry cancels them. For example, we model the action

contribution from the “dual field” λ as

Λλ = ǫ gµα(λ)gνβ(λ) Tr(∂µλ̃ν − ∂νλ̃µ)

× (∂αλ̃β − ∂βλ̃α)
(
√

−g(λ)
)−1

,
(26)

where λ̃µ = gµν(γ)λν.∗ where we have chosen the constant ǫ

to be small so that the dynamics can be dominated by γ and

the constraints induced by the Higgs-like term.

For a function Fµ(gµν(γ)) the variation under δγν gives

δFµ =
δF

δgµν
δγν (27)

and similarly for δλ. Variation of Λg by δλ gives

1

2κ

(

Rµν −
1

2
Rgµν

)

δλν (28)

or

Gµνδλ
ν = κTµνδλ

ν, (29)

where Tµν is the stress-energy tensor for all the actions terms

other that Λg. We have implicitly assumed that we are in a

low enough energy regime and the initial data includes no

“waves” of λ so that the contributions of Λλ can be ignored.

Since the γ’s contain gauge freedom that is independent of

coordinate changes so that we can choose any γµ that give the

same gµν(γ) field, this requires

Gµν = κTµν . (30)

7 Conservation laws

We can argue the whole structure exists on a flat background

though this is just a convenient artifice among many. It is

however a very convenient one. The appearance of geometric

evolution via the additional Γ factors that make the derivatives

∗We distinguish this field with a tilde because of the earlier convention

that these are all tensor indices under the underlying flat space metric so that

“lowering” an index with g must be new field to not be ambiguous.

seem “covariant” with respect to some induced geometry of

these fields is an emergent byproduct of the kind of couplings

present. It should be noted that these Γαβγ factors are actual

η-tensors on the background space instead of affine connec-

tions. Of course, we still need to know if our equations can be

evolved for arbitrary times using this point of view. Some dis-

cussion of this, especially in the case of black hole formation

is given in [12]. For now we assume that this is unlimited

however, although other methods have attempted to justify

working on a flat background [17] it is a delicate process to

have this make sense as gravitational collapse ensues due to

the trend of the equations to become ill conditioned here. One

should not be overly comfortable with formalism in this case.

A method to handle evolution on the large regions of nearly

degenerate metric using conservation laws is proposed in [12]

The flat background has a natural set of Killing vectors

that give global conservation laws. To elucidate this consider

the lagrangian written in terms of ordinary derivatives and

make the modification by defining g(γ) = h(γ) ◦ η

Λ = L
√
−g→ Λ

√
h
√
−η . (31)

All actions on tensors induced by η-background coordi-

nate transformations are of the form

∂µAα → ∇µ(η)Aα = ∂µAα − Γαµν(η)Aν (32)

and so forth, where η is a metric (in any coordiates) that can

be varied about the flat space case. Any covariant derivatives

∇µ(g) in terms of the metric induced connections are reinter-

preted as formal couplings through Γ(g) and the ∂µ are con-

verted by this prescription. We see a problem with eqn. 31 is

that it is not invariant under general η-space coordinate trans-

formations due to the factor
√−g. It is, however, invariant

under the isometries of flat spacetime that we use to generate

global conservation laws.

Since the flat space contains a full set of ten Killing vec-

tors we have a set of conserved global quantities that now

includes the gravitational fields of the form

∂µT
′µν = 0 (33)

with the Killing (co)vector fields pν = ω̂ν, Mi jk = ǫi jk x jω̂k

and bi = x0ω̂i + xiω̂0. The globally conserved quantities in

these coordinates are

Pν =
∫

d3x pµT
′µν

Ji =
∫

d3x Mi
jk

T
′i j

C j =
∫

d3x biT
′i j



























. (34)

8 Conclusions

The notions of invariance from differential geometry and in-

variance theory are imported into physics in a fashion that

ranges from formal to ad hoc. Surprisingly, they have not
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been reconsidered from the more physical point of view that

all configurations that are indistinguishable to observers built

of the fields themselves should form the most general equiva-

lence class of systems. This enlarged meaning of “gauge” re-

quires some underlying structure. We have shown that many

of the usual objections to a flat background can be overcome

and that this allows the fields to have very simple transfor-

mation laws and a large set of conservation laws with respect

to this flat background. The observers can then perceive a

curved space with all its mathematical complexity as emerg-

ing from the nature of nonlinear and multilinear coupling

among fields. Importantly, there is a classical lagrangian with

a Higgs-like term that causes there to be such a strongly non-

linear and geometric theory of gravity to arise from the per-

spective of such observers at low energy.

An interesting by-product of this approach is that the ap-

parent co and contravariant properties of the fields in the

“physical coordinates” induced by objects for the observers

obtain their transformation properties by the equations of mo-

tion not by a by-fiat assignment. This is another aspect of

“geometry” that is determined by the physics itself. At high

enough energies we expect this geometric association to fail

and nonmetric features to become evident to the observers. In

this case the induced constraints fail and evolution becomes

potentially more difficult. One suggestion is that such a situ-

ation allows inconsistent light cone structures to be induced

for different fields and that some intersection of these gives

the proper causal structure for these fields when they are in-

teracting.

The bilinear extension of the Dirac equation and promo-

tion of the γ matrices to dynamical fields introduced a num-

ber of concerns related to positive definiteness of energy and

probability and causality of the equations of motion. The lat-

ter has been verified for packets using gauge invariant func-

tions of the fields. The former is seen to be not essential since

these quantities, while rigidly conserved, are not necessar-

ily the physical ones an observer perceives since they are de-

rived from background coordinate symmetries. The probabil-

ity function may be a nontrivial function of the fields in the

case of gravity but normalization is assured in any theory of

emergent measurement such as decoherence.

There are undoubtably many inequivalent such theories

with the same low energy limit so we have presented only

one of probably many such solutions. From here it is un-

clear how to extend this classical theory to a quantum one.

The couplings are such that they determine the local notion

of causality and it is not clear when or how well a perturba-

tive scheme, which is generally built on free fields solutions,

will work in the many body case. This is a direction for fu-

ture work.
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