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The paper concerns an “ab initio” theoretical model based on the space-time quantum
uncertainty and aimed to identify the conceptual root common to all four fundamental
interactions known in nature. The essential information that identifies unambiguously
each kind of interaction is inferred in a straightforward way via simple considerations
involving the diffusion laws. The conceptual frame of the model is still that introduced
in previous papers, where the basic statements of the relativity and wave mechanics
have been contextually obtained as corollaries of the quantum uncertainty.

1 Introduction

Understanding the fundamental interactions of nature is cer-
tainly one among the most challenging topics of the modern
physics; a unified theory able to account for the fundamental
forces is a dream of the physicists since a long time [1, 2].
The science of the fundamental interactions progressed with
the advancement of the physics of the elementary particles
[3], whose properties could be tested by examining their way
of interacting with other particles. The theoretical models
bridging quantum and relativistic theories [4, 5] progressed
along with the merging of the physics of the elementary par-
ticles and quantum fields [6] with that of the fundamental in-
teractions. All this culminated with the formulation of the
standard model [7] and with the superstring theory [8]. The
way the particles interact involves significantly even the cos-
mology [9, 10]. The GU theories [11, 12] share some general
concepts about the four fundamental interactions, their basic
idea to model the force between quantum particles is in prin-
ciple simple: to exchange appropriate elementary particles
that transfer momentum and energy between the interacting
partners. The vector bosons are acknowledged to mediate
the forces between particles according to their characteristic
features of lifetime and action range [13]. These messenger
particles, quanta of the respective fields, are said to mediate
the interaction that propagates with finite velocity and per-
turbs the space-time properties. This way of thinking sug-
gests reasonably the key role of the displacement mechanism
of the particles that propagate the interaction, e.g. the dif-
ferent transport rates of massive or massless messengers; this
means, in particular, that the space in between a set of inter-
acting particles is filled with the vector bosons mutually ex-
changed. As clouds of these latter flow throughout the space-
time, it is reasonable to expect that the global properties of
the resulting interaction should depend on the ability of the
messengers to spread around the respective partners. Even-
tually, since the mutual positions of each particle in the set
are in general functions of time, even random local density
gradients of these messengers are expectedly allowed to form
throughout the space-time.

These preliminary considerations feed the idea of imple-

menting a model of fundamental interactions based on a ap-
propriate mechanism of transport of matter/energy, suffi-
ciently general to be suitably extended from sub-nuclear to in-
finite range interactions. Among the possible transport mech-
anisms deserves attention the particle diffusion, driven by a
gradient law originated by a non-equilibrium situation; as it
has been shown in a previous paper [14], this law is strictly
connected with the global entropy increase of an isolated ther-
modynamic system, the diffusion medium plus the diffusing
species both tending to the equilibrium configuration in the
state of maximum disorder. So the driving force of the dif-
fusion process is actually the second principle of thermody-
namics, i.e. a law so general to hold at the nano-micro-macro
scales of interest in the present context. As a matter of fact,
it has been found that this law allows describing not only the
concentration gradient driven mass transport but also other
important laws of physics: for instance Ohm’s electric con-
ductivity or Fourier’s heat conductivity or Poiseuille pressure
laws [14]. So, in agreement with the quantum character of
the approach therein introduced, appears stimulating in prin-
ciple the idea of testing via the diffusion laws even the ex-
change of vector bosons to describe the fundamental interac-
tions. This hint leads in a natural way to the idea of dynamical
flux of messenger particles, by consequence of which are ex-
changed momentum and energy of the interacting partners.
This assumption merely requires that the messengers of the
forces are exchanged as clusters of particles randomly flow-
ing through the space-time and thus characterized in general
by local concentration gradients. The physics of the four fun-
damental interactions has been already concerned in a dedi-
cated paper [15]; in that paper the interactions have been de-
scribed starting directly from the concept of space-time un-
certainty. Here this problem is reformulated via the diffusion
laws only in a surprisingly simple way. This paper aims to
show that the key features of the fundamental forces are ob-
tained by elaborating purposely the diffusion laws; it will be
emphasized that these laws provide interesting hints also for
relativistic and thermodynamic considerations. Of course the
purpose of the paper is not that of providing an exhaustive
description of the fundamental interactions, which would re-
quire a much longer review of the huge amount of literature
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existing about each one of them; the paper intends instead to
emphasize an even more crucial aspect of this topic, i.e. how
to infer the essential features of all known interactions from
a unique fundamental principle; in other words, the aim is to
focus on a unique conceptual root from which follow contex-
tually as corollaries all fundamental interactions. The paper
introduces an “ab initio” model via considerations limited to
the minimum necessary to infer the distinctive features of the
various forms of interaction that identify unambiguously each
one of them. Despite this topic is usually tackled via heavy
computational ways, the present theoretical model is concep-
tual only but surprisingly straightforward. While the idea of
interactions due to a diffusion-like flux of vector bosons has
been early introduced [16], in the present paper this hint is
further implemented. The model concerned in this paper ex-
ploits first the quantum origin of the diffusion laws, shortly
reported for completeness of exposition, to infer next the in-
teractions directly via the diffusion laws. Some concepts al-
ready published [14, 15, 16] are enriched here with further
considerations in order to make this paper as self-contained as
possible. It is clear the organization of the paper: the section
2 introduces the quantum background of the model and both
Fick diffusion laws, plus ancillary information useful in the
remainder sections; the section 3 introduces some thermody-
namic considerations; the section 4 concerns the fundamental
interactions, whereas the section 5 concerns a few additional
remarks on the gravity force.

2 Physical background

The statistical formulation of the quantum uncertainty reads
in one dimension

∆x∆px = nℏ = ∆ε∆t, ∆ε = vx∆px, vx = ∆x/∆t. (1)

The subscript indicates the component of momentum range
along an arbitrary x-axis. The second equality is actually con-
sequence of the former merely rewritten as (∆x/vx)(∆pxvx),
being ∆t the delocalization time lapse necessary for the par-
ticle to travel throughout ∆x; so this definition leaves un-
changed the number n of quantum states allowed to the con-
cerned system. Since the local coordinates are waived “a
priori”, i.e. conceptually and not as a sort of approxima-
tion aimed to simplify some calculation, these equations fo-
cus the physical interest on the region of the phase space ac-
cessible to the particle rather than on the particle itself. As
these equations link the space range ∆x to the time range ∆t
via n, any approach based on these equations is inherently
four-dimensio-nal by definition. The sizes of the uncertainty
ranges are arbitrary, unknown and unknowable; it has been
shown that they do not play any role in determining the eigen-
values of the physical observables [17], as in effect it is known
from the operator formalism of the wave mechanics. Actually
it is possible to show that the wave formalism can be inferred
as a corollary of the Eqs. (1) [17], coherently with the fact that

n plays just the role of the quantum number in the eigenval-
ues inferable via these equations only [18, 19]. The Eqs. (1),
early introduced in these papers to provide a possible way to
describe the quantum systems in alternative to the solution
of the pertinent wave equations, have been subsequently ex-
tended to the special and general relativity [20]. It has been
shown for instance that a straightforward consequence of the
space time uncertainty is

c2∆px = vx∆ε. (2)

The demonstration is so short and simple to deserve of
being mentioned here for completeness: this equation and the
next Eq. (3) are enough for the purposes of the present paper.
Consider a free particle delocalized in ∆x. If this particle is
a photon in the vacuum, then ∆x/∆t = c; i.e. the time range
∆t is necessary by definition for the photon to travel ∆x. Yet,
trusting to the generality of the concept of uncertainty, the
Eqs. (1) must be able to describe even the delocalization of a
massive particle moving at slower rate vx = ∆x/∆t < c. Let
us examine now this problem according to the Eqs. (1), i.e.
starting from ∆x∆px = ∆ε∆t to infer ∆ε/∆px = ∆x/∆t; as
c represents the maximum velocity allowed to any particle,
it must be true that ∆x/∆t ≤ c, whence ∆ε/∆px ≥ c. The
inequality therefore constrains the ratio of the range sizes ∆ε
and ∆px depending on whether the delocalized particles are
massive or not. Anyway both chances are considered writing
∆ε/∆px = (c/vx)c. One finds thus the sought Eq. (2), which
implies the local functional dependence c2 px = vxε between
energy and momentum and velocity components of the mas-
sive particles. Also note that the Eq. (2) implies the concept
of mass simply introducing the limit

lim
vx→0

∆px

vx
=
∆εrest

c2 = m. (3)

As there is no compelling reason to expect a vanishing ∆εrest

for vx → 0, one concludes that the left hand side is in general
finite and corresponds to the definition of mass. Both signs
are allowed in principle to vx and thus to ∆px; yet squaring
c4∆p2

x = v2
x∆ε

2 and implementing again vx < c, one finds
c2∆p2

x < ∆ε
2 i.e. ∆ε2 = c2∆p2

x+∆ε
2
o; thus the local functional

dependence ε2 = c2 p2
x + ε

2
o, well known, combined with the

Eq. (3) yields εo = mc2 and also the explicit expressions of ε
and px compliant with the respective Lorentz transformations.

2.1 Quantum basis of the diffusion laws

This subsection assumes that the diffusion medium is an iso-
tropic body of solid, liquid or gas matter at constant and uni-
form temperature. The following considerations shortly sum-
marize the reasoning introduced in [14]. Let us divide both
sides of the Eq. (2) by voV , being vo an arbitrary velocity and
V an arbitrary volume. So one finds

vxC = ∆Jx, C =
∆px

voV
, ∆Jx =

∆ε/c2

V
vx. (4)
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As C has physical dimensions mass/volume, it represents the
average concentration of a mass m in the volume V , whereas
∆Jx is the net change of the flux of particles moving at av-
erage rate vx through V . So ∆Jx, whose physical dimensions
are mass/(time×sur f ace), describes the net flux of matter en-
tering in and leaving out two opposite surfaces delimiting V;
the first Eq. (4) also implies that the functional dependence
of any Jx within its uncertainty range ∆Jx upon the corre-
sponding local flux of m fits the classical definition Jx = Cvx.
Assuming that ∆ε/c2 is the energy equivalent of mass, the last
equation inferred with the help of the Eq. (2) extends the defi-
nition of flux of the first equation to the change of energy den-
sity inside V . Write now V = ∆x3, which is certainly possible
regardless of the particular geometric shape because both V
and ∆x are arbitrary; so any shape factor, e.g. 4π/3 for spheri-
cal V , is inessential because it would still yield V = ∆x′3 once
included in ∆x′. Since ∆x−3 = −∂∆x−2/2∂∆x, one finds

∆Jx =
∆px

∆x3 = −
∆px

2
∂∆x−2

∂∆x
.

Moreover ∆x−2 = ∆p2
x/(nℏ)

2, so that

∆Jx = −
∆p2

x

(nℏ)2

∂∆px

∂∆x
= − 1

3(nℏ)2

∂∆p3
x

∂∆x

which yields in turn

∆Jx = −
nℏ
3
∂(1/∆x3)
∂∆x

= − nℏ
3m
∂(m/∆x3)
∂∆x

. (5)

The last equality holds under the reasonable assumption
of constant mass m in the volume ∆x3: as both V and m are
arbitrary, the former can be conveniently chosen in order to
fulfil the requirement that the latter is simply redistributed
within ∆x3 during an assigned diffusion time ∆t related to
∆Jx. Indeed the fact of having defined C as the average con-
centration of a constant amount of diffusing mass does not
exclude the existence of a concentration gradient within V; in
effect ∆Jx results in the Eq. (5) as the concentration gradient
driven mass flux at the boundary surfaces of V . Also note
that ℏ/m has the same physical dimensions, length2/time, of
a diffusion coefficient D; so, as shown in [14], it is possible to
write D = qnℏ/m being q an appropriate numerical coefficient
able to fit the experimental value of D of any species mov-
ing in any diffusion medium. Owing to the generality of the
Eqs. (1), no specific hypothesis is necessary about whether
the concerned diffusion process occurs in gas or liquid or
solid phase or even in the vacuum; also, this holds at any
temperature and value of C. So the last equation (5) reads

∆Jx = −D
∂C
∂∆X
, C =

m
∆x3 , ∆X =

∆x
q
, D =

qnℏ
m
. (6)

Of course the inessential factor 3 has been included into q.
Here C is related to the given amount of mass m redistributed

within V; so it depends not only on m itself, but on the space
extent through which this redistribution was allowed to oc-
cur. This result is nothing else but the well known first Fick
gradient law, now straightforward consequence of the funda-
mental Eqs. (1). So far, for simplicity has been concerned the
one-dimensional case, symbolized by the subscript x denot-
ing the actual vector components of momentum and displace-
ment velocity of m along an arbitrary x-axis. Yet it is useful to
account explicitly for the vector nature of the equations above
summarizing the Eqs. (4) and (6) as follows:

∆J = Cv = −D∇C. (7)

For the following purposes, it is interesting to extend these
first results. Given an arbitrary function f (x, t) of coordinate
and time, express its null variation δ f (x, t) = 0 as (∂ f /∂x)δx+
(∂ f /∂t)δt = 0 that reads vx(∂ f /∂x)+ (∂ f /∂t) = 0 i.e. v · ∇ f +
∂ f /∂t = 0; this yields ∇ · ( f v) − f∇ · v = −∂ f /∂t. It is
convenient in the present context to specify this result putting
f = C, in which case f v = J; thus

∇·∆J = −∇·(D∇C) = −∂C
∂t
+C∇·v C = C(x, y, z, t). (8)

In the particular case where v is such that the second addend
vanishes, one obtains a well known result, the second Fick
equation subjected to the continuity boundary condition re-
quired by δ f = 0 i.e.

∇ · ∆J = −∂C
∂t

∇ · v = 0. (9)

The condition on v is satisfied if in particular:
(i) v = iv1(y, z, t) + jv2(x, z, t) + kv3(x, y, t) or (ii) v = v(t) or
(iii) v = const.

Anyway, whatever the general analytical form of v might
be, this condition means that the vector v is solenoidal, which
classically excludes sinks or sources of matter in the volume
∆x3 enclosing m. Note however that since the boundaries of
any uncertainty range are arbitrary and unknown, introducing
the range ∆J = J − J0 means implementing the actual J as
change of the flux in progress with respect to a reference flux
J0 appropriately defined. For instance J0 could be a constant
initial value at an initial time t0 of ∆t = t − t0 where the dif-
fusion process begins, in which case J0 can be put equal to
zero by definition; this means determining the initial bound-
ary condition J0 = 0 at t0 = 0. Yet more in general is remark-
able the fact that, according to the Eq. (8), the usual classical
form J = Cv is also obtained if J0 is regarded as a reference
flux as a function of which is defined J that fulfils the condi-
tion

∇ · J = −∂C
∂t

∇ · J0 = −C∇ · v. (10)

The quantum chance of expressing the diffusion equations
considering ∆J instead of J emphasizes that the classical view
point is a particular case of, and in fact compatible with, the
Eqs. (1).
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This section has shown that the usual Fick equation (8)
written as a function of J and C does not hold necessarily
in the absence of sinks or sources of matter only, it includes
also the chance ∇ · v , 0 provided that the boundary condi-
tion about the reference flux gradient ∇ ·J0 is properly imple-
mented. In this subsection it has been also shown that all this
has a general quantum basis.

2.2 Diffusion and relativistic velocity addition rule

Let us consider the Eq. (7) ∆J = Cv and express the change
δ∆J of ∆J as a function of the variations of δv and δC

δ∆J = vδC +Cδv v = vx + vy + vz v = v(∆t) (11)

to calculate the scalar product of δ∆J by one component of v,
e.g. vx:

vx · δ∆J = vx · vδC +Cvx · δv. (12)

It is interesting to define in particular δv orthogonal to this
component vx for reasons clarified below; hence

vx · δv = 0, vx = δv − (δv)2 vo

vo · δv
. (13)

The second equation shows the form of vx that satisfies the
former condition whatever the ancillary vector vo might be.
So, owing to the Eqs. (7) and (12), one finds

vx · δ∆J = vx · vδC = δ∆J · δv − (δv)2 vo · δ∆J
vo · δv

. (14)

As concerns the second equality, eliminating (δv)2 between
the Eqs. (14) and (13) one finds

vx = δv −
(δv − vx) · δ∆J

vo · δ∆J
vo. (15)

As concerns the first equality (14), it is possible to write

vx · δ∆J = ±vxδ∆Jx,

δ∆Jx = ±
v · vxδx

vx

δC
δx
= ±(vxδx)

δC
δx
, (16)

being δ∆Jx the modulus of the component of δ∆J along vx.
Note that v · vxδx/vx = v · uxδx, where ux is a unit vector
oriented along vx, has the physical dimensions of a diffusion
coefficient D; so, being |vx| arbitrary, the Eq. (16) reads

δ∆Jx = ±D
δC
δX
, D = qvxδx, δX = qδx, (17)

with q again proportionality coefficient, as previously intro-
duced. With the minus sign, the first equation fits the quan-
tum result (6); this sign therefore is that to be retained. Also,
this agreement supports the usefulness of the condition (13)
and introduces a further result in the quantum frame of the
present approach. Put vx = ξvo+v1, being ξ an arbitrary con-
stant and v1 another arbitrary vector; in this way vx has been

simply redefined through a linear combination of two vectors,
as it is certainly possible. So the second Eq. (13) reads

vo =
δv − v1

ξ − ξ(δv)2

v1 · δv

.

Multiplying both sides of this equation by the unit vector
uz one finds

voz =
δvz

ξ − ξ(δv)2

v1 · δv

, voz = vo ·uz, δvz = (δv−v1) ·uz. (18)

It is natural at this point to express the terms with physical
dimensions of velocity and square velocity appearing in the
last result as follows

δvz/ξ = ua − ub, (δv)2 = uaub, v1 · δv = c2,

being ua and ub two arbitrary velocities; then one obtains

voz =
ua − ub

1 − uaub

c2

. (19)

The physical meaning of this result is acknowledged by
reasoning “a posteriori”, i.e. by assessing its implications.
Trivial considerations show that, whatever the actual numer-
ical value of c might be, if ua = ub = c then voz = c; also,
the right hand side never exceeds c. Knowing that c is the
upper value of velocity accessible to any particle [16], and
so just for this reason invariant in different inertial reference
systems in reciprocal motion [17], the Eq. (19) must have the
physical meaning of addition velocity rule; the appropriate
notation should be therefore voz = u′a with u′a corresponding
to ua in another reference system, which is possible because
vo has not been specifically defined. Also this conclusion is
a corollary of the quantum principle of uncertainty, Eqs. (1),
from which started the present reasoning.

Let us summarize the results achieved in this subsection.
The Eqs. (6) and (7) introduce the laws of physics where
the gradient of some non-equilibrium property, e.g. the non-
uniform concentration of matter or charges and even tempera-
ture or pressure field gradients, generates the respective mass
or charge or heat flows and related driving forces; this ex-
presses the tendency of nature towards an equilibrium config-
uration corresponding to the maximum entropy [14]. Next the
Eq. (12) enabled to infer the x-component of δ∆J correspond-
ing to that of the Eq. (6), thus emphasizing the connection of
the present analysis with the straightforward quantum result.
Eventually the orthogonality position of the Eq. (13) was also
necessary to ensure that δv associated to δ∆J does not imply
the change of vx to which is related D of the Eq. (17); so the
Eq. (19) results pertinent to the Eq. (6) although obtained via
δv. This last result, Eq. (19), is a well known relativistic equa-
tion: the addition of the velocities, here expressed through
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one velocity component along an arbitrary axis identified by
uz, cannot overcome the limit speed c despite ua or ub or both
are themselves equal to c. All of these results have been ob-
tained via the first equation (13) only, which is straightfor-
ward consequence itself of the Eqs. (1). Besides the concrete
importance of these results, however, the question arises at
this point: what is the physical connection between the gra-
dient laws of physics and the relativistic composition of the
velocities? Otherwise stated: if the gradient law describes the
tendency of physical systems towards the equilibrium state,
why this result has been inferred contextually to the veloc-
ity addition rule of the special relativity? This question can
be further extended also considering the dimensional proper-
ties of the flux of matter of the Eq. (7), whose time derivative
obtained differentiating the Eq. (7) yields

δ∆J
δ∆t
= Cv̇ + vĊ, v̇ =

δv
δ∆t
, Ċ =

δC
δ∆t

; (20)

as explained in [17], the derivatives are defined in the present
model via the Eqs. (1) only, i.e. as ratios of the uncertainty
ranges therein introduced. In the present context the ratio re-
gards the change δ∆J during δ∆t. Being C = mass/volume
and noting that ∆J̇ is f orce/volume, one infers that F ≈ ma
in the case where vĊ can be neglected with respect to the for-
mer addend. As it is known, force and acceleration are par-
allel vectors in the non-relativistic approximation only; since
both C and v are arbitrary, in general they are expected to
contribute at increasing v to the relativistic limit |v| → c
where reasonably the second addend becomes important. In
effect is sensible the fact that vĊ someway surrogates the rel-
ativistic consequences of the space-time deformation, recall-
ing that C = m/V; writing V = ∆x3 and regarding the time
derivative as that due to the change of V pertinent to a fixed
amount m of mass, in agreement with the Eq. (5), one infers
Ċ = −3C∆ẋ/∆x. In fact ∆ẋ/∆x is a deformation of the space-
time uncertainty range ∆x, being by definition ∆ẋ = δ∆x/δ∆t;
so, at least in principle, the involvement of relativistic con-
cepts like the deformation of the space-time in the presence of
the mass is understandable. In effect, is not accidental the fact
that just this space-time deformation is the relativistic contri-
bution to the Newtonian term mv̇.

In conclusion, the actual quantum origin of the diffusion
equations stimulates the question about why relativistic im-
plications, apparently dissimilar, have been contextually ob-
tained without any “ad hoc” hypothesis. The only possible
answer is that the mere context of the quantum uncertainty
contains itself the intimate connection that underlies funda-
mental laws even of apparently different nature. All consid-
erations have been carried out by elaborating the Eqs. (1),
which are thus the common root of these results: so this
conclusion is not surprising because, as shown in [17], even
the basic statements of quantum mechanics and special and
general relativity are obtained as corollaries of the Eqs. (1).
Therefore further considerations are expectedly hidden in this

kind of approach, even as concerns the field gradient driven
forces.

2.3 Diffusion and driving forces

The second equality (7) reads v = −D∇ log(C) and suggests
a reasonable link with the known expression of the chemical
potential µ = kBT log(C); this hint yields

v = − D
kBT
∇kBT log(C) F = −∇kBT log(C); (21)

then merging the thermodynamic definitions of µ and mobil-
ity β, i.e. v = βF, one finds contextually the force F = −∇µ
acting on the diffusing species and the Einstein equation D =
βkBT linking mobility and diffusion coefficient. Note how-
ever that it is convenient to define µ as

µ = kBT log(C/C j) C j = C j(t) (22)

which leaves unaffected F and v and is still consistent with
the asymptotic limits F → 0 and v → 0 for C → const: i.e.
the driving force of the diffusion process vanishes when C
evolves as a function of time to reach any constant concentra-
tion. This limit implies a gradient free distribution of matter
attained for C → C j evolving as well e.g. to fit the limit value
of C. Further information is also inferred with the help of
the Eq. (2); dividing both sides by ∆t, this equation reads in
vector form F = ∆p/∆t = (∆ε/c2∆t)v, which yields with the
help of the Eqs. (1)

F =
nℏ(c∆t)v

(c∆t)3 =
nℏ
δx3 vδx, δx = c∆t, β =

c2∆t
∆ε
=

(c∆t)2

nℏ
.

Calculate the component of F along the arbitrary direction of
a unit vector u; owing to the Eq. (17) the scalar v ·uδx at right
hand side defines the diffusion coefficient D, so

Fu

D
=

nℏ
V
, V = δx3, D = v · uδx. (23)

Merging the last equation with the Eq. (6), one finds v ·uδx =
qnℏ/m, which reads mvuδX = nℏ and thus is just nothing
else but the first equality (1). Implementing again the idea
of expressing D via nℏ/m by dimensional reasons, see the
Eqs. (6), the Eq. (23) reads

Fu =
(nℏ)2

mV
; (24)

this step of the reasoning introduces diffusing mass and vol-
ume in the expression of the driving force of the macroscopic
process whose diffusion coefficient is D. Interesting evidence
about the importance of this result has been already empha-
sized in [16]; this point is so simple that it is worth being
shortly summarized here for completeness.

The Eqs. (1) and (6) yield qFu/D = nℏ/V and thus
qFu/D = ∆ε/νV having defined ν = ∆t−1; so the right hand
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side is an energy range per unit frequency and unit volume.
Putting ∆ε = hν one finds thus qFu/D = nh/V . Let now
V be the volume of a cavity in a body filled with radiation
in equilibrium with its internal walls, whose size is able to
contain the longest wavelength λ = c/ν of the steady radia-
tion field; of course λ is arbitrary. Then V = (2c/ν)3, where
the factor 2 accounts for λ with nodes just at the bound-
aries of the cavity, whose size is thus one half wavelength.
Hence Fu/D = 8h(ν/c)3n/q. Is significant here the physi-
cal meaning of the ratio Fu/D, which has physical dimen-
sions h/volume, regardless of the specific values of Fu and
D separately; thus, being Fu/D the component of the vector
F/D along the arbitrary direction defined by u, regard this
latter as a unit vector drawn outwards from the surface of the
body at the centre of the cavity. As u represents any possi-
ble path of the radiation leaving the cavity, let q be defined in
this case in agreement with ∫ (Fu/D)dΩ = πnh/V . Actually
Fu/D is taken out of the integral because it has no angular
dependence, whereas the integral ∫ dΩ is carried out over the
half plane above the surface of the cavity only, which yields
2π; a factor 1/2 is also necessary as this is the probability
that one photon at the surface of the cavity really escapes out-
wards instead of being absorbed inwards within the cavity. So
∫ (Fu/D)dΩ = 8πh(ν/c)3n yields the Planck black body for-
mula once replacing the number n of states allowed to the ra-
diation field with the factor (exp(hν/kBT ) − 1)−1 of the Bose
distribution statistics of all oscillators: as an arbitrary number
of particles is allowed in each state, n is also representative of
any number of particles concerned by the statistical distribu-
tion.

Implement now the definition of mobility to write δv =
βδF + Fδβ; dividing both sides by δβ one finds δv/δβ − F′ =
F = −∇µ, having put F′ = βδF/δβ. By analogy with F, let us
introduce the position F′ = −∇Y with Y appropriate energy
function related to δF; thus the result is

δv
δβ
= −∇(Y + µ). (25)

The physical meaning of this result is highlighted thinking
that the physical dimensions of β are time/mass; considering
in particular a volume V of matter where the mass is con-
served and simply redistributed, exactly as assumed in the
Eq. (5), δv/δβ is proportional to mass × δv/δt, i.e. it is noth-
ing else but the law of dynamics previously found via ∂J/∂t.
The Eq. (25), which agrees with the additive character of the
force vectors, could be also obtained via Euler’s homoge-
neous function theorem. Here F′ is regarded as if it would be
a function of β, whereas it is usually implemented as a func-
tion of the position vector r defined in an appropriate refer-
ence system. To this purpose it is enough to put the modulus
r = aβ, being a a parameter that controls the local values of
mobility as a function of r, to write F(aβ) = akF(β). So cal-
culating ∂F(aβ)/∂aβ = β∂F(aβ)/∂a = kak−1F(β) and putting
then in particular a = 1, as shown in standard textbooks, one

finds β∂F/∂β = kF(β); this is the essence of the Euler theo-
rem. Eventually, once having inferred F′ = βδF/δβ = akF(β),
similarly to F = −∇µ one concludes F′ = −∇Y too. An ex-
ample to elucidate Y could be the familiar force ∇Y = −ze∇ϕ
to which is subjected an ion of charge ze under the electric
potential gradient ∇ϕ, in which case Y + µ = zeϕ + µ is the
well known electro-chemical potential controlling the work-
ing conditions of a fuel cell. The result (25) is in fact possible
because δF = F2 − F1 is an arbitrary force; whatever F2 and
F1 might be, their arbitrariness ensures the general physical
meaning of F′ and thus its ability to be specified according
to some particular physical condition. Suppose known for in-
stance C, solution of the Eq. (8) with or without the condition
(9). This solution provides one with information about the
momentum pertinent to the mass transfer involved by the dif-
fusion process. Indeed ∆J represents from the dimensional
point of view the momentum change per unit volume related
to the redistribution of the mass within V . Thus, collecting
the Eqs. (2) and (7), one finds ∆J = ∆p/V = v∆ε/c2V = Cv
being ∆ε/c2 = m and mC = V by definition. Putting then
∆p = p − po, trivial manipulations with the help of the first
Eq. (21) yield

p
m
=

po

m
− D∇ log(C).

The ratios involve the velocities v and vo in agreement with
the Eqs. (21); for instance, the former is the rate with which
occurs the redistribution of m in V , the latter is the initial ve-
locity of the concerned species before the redistribution. In
summary, this section has shown that the diffusion equations
imply the transfer of matter, energy and momentum; more-
over, the velocity addition rule shows that the particles re-
sponsible of the mass transfer move in agreement with the
relativistic requirements under the condition (13). Eventually
the fact of having inferred F ≈ ma without precluding, at
least in principle, even its possible generalization to the rel-
ativity, suggests that the quantum basis of these preliminary
results is appropriate to carry out further tasks to describe the
fundamental interactions too.

3 Entropy and chemical potential

As concerns µ of the Eq. (22) it is known that [21](
∂µ

∂T

)
P,n
= −

(
∂S
∂n

)
T,P
, (26)

being dS the entropy change calculated keeping constant the
pressure and temperature during the time necessary to in-
crease n by dn; here n is a dimensionless amount of the con-
cerned substance, e.g. a number of atoms or molecules, whe-
reas dn can be approximately treated as a differential for large
n only. The following considerations aim to integrate the
Eq. (26) with respect to dn with the help of the Eq. (22).

Let m consist of a cluster of nm atoms or molecules ran-
domly distributed over an arbitrary number of elementary vol-
umes V j forming V , i.e. such that V =

∑
jV j: so the given
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amount m of mass in the actual volume V is in fact distributed
into several elementary volumes V j = V j(t). Regard thus each
V j as a possible state allowed to one or more particles among
the nm available: if for instance V j would be all equal, then
each ratio V j/V = 1/n j would yield the probabilityΠ j = 1/n j

of each state accessible to m, being by definition
∑

jn−1
j = 1.

Moreover the possible distributions of nm objects into the var-
ious V j are functions of time related to the corresponding
number N j of allowed quantum configurations: whatever N j

might be in general, depending on the kind of statistical dis-
tribution compliant with the possible spin of the nm particles,
V j/V is in fact a parameter related to the degree of disorder
characteristic of m in V . Hence integrating the Eq. (26) with
respect to dn means summing over all of the probabilities n−1

j
consistent with all possible V j compatible with V; this also
means integrating over d(V j/V) while keeping constant the
total number of particles nm in V , as required at left hand side
of the Eq. (26) and in agreement with the Eq. (5). Putting
therefore C j = m/V j by analogy with C = m/V , one infers
C/C j = V j/V and then

S j = S o − ∫ (∂µ j/∂T )P,ndn = S o − kB ∫ log(V j/V)d(V j/V) =

= S o − kB(V j/V)
(
log(V j/V) − 1

)
.

Clearly the reasoning about the j-th states in V can be
repeated for the j′-th states pertinent to the ratios V ′j/V

′ con-
cerning the volume V ′, which consists of related elementary
volumes V ′j such that

∑
j′V ′j/V

′ = 1. The same holds also
for a volume V ′′ defined as sum of elementary volumes V ′′

and so on; in this way it is possible to define the resulting ex-
tensive entropy collecting together all integrals on V j/V plus
that on V ′j/V

′ and V ′′j /V
′′, with V + V ′ + V ′′ + ·· = Vtot

and the respective masses m + m′ + m′′ + ·· = mtot each
one of which is that already concerned in the Eq. (5). Then
since by definition

∑
j′V ′j/V

′ =
∑

j′′V ′′j /V
′′ = 1 and thus∑

jV j/V +
∑

j′V ′j/V
′ +

∑
j′′V ′′j /V

′′ + ·· = jtot, summing over
all elementary volumes of which consist the total mass and
volume of the body yields

S = (S o + jtotkB) − kB

∑
j

V j

V
log

(
V j

V

)
. (27)

The first addend is clearly a constant. This result defines an
extensive function that collects all possible configurations N j

corresponding to all distributions of the various m in the re-
spective volumes V j compatible with each V where holds the
Eq. (5). In principle V is arbitrary; yet it must be sufficiently
large to be subdivided into V j whose n j allow considering dn j

as differentials. Note that the Eq. (27) has been early obtained
in [14] elaborating directly the Eqs. (5). Appears clear the
link between diffusion, regarded as the way through which
the nature drives a thermodynamic system towards the equi-
librium state, and entropy, −Σ jπ j log π j, which measures the
tendency towards states of progressively increasing disorder:

this link is the underlying chemical potential µ, strictly con-
nected with the concentration gradient of the diffusing species
on the one side and with the related entropy change on the
other side. If in the Eq. (26) dµ = 0, which corresponds to
F = −∇µ = 0 for uniform distribution of C, then dS = 0
reveals that the concerned system is in the state of maximum
disorder. The diffusion of matter and energy is thus the driv-
ing force that puts into action the second law.

4 Diffusion and fundamental interactions

This is the central section of the paper. The fact of hav-
ing inferred the results of the previous section from the fun-
damental Eqs. (1) along with relativistic implications, sug-
gests that additional outcomes should be obtainable elabo-
rating further the concepts hitherto introduced. For the fol-
lowing considerations it is useful to remark that the physi-
cal dimensions of J imply f lux/velocity = density = ρ and
f lux × velocity = energy density = η. The interactions are
thus described by a flux J of messenger particles, the respec-
tive boson vectors, displacing at rate v and characterized by
mass and energy densities ρ and η. The starting point of this
section is again the initial Eq. (9) identically rewritten as

∇ · ∆J +
∂C
∂t
= +∇ · ∇ × U+,

which holds whatever the arbitrary vector U+ might be; in-
deed the last addend is anyway null. Let us rewrite this equa-
tion with the help of the position ∇ · U− = C, which in turn
yields

∇ ·
(
∆J +

∂U−
∂t
− ∇ × U+

)
= 0. (28)

So the vector within parenthesis must be a constant or a func-
tion of time only; then in general

∆J+
∂U−
∂t
−∇×U+ = Jw, Jw = Jw(t), ∇·U− = C. (29)

The physical dimensions of U− and U+ are mass× sur f ace−1

and mass× time−1× length−1, whence U+ = U−c from dimen-
sional point of view; c is the pertinent constant velocity. The
homogeneous differential equation obtained from the Eq. (29)
is

∆J +
∂U−
∂t
− ∇ × U+ = 0, Jw = 0. (30)

Starting from this quantum groundwork, the next subsections
aim to highlight the steps ahead toward the goal of infer-
ring the four fundamental interactions of nature as contextual
corollaries.

4.1 The Maxwell equations

This subsection summarizes the reasoning reported in [15]; it
is emphasized in the next subsection 4.2 how to include also
the weak interaction still in the frame of the same approach.
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Consider first the homogeneous differential equation inferred
from the Eq. (30)

∇ × U+ = ∆J +
∂U−
∂t
, ∇ · U− = C. (31)

The first equation (31) defines the vector U+ as a function
of U−, the second one defines the vector U− as a function
of C. Putting ∆J = J2 − J1, it is reasonable to expect also
U− = U2 − U1 and thus C = C2 − C1. Moreover, besides the
dimensional link, appears now a preliminary reason to de-
fine U+ via the same vectors that implement U−: there is no
compelling necessity to introduce further vectors additional
to U1 and U2, about which specific hypotheses would be nec-
essary to solve both Eqs. (31). This choice simply requires
U+ = (U2 + U1)ξ, being ξ an appropriate proportionality fac-
tor. The vectors U1 and U2 just introduced are arbitrary, like-
wise the respective C1 and C2; for this reason both U+ and
U− have been defined with coefficients of the linear combi-
nations of U1 and U2 equal to 1 without loss of generality.
Hence, combining these definitions with the dimensional re-
quirements, one finds

U+ = c(U2 + U1), U− = U2 − U1, (32)

U2,U1 = mass/sur f ace,

so that the second Eq. (31) yields

∇ · U2 = C2, ∇ · U1 = C1, (33)

whereas the first Eq. (31) takes the form

c∇ × U2 + c∇ × U1 − J2 + J1 −
∂U2

∂t
+
∂U1

∂t
= 0. (34)

Now the problem arises about how could be rearranged the
terms appearing in this equation. For instance the chance

c∇ × U2 − J2 −
∂U2

∂t
= J′ = −c∇ × U1 − J1 −

∂U1

∂t
(35)

separates the quantities with subscript “2” from those with
subscript “1”; the ancillary arbitrary vector J′ that satisfies
both equalities (35) can be in general different from zero. If
so, then one obtains two equations

c∇ × U2 − J′2 −
∂U2

∂t
= 0, −c∇ × U1 − J′1 −

∂U1

∂t
= 0,

J′2 = J2 + J′, J′1 = J1 + J′. (36)

Note that it is possible to change the physical meaning
of the mass concentrations C1 and C2 of the Eqs. (33) sim-
ply multiplying both sides by qm/m and qe/m respectively; qe

is the total amount of electric charge possibly owned by the
mass m, the physical meaning of qm will be explained later
in analogy with that of qe. The multiplicative factors convert
the mass density C2 into the qe charge density C∗2, whereas

C1 turns into the qm density C∗1; analogously U1 and U2 turn
into U∗1 and U∗2 in the Eqs. (33), whereas the same holds for
J′2 and J′1 that turn respectively into charge and qm flows J∗2
and J∗1 in the Eqs. (36). This means having converted U1 and
U2 into quantities corresponding to the respective J∗1 and J∗2.
Indeed the Eqs. (33) and the last two equations read

∇ · U∗1 = C∗1, ∇ · U∗2 = C∗2,

C∗1 = C1
qm

m
, C∗2 = C2

qe

m
, (37)

whence

c∇×U∗2−J∗2−
∂U∗2
∂t
= 0, U∗2 = U2

qe

m
, J∗2 = J′2

qe

m
, (38)

and

−c∇ × U∗1 − J∗1 −
∂U∗1
∂t
= 0

U∗1 = U1
qm

m
, J∗1 = J′1

qm

m
. (39)

The Eqs. (38) and (39) have physical meaning different
from that of the respective Eqs. (36); subtracting side by side
these latter one of course finds again the initial Eq. (34),
whereas the same does not hold for the Eqs. (38) and (39) that
have been multiplied by the respective factors implemented in
the Eqs. (37).

Exploit now the fact that the Eqs. (38) and (39) can be still
merged together because anyway c∇ × U∗2 − J∗2 − ∂U∗2/∂t =
−c∇ × U∗1 − J∗1 − ∂U∗1/∂t. Note however that the vectors
U∗1(J∗1) and U∗2(J∗2) obtained solving separately the Eqs. (38)
and (39) have scarce physical interest, because the bound-
aries of the initial uncertainty range ∆J are arbitrary; what-
ever their form might be, they provide two independent solu-
tions that are functions of their own flux vectors only. More
interesting seems instead a general solution like U∗1(J∗1, J

∗
2)

and U∗2(J∗1, J
∗
2), in fact also prospected by the initial Eqs. (35)

themselves: this hint appears sensible because U+ and U−
consist by definition of the same vectors U1 and U2 in the
Eq. (31). So rewrite the last result as

c∇ × U∗1 − J∗2 − ∂U∗2/∂t = 0 = −c∇ × U∗2 − J∗1 − ∂U∗1/∂t,

where we have simply exchanged the sides where appear the
curl vectors. For simplicity of notation, but without loss of
generality, has been omitted the new flux vector J′′ possibly
shared by both equalities; indeed, as previously done with J′
to infer the Eqs. (36) from the Eq. (35), J′′ would have been
once more incorporated within J∗2 and J∗1. In conclusion one
obtains from the Eqs. (37) to (39)

∇ · U∗1 = C∗1, ∇ · U∗2 = C∗2, (40)

c∇ × U∗1 − J∗2 −
∂U∗2
∂t
= 0, c∇ × U∗2 + J∗1 +

∂U∗1
∂t
= 0.
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Despite the notations, mere consequence of the fact that
the starting point to attain the Eqs. (40) were the diffusion
equations of the section 2, is evident the conceptual equiva-
lence of these equations with the well known ones

∇ ·H = 0, ∇ · E = ρch, (41)

∇ ×H − ∂E
∂t
− Jch = 0, ∇ × E +

∂H
∂t
= 0,

simply regarding U∗2 ≡ E and U∗1 ≡ H together with the
charge density C∗2 ≡ ρch and C∗1 = 0. So, being J∗2 by def-
inition identified with the charge current density Jch, the Eqs.
(41) are nothing else but the Maxwell equations, usually writ-
ten putting C∗1 = ρqm = 0 and J∗1 = Jqm = 0; these positions,
due to qm = 0, acknowledge the lack of experimental evi-
dence of magnetic monopoles. Since these monopoles have
not yet been observed experimentally, the correspondence has
been emphasized as in the Eqs. (41), despite it would be very
attracting and convincing to consider qm , 0 too in the equa-
tions (41) by formal symmetry: it is worth emphasizing in-
deed that the reasoning hitherto carried out does not exclude
at all the theoretical existence of the magnetic monopoles,
rather this approach suggests explicitly them. The positions
above that read now

U∗+/c = E +H, U∗− = E −H,

entail four more reasons to validate the positions (32), ac-
cording which U− and U+ can be expressed through the same
vectors they introduce:
(i) U∗+/c + U∗ = 2H and U∗+/c − U∗− = 2E;
(ii) the same holds for the scalars U+ · U−/c = H2 − E2 and
U2
+/c

2 − U2
− = 4E ·H;

(iii) U− × U+/c = 2E ×H;
(iv) U2

+/c
2 + U2

− = 2(H2 + E2).
Once having specified in particular H and E as vectors

proportional to magnetic and electric fields, then the proposed
definitions of U− and U+ entail the well known features: the
scalars (ii) define two invariants with respect to Lorentz trans-
formations, whereas the vector (iii) is proportional to the Po-
ynting vector and defines the energy density flux; moreover
the point (iv) defines a scalar proportional to the energy den-
sity of the electromagnetic field; finally, the integral c−1 ∫ U+ ·
U−dV over the volume previously introduced is proportional
to the Lagrangian of a free field. As the only velocity that ap-
pears in these equations is c, one must conclude that the car-
riers of this kind of interaction are the photons. Despite these
last considerations are well known, their mentioning here is
not redundant: indeed these outcomes of the diffusion laws
come from and complete the quantum frame of the Maxwell
equations.

4.2 The weak interactions

The starting point of this subsection is the non-homogeneous
Eq. (29) which concerns Jw , 0. Of course even the results of

the previous subsection hold when Jw , 0 is negligible with
respect to ∆J; so the content of this subsection is not to be
regarded separately from the previous one, rather as its com-
pletion and generalization. Note that the Eq. (29) results for-
mally similar to the Eqs. (35); the only difference is that J′ is
in general function of x, y, z, t, as no hypothesis has been nec-
essary about it, whereas Jw is instead by definition function
of time only in agreement with the Eq. (28). So this case can
be formally handled as before, simply rewriting the Eq. (29)
as

∆J′+
∂U−
∂t
−∇×U+ = 0, ∆J′ = ∆J−Jw, Jw = Jw(t). (42)

Once replacing the previous change of flux ∆J = J2 − J1
with ∆J′ = J2 − J1 − Jw, is attracting the idea that in the
present problem Jw describes a quantum time fluctuation of
energy range ∆εw and time length ∆tw consistent with the un-
certainty equations (1). To highlight the link between the flux
modulus Jw = |Jw| and ∆εw, let ηw = v · Jw be the energy
density transient of time length ∆tw = ℏ/ηwV , being V = ∆x3

the volume within which is generated the mass density tran-
sient ρw = mw/V = Jw/v; of course v = |v| is the modulus
of the velocity with which the messenger particles propagate
this kind of interaction, whereas ∆εw is the fluctuation energy
change necessary to create messengers with lifetime ∆tw. It
is possible to express the mass flux Jw of mw as ℏ/∆x4

w by di-
mensional reasons; so Jw = ξℏ/∆x4

w, being ξ a proportionality
constant. Hence ξℏ/∆x4

w = mwv/∆x3
w yields

ζ
ℏ

∆xw
= mwc, v = γc, ζ =

ξ

γ
;

so the range of this interaction force is∆xw = (ξ/γ)(ℏc/mwc2).
Let us estimate ∆xw putting preliminarily ξ/γ ≈ 1, according
to the reasonable idea that a proportionality constant corre-
lating two quantities should be of the order of the unity; oth-
erwise some further physical effect should be identified and
implemented to justify ξ/γ >> 1. So one expects

∆xw ≈
ℏc

mwc2 , ∆xw ≈ 10−16cm, mwc2 ≈ 250 GeV. (43)

The estimates have been guessed to exemplify the corre-
lation between space range and energy scale; the figures are
plausibly typical of the weak interactions. This preliminary
estimate aimed merely to show that the positions Jw ≈ ℏ/∆x4

w

and ρw ≈ Jw/v and mass mw of the messenger particles are
reasonable; this result must be however better assessed and
more thoroughly justified.

The basic idea is that during the time transient described
by Jw, the range of the related interaction cannot be very
wide; a long distance travel of messenger particles would re-
quire an extended time length, incompatible with the short-
lasting transient ∆tw during which the classical energy con-
servation is temporarily replaced by the related quantum en-
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ergy uncertainty ∆εw. The next reasoning attempts to intro-
duce a short range force mediated by massive particles cre-
ated somewhere in the space-time by the energy fluctuation
∆εw and moving at rate vw < c: once having waived in the
Eqs. (1) the local time and space coordinates, it is possible
to say that at an arbitrary time t0 the quantum fluctuation nu-
cleates at the arbitrary point x0, y0, z0 the total mass mw that
flows along with Jw within a volume V with average density
ρw.

To confirm the existence of massive particles describing
this interaction, divide the Eqs. (1) by ∆t so that vx∆px =

ℏ/∆t = ∆ε with ∆px ≈ (m′ − m)vx according to the Eq. (3):
hence the uncertainty prospects the chance of two kinds of
vector bosons of different masses describing the interaction.

Consider first the carrier of mass m and implement the
Eq. (24), noting that the volume V defining the density ρw
can be written as V = ∆x2δxu without loss of generality; in-
troducing indeed V via an arbitrary coefficient ξ is actually
irrelevant, because ξ∆x2δxu would be handled exactly like
V = ∆x2δx′u simply rewriting δx′u = ξδxu. So the actual geo-
metric shape of V is waived because the sizes of ∆x and δxu

are arbitrary in the conceptual frame based on the uncertainty
Eqs. (1) only. Let us write the Eq. (24) as εu = (nℏ)2/m∆x2

with εu = Fuδxu and then identify εu with the energy mc2 nec-
essary to create just the concerned rest mass m by virtue of the
quantum energy fluctuation only; so one finds with n = 1 the
reduced Compton length associated to m

λ̄ = ∆x, λ̄ =
ℏ

mc
. (44)

This expression holds for any particle free and neutral: the
former condition assumes that m does not directly interact
with m′, the latter requires that no additional net charge is
created during ∆tw because of the total charge conservation
with respect to that early concerned by the Maxwell equations
before the quantum fluctuation.

Analogous considerations hold for m′, in particular as
concerns the condition of charge conservation during the fluc-
tuation time of Jw. So m′ either describes another neutral
particle or it could actually consist of a couple of particles
having equal mass and opposite charges; as in the latter case
the charges interact to form an electromagnetic interaction
driven Coulomb system with gain of energy, let therefore m′

consist of two particles of equal reduced mass m′r = m′/2.
The energy εem and Bohr radius rem of a hydrogenlike sys-
tem are well known: considering the ground energy state
with n = 1 only, they are εem = −α2m′rc

2/2 = −e2/2rem

with rem = α
−1ℏ/m′rc; thus εem is defined by the diametric

delocalization distance 2rem only of the system of charges or-
biting around their centre of mass [18]. Express rem via the
condition of steady circular waves 2πrem = nwλw early in-
troduced to account for the stability of the old Bohr atom,
whence εem = −πe2/nwλw with nw ≥ 1 an arbitrary integer.
Define then the new energy εw = nwεem = −πe2/λw. Clearly

nw = 1 still implies the electromagnetic energy εw = εem,
whereas nw > 1 implies εw > εem since λw < rem: this shows
that actually εem and εw are both allowed and thus coexist-
ing. On the one hand εw is hidden into and closely related
to εem: having merely replaced rem with the wavelengths λw
allowed to the circular waves of charge, εw appears as a sort
of short range high energy compatible with the electromag-
netic interaction from which it differs for nw > 1, rather than
the energy of a separate form of interaction. On the other
hand, if really the masses of all three particles correspond to
the available energy εw, it should be true that εw ≈ 3mwc2 for
three equal masses mw. In fact this expectation is compatible
with −πe2/λw putting mwc2 ≈ e2/λw while λw ≈ λ̄ ≈ λ̄′; the
replacement of rem with the smaller λw accounts for the in-
crease of energy necessary to create short range massive bo-
son vectors, whereas the factor π replacing the expected fac-
tor 3 simply reveals that the masses of the neutral and charged
boson vectors should actually be slightly different. Otherwise
stated, regarding this result as (m0 + m+ + m−)c2 = πe2/λw
with obvious meaning of symbols, one infers

m0c2 + 2m±c2 = π
e2

λw
, m±c2 =

e2

λw
,

m0c2 = (π − 2)
e2

λw
, m+ = m− = m±. (45)

Hence, it should be true that

m0/(m0 + m+ + m−) = (π − 2)/π,

m±/(m0 + m+ + m−) = 1/π.

Compare this last conclusion with the experimental data

mZ0 = 91.19 GeV, mW± = 80.39 GeV,

mtot = mZ0 + 2mW± = 251.97 GeV.

Indeed m0/mtot = 0.36 and m±/mtot = 0.32 agree well with
(π − 2)/π = 0.363 and 1/π = 0.318; despite the non-relativis-
tic approach, this agreement supports the idea that the energy
gain εw due to the charge system accounts for the creation of
its own mass plus a further neutral particle as well. The ex-
perimental energies support the idea that contracting λw from
2πrem down to 2πrem/nw implies the chance of a new form
of interaction correlated to and coexisting with the familiar
electromagnetic interaction at increasing values of the quan-
tum number nw.

Let us put now

m′c2 ≈ ℏ
∆tw

(46)

being ∆tw the characteristic lifetime of the vector bosons.
This result is reasonable, as m′ is proportional to the char-

acteristic energy ℏ/∆tw. To calculate this expression, let us
also assume m′ ∝ ∆tw: as any process in nature requires a
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definite time to be completed, it is natural to expect that the
amount of mass creatable during the fluctuation of Jw is pro-
portional to the time length of this fluctuation. In other words:
the longer the fluctuation, the greater the transient amount of
energy and thus of mass that can be created. Putting then
m′ = kw∆tw, where kw is an appropriate proportionality con-
stant, there are two chances: either kw ≈ 1 or kw , 1. In
general the latter chance means that some physical effect is
still hidden in kw, whereas the former chance means that in
fact kw accounts for the concerned physical correlation with-
out need of further considerations. Let us guess that kw ≈ 1
effectively represents the fluctuation lifetime; then, replacing
into the Eq. (46), one finds

kw(c∆tw)2 = ℏ, kw ≈ 1g/s, (47)

which yields ∆tw ≈ 10−24s. Note that the second Eqs. (45)
reads m±c2 = ℏαc/λw, which suggests that αc is the actual
displacement rate of the charged vector bosons having energy
ℏv/λw and that the same holds for the neutral boson. Assum-
ing therefore that v = αc is the actual displacement rate of
the massive bosons, the characteristic range of this interac-
tion should be of the order of ∆xw ≈ αc∆tw = 2 × 10−16cm,
whereas ℏc/∆xw ≈ 0.15 erg = 98 GeV in agreement with the
Eq. (43) previously found.

In conclusion we have introduced three particles of com-
parable mass, of the order of 90 GeV, two of which with op-
posite charges and the third neutral, that propagate the inter-
action within the sub-nuclear space range ∆xw during a char-
acteristic time range ∆tw. These results are the fingerprint of
the weak interaction, which has been inferred as a general-
ization of the Maxwell equations inherent the homogeneous
diffusion equation (30) via the transient fluctuation term Jw(t)
appearing in the more general Eq. (29). So this kind of inter-
action differs in principle from, but it is strictly related to, the
electromagnetic interactions of the Maxwell equations; it is
simply an extension of these latter to the transient formation
of three further short range carriers consistent with the time
flux function Jw additional to the electric and magnetic fields
described by J∗2 and J∗1, consequences themselves of the early
Fick diffusion equations. It is worth emphasizing once again
that the existence of magnetic monopoles does not conflict
with, rather comes directly from, all of these outcomes and
their quantum origin.

4.3 The gravity force

Exploit the dimensional relationship

±J · v = |F|
sur f ace

; (48)

of course v is the rate with which propagate the carriers of
the force F at right hand side and J their flux. The double
sign takes into account either chance of sign in principle pos-
sible at left hand side, being the modulus of force positive by

definition. The gravitons are acknowledged to be the carri-
ers of the gravity force at the light speed; anyway, whatever
the actual physical nature of these boson vectors and their dis-
placement rate might specifically be, is enough for the present
purposes to introduce a one-dimensional reference system R
to which will be referred the scalars of the Eq. (48). This
assumption on R is consistent with the chance of describing
the gravitational interaction between two masses placed ar-
bitrarily apart along one coordinate. Imposing this condition
and thus introducing an arbitrary x-axis, write |F| = ξFx: the
x-component of F has been related to its modulus |F| via the
dimensionless proportionality factor ξ, which obviously is an
unknown variable quantity. Moreover, being Jx = ℏ/∆x4, it
is possible to write in an analogous way J · v = ±ζJxvx =

±ζℏc/∆x4: once more the dimensionless proportionality fac-
tor ζ relating the scalar J · v to its arbitrary component Jxvx is
an unknown variable quantity. In this way, whatever vx and
the interaction carriers might be, Jxvx can be expressed via
ζ as a function of the constant quantity ℏc. Of course, even
sur f ace reduces to ∆x2 in R. These positions are useful to
rewrite the initial Eq. (48) as ζℏc/∆x4 = ±ξFx/∆x2 and thus
ζm2

oG/∆x4 = ±ξFx/∆x2 in R, having put ℏc = Gm2
o by di-

mensional reasons; this is surely possible by defining appro-
priately the value of the constant mass mo. Yet the specific
value of mo is not essential: the term m2

oζ/ξ yields indeed
m1m2, with m1 = moζ and m2 = mo/ξ because of the arbi-
trary values of the proportionality factors ζ and ξ. In this way
m1 and m2 are two arbitrary inputs defining Fx, which indeed
owing to the Eq. (48) reads

Fx = ±G
m1m2

∆x2 .

Note that the ∆x−2 law could be directly inferred from the
Eqs. (1), since in the present model the derivatives are de-
fined as mere ratios of uncertainty ranges. Differentiating the
Eqs. (1) at constant n yields δ∆px = −(nℏ/∆x2)δ∆x, then
dividing both sides by δ∆t corresponding to δ∆x one finds
δ∆px/δ∆t = −nℏvx/∆x2 with vx = δ∆x/δ∆t: at left hand side
appears the x-component of a force, at right hand side the
concept of mass is hidden in the physical dimensions of the
factor ℏvx, which reveals its physical meaning of space-time
deformation rate of δ∆x during δ∆t. Of course vx is positive
or negative depending on whether δ∆x represents expansion
or contraction of ∆x.

This short note aims to emphasize that in the present
model the concept of gravity force is still linked to that of
space-time deformation; yet the force also explicitly follows
from the diffusion equations. In conclusion, taking the minus
sign, we have found the Newton gravity law. Note however
three remarks:
(i) this result is not new, it has been inferred in different ways
directly from the Eqs. (1) in [20, 23];
(ii) here even the anti-gravity with the plus sign is allowed, as
it has been repeatedly found elsewhere [22, 23];
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(iii) the Newton law is actually an approximation of a more
general gravity law, as found previously when concerning
F ≈ ma.

In fact one could guess an expression of sur f ace like
∆x′2 = ∆x2(1 + a1∆xo/∆x + a2(∆xo/∆x)2 + ··); the series ex-
pansion is dimensionally compatible with the Eq. (48) and
reduces to ∆x2 previously considered for ∆x → ∞ only, i.e.
for weak gravity fields at large distances between the masses.
This expansion defines a more general scalar component
ζJ′xvx = ±ξF′x/∆x′2 defining a more complex force compo-
nent ±F′x that coincides, as a particular case, with that Fx

previously found simply putting equal to zero the higher order
coefficients a j≥1 of the series expansion. Note that Fx → 0
for ∆x → ∞. The present choice to express the series expan-
sions of sur f ace has been purposely assumed in order that
even the non-Newtonian F′x → 0 satisfies the same condition
of the Newtonian Fx.

4.4 The strong interaction

The starting point and the subsequent reasoning are still that
of the subsection 4.3. Note however that the dimensional
equation (48) does not compel defining f orce as purposely
done before; as a subtle and possible alternative, nothing hin-
ders defining in the one dimensional R the right hand side as

±J · v = |F|
∆x2 +

energy
∆x3 . (49)

Proceeding as before, we merge again J · v with the con-
cerned force per unit surface at the right hand side of the
Eq. (48); one finds ±ξℏc/∆x4 = Fx/∆x2 + εo/∆x3 i.e. Fx =

±ξℏc/∆x2−εo/∆x, where εo is a constant. This force compo-
nent is derivable from a potential energy U having the form

U = ±ξℏc
∆x
+ εo log(∆x/∆xo), (50)

which in turn, putting ∆x = ∆xo ± δx, reads

U ≈ ±
( a
∆x
± bδx

)
, ∆x = ∆xo ± δx,

a = ξℏc, b =
εo

∆xo
,

δx
∆xo
<< 1. (51)

This is certainly possible because, being both ∆x and ∆xo

arbitrary, the necessary inequality can be actually verified at
short distances ∆x >∼ ∆xo or ∆x <∼ ∆xo. This result with the
minus sign at right hand side reads

U ≈ − a
∆x
+ bδx,

i.e. it leads to the sought interaction energy of interest here.
It is however also interesting to note that attractive and

repulsive strong forces are in principle allowed in this model.
The physical dimensions of the constants a and b are

energy × length and energy/length, so that ab = energy2 and

a/b = length2: write then ℏ/
√

ab = ∆ts whence ℏc/
√

ab =
λs = c∆ts. The chance of introducing the characteristic range
λs directly via c agrees with the idea of massless vector
bosons mediating this kind of interaction, which follows in
turn from the lack of a compelling motivation to introduce a
slower velocity of heavy particles. Thus, putting reasonably
λs =

√
a/b too, one finds

a = ℏc, ξ = 1, (52)

i.e. a sensible value of the proportionality constant ξ. More-
over holds also now the reasoning previously introduced abo-
ut the proportionality between mass and characteristic life-
time of particles mediating the interaction. Let us repeat the-
refore an identical approach, concerning however the energy
of the messengers instead of their mass to rewrite the propor-
tionality condition m ∝ ∆t as

√
ab/c2 ∝ ∆ts; introducing once

more a proportionality constant k one finds
√

ab = kc2∆ts,
which reads in turn

√
ab = kc2ℏ/

√
ab so that ab = kℏc2.

Hence, owing to the Eq. (52),

b = kc, k ≈ 1g/s. (53)

The last position, coherent with that of the Eq. (47), is justi-
fied by the same hint of the previous section about the phys-
ical meaning of any proportionality constant correlating two
physical amounts. The values of these constants are therefore

a = 3 × 10−17erg cm = 0.2 GeV fm,

b ≈ 1010dyn =105N. (54)

These figures yield therefore the characteristic length ∆xo

defined by a/∆xo = b∆xo and the characteristic interaction
time as a function of the characteristic energy

√
ab; one ob-

tains

∆xo =
√

a/b ≈ 10−13cm, ∆ts = ℏ/
√

ab ≈ 10−24s,
√

ab =
√

kℏc2 ≈ 10−3erg = 0.6GeV.

Note that a/∆x reads ℏc/∆xo = α
−1e2/∆xo, i.e. the strength

of this kind of interaction is α−1 times greater than that of the
electromagnetic interaction. The form of U in the Eq. (51)
and these figures are fingerprints of the strong interaction.

5 Connection between gravity and electromagnetism

Note that in the cgs system (charge/mass)2 has physical di-
mensions l3/mt2, i.e. the same as the gravity constant. Yet,
what has to do the electromagnetism with the gravity force?
The possible answer relies just on the hint suggested by the
question itself, i.e. the link between (e/mG)2 and G. It is in-
teresting the possibility of specifying mG directly as follows

G =
ℏc
m2

G

=
1
α

(
e

mG

)2

,
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which defines mG = 2.2 × 10−5g as a function of the value of
G assumed known; moreover, introducing mG via its reduced
Compton length λ̄G, one finds

G =
1
α

(eλ̄Gc
ℏ

)2

=
e
α

e
m2

G

, λ̄G =
ℏ

mGc
. (55)

It is interesting the fact that the gravity constant is linked:
(i) to the electromagnetism via the electric charge, (ii) to the
relativity via c and (iii) to the quantum theory via ℏ; also,
λ̄G results to be of the order of the Planck length. However
we acknowledge gravity and electromagnetism as two sep-
arate forces despite their common origin from the diffusion
equations, whence the question: how and why does actually
the nature split the electromagnetic and gravity forces? The
starting point to answer this question is the Newton law itself
previously found. Rewrite first the Newton law with the help
of the Eq. (55) as

F = G
m1m2

∆x2 =
e
α

e
∆x2

m1

mG

m2

mG
. (56)

The only term of the second equality that does not depend nei-
ther upon ∆x nor upon m1 and m2 is e/α. Let us split therefore
this equation via a proportionality constant k as follows

G = k
e
α
,

m1m2

∆x2 =
F
G
=

1
k

e
∆x2

m1

mG

m2

mG
. (57)

Note now that the masses m1 and m2 appear in this equation as
dimensionless ratios m1/mG and m2/mG; these pure numbers
yield therefore

F
G
=

r2

k
Qe1

∆x2 =
1
αG

Qe2Qe1

∆x2 , Qe1 = r1e, Qe2 = r2e,

m1

mG
= r1,

m2

mG
= r2. (58)

In practice we have eliminated the concept of mass from
the right hand side of F: the arbitrary variable r1, which de-
pends on the arbitrary value of m1, converts the fixed charge e
of the second equation (57) into the arbitrary total charge Qe1.
The ratio r2/k involves an arbitrary number r2 and a factor k
that is reasonably related to the measure units of the modulus
Qe1/∆x2 of a new quantity we call electric field strength due
to the charge Qe1 at a distance ∆x: hold indeed for Qe2 the
same considerations highlighted for Qe1, i.e. Qe2 is an arbi-
trary charge in the field of Qe1. In fact the first Eq. (58) turns
into

F =
Qe2

α

Qe1

∆x2 . (59)

From numerical and dimensional points of view, the factor
α−1 is immaterial: since both Qe1 and Qe2 are arbitrary, one
could identically write F as Q′e2Qe1/∆x2 with Q′e2 = Qe2/α
without loss of generality. Conceptually, however, α−1 re-
places in fact G: the latter describes the interaction between

m1 and m2, the former that between Qe1 and Qe2. This also
shows that the analogous analytical form of the Coulomb and
Newton laws is not at all accidental, as already shown in [23].
It is clear that the key step of this conclusion is the position
G = k(e/α) of the Eq. (57). It is instructive to calculate e/α
and compare it with the experimental values of G in the cgs
and SI systems

G = 6.68 × 10−8cm3g−1s−2 = 6.68 × 10−11m3Kg−1s−2;

while being

ecgs = 4.8 × 10−10esu, eS I = −1.6 × 10−19C.

One finds

kcgs
ecgs

α
= kcgs6.6 × 10−8cm3g−1s−2,

kS I
eS I

α
= kS I2.1 × 10−12m3Kg−1s−2.

Of course kS I , kcgs for two reasons: (i) because of
the different measure units and (ii) because in the cgs sys-
tem the charge is directly defined via the electric force, in the
SI the charge is defined in an independent way via the Am-
pere; thus kS I requires an additional multiplicative factor k0
to match G calculated simply changing the mass and length
units of the proportionality constants kcgs and kS I . As the
physical dimensions of kcgs are (length/mass)3/2/time, one
expects kS I = (103/2kcgs)k0; the factor in parenthesis accounts
for the different metric units only. Hence

G = kcgs6.6 × 10−8cm3g−1s−2,

G = kcgsk06.6 × 10−11m3Kg−1s−2. (60)

This result clearly shows that the actual value of the gravity
constant is well described by the dimensionless proportion-
ality constant kcgs ≈ 1 and that kcgsk0 ≈ 1 is also true; ac-
tually k0 ≈ 1 is not surprising, it is consequence of having
implemented eS I by including the Coulomb factor in the sec-
ond Eq. (60). As repeatedly stated, a proportionality factor
of the order of the unity shows that the correlation between
two quantities is physically correct; no hidden effect is to be
expected. What is significant is that the dimensionless values
kcgs ≈ 1 and k0 ≈ 1 fit the experimental values of G in both
systems.

To conclude this section, it is worth noticing that the value
of G had been correctly calculated in several ways as a func-
tion of the fundamental constants of nature in the previous
paper [20]; moreover more details about the connection be-
tween gravity and electric forces have been emphasized in a
recent paper [23].
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6 Discussion

The idea of linking the diffusion laws to the fundamental in-
teractions was suggested by their generality and by the var-
ious implications inherent their basic concepts. Regarding
the formulae of the section 2 as strictly related to the mere
displacement of chemical elements, thus with outcomes per-
tinent to the solid state physics only, is certainly reductive.
Actually some concepts can be extrapolated beyond the plain
domain of the materials science, e.g. as they concern even the
fields. This aspect, evidenced by the first and last Eqs. (4),
has been emphasized considering for instance that the heat
transfer Fourier law has formal physical analogy with the dis-
placement of matter [14]. The connection with the fundamen-
tal interactions appears thus natural once acknowledging that
these latter consist of the exchange of messenger particles,
the vector bosons, that propagate throughout the space-time.

Follow the idea that any body of matter is surrounded by a
cloud of bosons randomly flowing towards another body with
which it interacts, and that in general both bodies are moving
by effect of the interaction itself; consequently transients of
local concentration gradients of these carriers throughout the
space-time are also allowed to form. If so, the ability of the
carriers to mediate the pertinent interaction reduces basically
to the diffusion laws governing the displacement of clusters of
these carriers. It has been evidenced that the concept of par-
ticle flux is crucial in finding the correlation between density
gradient of the carriers and strength and kind of interaction;
as the flux related to the concept of diffusion concerns intrin-
sically a non-equilibrium situation, even the interactions fit
the idea of dynamical universe evolving towards a thermody-
namic steady state.

Obviously the results introduced here are not exhaustive
in describing themselves all features of the fundamental
forces of the nature; this detailed investigation about each
form of interactions is not the actual purpose of the model,
which instead aims merely to identify their common root only
by merging diffusion laws and quantum uncertainty only. On
the one hand, the present conclusions must be regarded hav-
ing already in mind also previous results, obtained starting
directly from the Eqs. (1) to explain the significant features
of the various interactions [15]. On the other hand, the fact
that the same results are also obtainable via the diffusion laws
is informative of the physical mechanism upon which these
latter rely: otherwise stated, all interactions are consequences
of the second law, i.e. the vector bosons transfer the interac-
tion moving likewise chemical elements of a non-equilibrium
thermodynamic system to increase the global internal entropy
of the system. Are significant in this respect the considera-
tions of the section 3. A further implication of the present
model relies on the possibility of demonstrating that the mag-
netic monopoles can in fact exist, being compatible with the
basic ideas from which the interactions are inferred: at the
present stage of development, the model does not prospect

any reason to reject their existence. The isotropy of the space-
time is essential to introduce the pertinent diffusion coeffi-
cient as a numerical value D without requiring instead a ten-
sor matrix; even without excluding that actually this position
could be an oversimplification only, the results indicate that
the assumption is acceptable at least at the present level of
development of the model. Moreover no necessity of extra-
dimensions appears in this context, which however does not
exclude that these latter might actually exist.

A short remark is useful to explain why the diffusion
equations are the key to infer contextually and in a surpris-
ingly simple way the basic aspects of the fundamental interac-
tions. A partial answer is that the concept of uncertainty does
not require hypotheses or information about the kind of dif-
fusion medium, kind of vector bosons and strength and range
of the interactions; as the Eqs. (1) have a primary significance
regardless of any ancillary information, their consequences
are expected to match different kinds of interaction just be-
cause of their generality. Yet a more comprehensive answer
is that the quantum Eqs. (1) are inherently consistent with the
general relativity [17], so any reasoning based on these equa-
tions leads consequently to relativistic conclusions as well;
this explains why some valuable relativistic implications have
been contextually found as side outcomes throughout the pa-
per. Previous and present results demonstrate the validity of
the theoretical model where uncertainty ranges replace the
local values of the dynamical variables; ignoring these lat-
ter means accepting that the former only have true physical
meaning. On the one hand, it is worth recalling the key role of
the arbitrary boundaries of the uncertainty ranges to demon-
strate that the quantum origin of the Maxwell equations and
related consequences, e.g. the Gauss theorem and the Fara-
day law, rely on the concept of space-time ranges: E and H
were contextually introduced implementing just both bound-
aries of ranges to express via the Eqs. (1) the flux of vector
bosons that mediate the electromagnetic interaction between
charged particles. On the other hand, the most interesting
aspect of the formalism based on ranges concerns its concep-
tual meaning that merges quantum theory and relativity: so
the usefulness of the results presently achievable is not the
only support to their validity.

In the wave mechanics the dynamical variables of the
classical formulae are replaced by operators that constitute
the wave equations, whose solutions provides the eigenvalues
of the observables; in the present model the dynamical vari-
ables are replaced by the respective uncertainty ranges, the
eigenvalues are inferred by elementary manipulations of the
classical formulae while the quantization is introduced via n.
The present model reverts thus fundamental inputs and out-
comes of the standard wave mechanics: the uncertainty is no
longer consequence of the commutation rules of postulated
quantum operators, it becomes instead the fundamental state-
ment as a function of which the operator formalism is inferred
by consequence of the range formalism. Several papers, e.g.
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[18, 19] show that this way of thinking is a valid alternative
to the standard wave mechanics: the expressions of the eigen-
values are identical in all cases where the wave equations can
be solved analytically without the need of numerical proce-
dures. The intriguing advantage of the present approach is
thus that it not only agrees with the wave formalism, in fact
inferable as a corollary so that the present model is in prin-
ciple compliant with any quantum results today known, but
contextually implies even the conceptual foundations of the
special and general relativity [17]; so are not surprising the
chance of having obtained the Eq. (19) and recognized the
approximate character of the Netwton law F ≈ ma, prelim-
inarily obtainable as in the Eq. (20), without the relativistic
correction involving the space-time deformation in the pres-
ence of mass.

The quantum space-time uncertainty has profound impli-
cations in relativity, whose formulae result indeed expressed
themselves via uncertainty ranges; although the formulae are
seemingly identical, however their physical meaning is defi-
nitely different. E.g., it has been emphasized that the Eq. (2)
entails the functional dependence px = vxε/c2 of the local
dynamical variables: the latter equation is well known, the
former seems a redundant and pretextuous attempt to rewrite
the standard relativistic result. Yet just in this way, introduc-
ing ranges that replace local variables, the relativity is made
compliant with the quantum theory. The local dynamical vari-
ables are incompatible with the Heisenberg principle, the un-
certainty ranges do by definition; so the usual formulae of the
standard relativity are mere classical limit cases of range sizes
tending to zero, in agreement with the classical character of
the relativity itself.

In short, the present paper is a further contribution con-
firming that the Eqs. (1) represent the common root underly-
ing quantum theory and relativity.

7 Conclusion

The necessity of skipping a detailed analysis about the spe-
cific features of all forms of interaction, outside of the scope
of this paper, ranks the significance of the essential outcomes
provided by the model; the value of results already known re-
lies on the fact of being obtained contextually in the frame of
a unique idea, which emphasizes the validity of the theoretical
basis so far implemented. The approach proposed here sug-
gests that an appropriate basic assumption about the displace-
ment mechanism of the vector bosons has prioritary impor-
tance with respect to the detailed speculation about the single
interactions themselves; moreover the scalar J · v was proven
effective as a common basis to infer distinguishing informa-
tion even without introducing explicit hypotheses on the per-
tinent vector bosons. The analytical form of the gravity force
was inferred waiving the specific nature of the gravitons; the
well known form (51) of the strong force has been inferred
waiving the features of the gluons and their property of ex-

changing the colour force between quarks, whereas the elec-
tromagnetic interaction was found related to the photons as a
particular case of a more general electro-weak interaction in-
volving massive vector bosons. The weak interaction only re-
quired considering explicitly the displacement velocity of the
carriers, which cannot travel at the light speed as their masses
affect the characteristic space range and lifetime. Yet the ba-
sic features of all interactions depend primarily on the diffu-
sion like behaviour of vector bosons described case by case
through the form of the respective scalars J ·v. Although such
theoretical approach is seemingly classical, indeed the section
2 exploits standard vector calculus, relativistic implications
are anyway evident and occasionally even unexpected; this
is because the Eqs. (1) contain an obvious quantum charac-
ter that however encloses also relativistic implications, which
therefore appear by consequence while implementing them.
Considering the quantum origin of the diffusion laws, it is
not surprising that the implications of the model are general
enough to span not only the solid state physics but also the
fundamental interaction physics.
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