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Weinberg Angle Derivation from Discrete Subgroups of SU(2) and All That
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The Weinberg angle θW of the Standard Model of leptons and quarks is derived from
specific discrete (i.e., finite) subgroups of the electroweak local gauge group SU(2)L ×
U(1)Y . In addition, the cancellation of the triangle anomaly is achieved even when there
are four quark families and three lepton families!

1 Introduction

The weak mixing angle θW , or Weinberg angle, in the suc-
cessful theory called the Standard Model (SM) of leptons and
quarks is considered traditionally as an unfixed parameter of
the Weinberg-Salam theory of the electroweak interaction. Its
value of ∼30◦ is currently determined empirically.

I provide the only first principles derivation of the Wein-
berg angle as a further application of the discrete symme-
try subgroups of SU(2) that I used for the first principles
derivation of the mixing angles for the neutrino mixing matrix
PMNS [1] in 2013 and of the CKM quark mixing matrix [2]
in 2014. An important reminder here is that these derivations
are all done within the realm of the SM and no alternative
theoretical framework beyond the SM is required.

2 Brief review of neutrino mixing angle derivation

The electroweak component of the SM is based upon the local
gauge group SU(2)L x U(1)Y acting on the two SU(2) weak
isospin flavor states ± 1

2 in each lepton family and each quark
family. Its chiral action, i.e., involving LH doublets and RH
singlets, is dictated by the mathematics of quaternions act-
ing on quaternions, verified by the empirically determined
maximum parity violation. Consequently, instead of using
SU(2) generators acting on SU(2) weak isospin states, one
can equivalently use the group of unit quaternions defined by
q = a + bi + cj + dk, for a, b, c, d real and i2 = j2 = k2 =

ijk = −1. The three familiar Pauli SU(2) generators σx, σy,
σz, when multiplied by i, become the three generators k, j, i,
respectively, for this unit quaternion group.

In a series of articles [3–5] I assigned three discrete (i.e.,
finite) quaternion subgroups (i.e., SU(2) subgroups), specif-
ically 2T, 2O, 2I, to the three lepton families, one to each
family (νe, e), (νµ, µ), (ντ, τ). These three groups permeate
all areas of mathematics and have many alternative labelings,
such as [3,3,2], [4,3,2], [5,3,2], respectively. Each of these
three subgroups has three generators, Rs = iUs (s = 1,2,3),
two of which match the two SU(2) generators, U1 = j and U3
= i, but the third generator U2 for each subgroup is not k [6].
This difference between the third generators and k is the true
source [1] of the neutrino mixing angles. All three families
must act together to equal the third SU(2) generator k.

The three generators U2 are given in Table 1, with ϕ =
(
√

5 + 1)/2, the golden ratio. The three generators must add

Table 1: Lepton Family Quaternion Generators U2

Fam. Grp. Generator Factor Angle◦

νe, e 332 − 1
2 i − 1

2 j + 1√
2

k −0.2645 105.337

νµ, µ 432 − 1
2 i − 1√

2
j + 1

2 k 0.8012 36.755

ντ, τ 532 − 1
2 i − ϕ2 j + ϕ

−1

2 k −0.5367 122.459

to make the generator k, so there are three equations for three
unknown factors. The arccosines of these three normalized
factors determine the quaternion angles 105.337◦, 36.755◦,
and 122.459◦. Quaternion angles are double angle rotations,
so one uses their half-values for rotations in R3, as assumed
for the PMNS matrix. Then subtract one from the other to
produce the three neutrino mixing angles θ12 = 34.29◦, θ23 =

−42.85◦, and θ13 = −8.56◦. These calculated angles match
their empirical values θ12=± 34.47◦, θ23=± (38.39◦−45.81◦),
and θ13 = ±8.5◦ extremely well.

Thus, the three mixing angles originate from the three
U2 generators acting together to become the k generator of
SU(2). Note that I assume the charged lepton mixing matrix
is the identity. Therefore, any discrepancy between these de-
rived angles and the empirical angles could be an indication
that the charged lepton mixing matrix has off-diagonal terms.

The quark mixing matrix CKM is worked out the same
way [2] by using four discrete rotational groups in R4, [3,3,3],
[4,3,3], [3,4,3], [5,3,3], the [5,3,3] being equivalent to 2I× 2I.
The mismatch of the third generators again requires the lin-
ear superposition of these four quark groups. The 3× 3 CKM
matrix is a submatrix of a 4× 4 matrix. However, the mis-
match of 3 lepton families to 4 quark families indicates a tri-
angle anomaly problem resolved favorably in a later section
by applying the results of this section.

3 Derivation of the Weinberg angle

The four electroweak generators of the SM local gauge group
SU(2)L × U(1)Y are typically labeled W+, W0, W−, and B0,
but they can be defined equivalently as the quaternion gener-
ators i, j, k and b. But we do not require the full SU(2) to act
upon the flavor states ± 1

2 for discrete rotations in the unitary
plane C2 because the lepton and quark families represent spe-
cific discrete binary rotational symmetry subgroups of SU(2).
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That is, we require just a discrete subgroup of SU(2)L ×
U(1)Y . In fact, one might suspect that the 2I subgroup would
be able to perform all the discrete symmetry rotations, but
2I omits some of the rotations in 2O. Instead, one finds that
2I× 2I′ works, where 2I′ provides the “reciprocal” rotations,
i.e., the third generator U2 of 2I becomes the third generator
U′2 for 2I′ by interchanging ϕ and ϕ−1:

U2 = −
1
2

i − ϕ
2

j +
ϕ−1

2
k, U′2 = −

1
2

i − ϕ
−1

2
j +
ϕ

2
k. (1)

Consider the three SU(2) generators i, j, k and their three
simplest products: i× i = −1, j× j = −1, and k× k = −1. Now
compare the three corresponding 2I× 2I′ discrete generator
products: i× i = −1, j× j = −1, and

U2 U′2 = −0.75 + 0.559i − 0.25 j + 0.25k, (2)

definitely not equal to −1. The reverse product U′2U2 just
interchanges signs on the i, j, k, terms.

One needs to multiply this product quaternion U2U′2 by

P = 0.75 + 0.559i − 0.25 j + 0.25k (3)

to make the result −1. Again, P′ has opposite signs for the i,
j, k, terms only.

Given any unit quaternion q = cos θ + n̂ sin θ, its power
can be written as qα = cosαθ + n̂ sinαθ. Consider P to be a
squared quaternion P = cos 2θ + n̂ sin 2θ because we have the
product of two quaternions U2 and U′2. Therefore, the quater-
nion square root of P has cos θ =

√
0.75 = 0.866, rotating

the U2 (and U′2) in the unitary plane C2 by the quaternion an-
gle of 30◦ so that each third generator becomes k. Thus the
Weinberg angle, i.e., the weak mixing angle,

θW = 30◦. (4)

Therefore, the Weinberg angle derives from the mismatch of
the third generator of 2I× 2I′ to the SU(2) third generator k.

The empirical value of θW ranges from 28.1◦ to 28.8◦,
values less than the predicted 30◦. The reason for the discrep-
ancy is unknown (but see [7]), although one can surmise ei-
ther (1) that in determining the Weinberg angle from the em-
pirical data perhaps some contributions have been left out, or
(2) the calculated θW is its value at the Planck scale at which
the internal symmetry space and spacetime could be discrete
instead of continuous.

4 Anomaly cancellation

My introduction of a fourth quark family raises immediate
suspicions regarding the cancellation of the triangle anomaly.
The traditional cancellation procedure of matching each lep-
ton family with a quark family “generation by generation”
does produce the triangle anomaly cancellation by summing
the appropriate U(1)Y , SU(2)L, and SU(3)C generators, pro-
ducing the “generation” cancellation.

However, we now know that this “generation” conjecture
is incorrect, because the derivation of the lepton and quark
mixing matrices from the U2 generators of the discrete binary
subgroups of SU(2) above dictates that the 3 lepton families
act as one collective lepton family for SU(2)L × U(1)Y and
that the 4 quark families act as one collective quark family.

We have now created an effective single “generation” with
one effective quark family matching one effective lepton fam-
ily, so there is now the previously heralded “generation can-
cellation” of the triangle anomalies with the traditional sum-
mation of generator eigenvalues [8]. In the SU(3) representa-
tions the quark and antiquark contributions cancel. Therefore,
there are no SU(3)× SU(3)×U(1), SU(2)×SU(2)×U(1),
U(1)×U(1)×U(1), or mixed U(1)-gravitational anomalies
remaining.

There was always the suspicion that the traditional “gen-
eration” labeling was fortuitous because there was no spe-
cific reason for dictating the particular pairings of the lepton
families to the quark families within the SM. Now, with the
leptons and quarks representing the specific discrete binary
rotation groups I have listed, a better understanding of how
the families are related within the SM is possible.

5 Summary

The Weinberg angle derives ultimately from the third genera-
tor mismatch of specific discrete subgroups of SU(2) with the
SU(2) quaternion generator k. The triangle anomaly cancel-
lation occurs because 3 lepton families act collectively to can-
cel the contribution from 4 quark families acting collectively.
Consequently, the SM may be an excellent approximation to
the behavior of Nature down to the Planck scale.
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