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A natural behavior is used to characterize by differential equation established on hu-

man observations, which is assumed to be on one particle or one field complied with

reproducibility. However, the multilateral property of a particle P and the mathematical

consistence determine that such an understanding is only local, not the whole reality

on P, which leads to a central thesis for knowing the nature, i.e. how to establish a

physical equation with a proper interpretation on a thing. As it is well-known, a thing

consists of parts. Reviewing on observations, we classify them into two categories, i.e.

out-observation and in-observation for discussion. The former is such an observation

that the observer is out of the particle or the field P, which is in fact a macroscopic

observation and its dynamic equation characterizes the coherent behavior of all parts in

P, but the later is asked into the particle or the field by arranging observers simultane-

ously on different subparticles or subfields in P and respectively establishing physical

equations, which are contradictory and given up in classical because there are not ap-

plicable conclusions on contradictory systems in mathematics. However, the existence

naturally implies the necessity of the nature. Applying a combinatorial notion, i.e. GL-

solutions on non-solvable equations, a new notion for holding on the reality of nature

is suggested in this paper, which makes it clear that the knowing on the nature by solv-

able equations is macro, only holding on these coherent behaviors of particles, but the

non-coherent naturally induces non-solvable equations, which implies that the knowing

by GL-solution of equations is the effective, includes the classical characterizing as a

special case by solvable equations, i.e. mathematical combinatorics.

1 Introduction

An observation on a physical phenomenon, or characters of

a thing in the nature is the received information via hearing,

sight, smell, taste or touch, i.e. sensory organs of the observer

himself, little by little for human beings fulfilled with the re-

producibility. However, it is difficult to hold the true face of

a thing for human beings because he is analogous to a blind

man in “the blind men with an elephant”, a famous fable for

knowing the nature. For example, let µ1, µ2, · · · , µn be all ob-

served and νi, i ≥ 1 unobserved characters on a particle P at

time t. Then, P should be understood by

P =


n⋃

i=1

{µi}

⋃

⋃

k≥1

{νk}
 (1.1)

in logic with an approximation P◦ =
n⋃

i=1

{µi} for P at time t. All

of them are nothing else but Smarandache multispaces ([17]).

Thus, P ≈ P◦ is only an approximation for its true face of P,

and it will never be ended in this way for knowing P as Lao

Zi claimed “Name named is not the eternal Name” in the first

chapter of his TAO TEH KING ([3]), a famous Chinese book.

A physical phenomenon of particle P is usually charac-

terized by differential equation

F
(
t, x1, x2, x3, ψt, ψx1

, ψx2
, · · · , ψx1 x2

, · · ·) = 0 (1.2)

in physics established on observed characters of µ1, µ2, · · · , µn

for its state functionψ(t, x) inR4. Usually, these physical phe-

nomenons of a thing is complex, and hybrid with other things.

Is the reality of particle P all solutions of (1.2) in general?

Certainly not because (1.2) only characterizes the behavior

of P on some characters of µ1, µ2, · · · , µn at time t abstractly,

not the whole in philosophy. For example, the behavior of a

particle is characterized by the Schrödinger equation

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + Uψ (1.3)

in quantum mechanics but observation shows it in two or

more possible states of being, i.e. superposition. We can not

even say which solution of the Schrödinger equation (1.3) is

the particle because each solution is only for one determined

state. Even so, the understanding of all things is inexhaustible

by (1.1).

Furthermore, can we conclude (1.2) is absolutely right for

a particle P? Certainly not also because the dynamic equa-

tion (1.2) is always established with an additional assump-

tion, i.e. the geometry on a particle P is a point in classical

mechanics or a field in quantum mechanics and dependent on

the observer is out or in the particle. For example, a water

molecule H2O consists of 2 Hydrogen atoms and 1 Oxygen

atom such as those shown in Fig. 1. If an observer receives in-

formation on the behaviors of Hydrogen or Oxygen atom but

stands out of the water molecule H2O by viewing it a geo-

metrical point, then such an observation is an out-observation

because it only receives such coherent information on atoms

H and O with the water molecule H2O.
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Fig. 1

If an observer is out the water molecule H2O, his all ob-

servations on the Hydrogen atom H and Oxygen atom O are

the same, but if he enters the interior of the molecule, he will

view a different sceneries for atom H and atom O, which are

respectively called out-observation and in-observation, and

establishes 1 or 3 dynamic equations on the water molecule

H2O.

The main purpose of this paper is to clarify the natural

reality of a particle with that of differential equations, and

conclude that a solvable one characterizes only the reality

of elementary particles but non-solvable system of differen-

tial equations essentially describe particles, such as those of

baryons or mesons in the nature.

For terminologies and notations not mentioned here, we

follow references [1] for mechanics, [5] for combinatorial ge-

ometry, [15] for elementary particles, and [17] for Smaran-

dache systems and multispaces, and all phenomenons dis-

cussed in this paper are assumed to be true in the nature.

2 Out-observations

An out-observation observes on the external, i.e. these macro

but not the internal behaviors of a particle P by human senses

or via instrumental, includes the size, magnitudes or eigen-

values of states, ..., etc.

Certainly, the out-observation is the fundamental for qua-

ntitative research on matters of human beings. Usually, a dy-

namic equation (1.2) on a particle P is established by the prin-

ciple of stationary action δS = 0 with

S =

t2∫

t1

dt L (q(t), q̇(t)) (2.1)

in classical mechanics, where q(t), q̇(t) are respectively the

generalized coordinates, the velocities and L (q(t), q̇(t)) the

Lagrange function on the particle, and

S =

∫ τ1

τ2

d4xL(φ, ∂µψ) (2.2)

in field theory, where ψ is the state function and L the La-

grangian density with τ1, τ2 the limiting surfaces of integra-

tion by viewed P an independent system of dynamics or a

field. The principle of stationary action δS = 0 respectively

induced the Euler-Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 and

∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

= 0 (2.3)

in classical mechanics and field theory, which enables one to

find the dynamic equations of particles by proper choice of L

or L. For examples, let

LS =
i~

2

(
∂ψ

∂t
ψ − ∂ψ

∂t
ψ

)
− 1

2

(
~

2

2m
|∇ψ|2 + V |ψ|2

)
,

LD = ψ

(
iγµ∂µ −

mc

~

)
ψ,

LKG =
1

2

(
∂µψ∂

µψ −
(
mc

~

)2

ψ2

)
.

Then we respectively get the Schrödinger equation (1.3) or

the Dirac equation

(
iγµ∂µ −

mc

~

)
ψ(t, x) = 0 (2.4)

for a free fermion ψ(t, x) and the Klein-Gordon equation

(
1

c2

∂2

∂t2
− ∇2

)
ψ(x, t) +

(
mc

~

)2

ψ(x, t) = 0 (2.5)

for a free boson ψ(t, x) hold in relativistic forms by (2.3),

where ~ = 6.582 × 10−22MeV s is the Planck constant, c is

the speed of light,

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
,

∂µ =

(
1

c

∂

∂t
,
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
,

∂µ =

(
1

c

∂

∂t
,− ∂

∂x1

,− ∂

∂x2

,− ∂

∂x3

)

and γµ =
(
γ0, γ1, γ2, γ3

)
with

γ0 =

(
I2×2 0

0 −I2×2

)
, γi =

(
0 σi

−σi 0

)

with the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

Furthermore, let L = √−gR, where R = gµνRµν, the Ricci

scalar curvature on the gravitational field. The equation (2.3)

then induces the vacuum Einstein gravitational field equation

Rµν −
1

2
gµνR = 0. (2.6)
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Usually, the equation established on the out-observations

only characterizes those of coherent behaviors of all parts in

a particle P. For example, a water molecule H2O obeys the

Schrödinger equation (1.3), we assume its Hydrogen atom H

and oxygen atom O also obey the Schrödinger equation (1.3)

as a matter of course. However, the divisibility of matter ini-

tiates human beings to search elementary constituting cells

of matter, i.e. elementary particles such as those of quarks,

leptons with interaction quanta including photons and other

particles of mediated interactions, also with those of their an-

tiparticles at present ([14]), and unmatters between a matter

and its antimatter which is partially consisted of matter but

others antimatter ([8-19]). For example, a baryon is predomi-

nantly formed from three quarks, and a meson is mainly com-

posed of a quark and an antiquark in the models of Sakata,

or Gell-Mann and Ne’eman on hadron and meson, such as

those shown in Fig. 2, where, qi ∈ {u, d, c, s, t, b} denotes a

quark for i = 1, 2, 3 and q2 ∈
{
u, d, c, s, t, b

}
, an antiquark.

But a free quark was never found in experiments. We can

not even conclude the Schrödinger equation (1.3) is the right

equation (1.2) for quarks because it is established on an inde-

pendent particle, can not be divided again in mathematics.

q1

q2 q3

q1 q2

....................................

...................

.................................

Baryon Meson

Fig. 2

Then, why is it believed without a shadow of doubt that

the dynamical equations of elementary particles such as those

of quarks, leptons with interaction quanta are (1.3) in phys-

ics? It is because that all our observations come from a macro

viewpoint, the human beings, not the particle itself, which

rationally leads to H. Everett’s multiverse interpretation on

the superposition by letting parallel equations for the wave

functions ψ(t, x) on positions of a particle in 1957 ([2]). We

only hold coherent behaviors of elementary particles, such as

those of quarks, leptons with interaction quanta and their an-

tiparticles by (1.3), not the individual, and it is only an equa-

tion on those of particles viewed abstractly to be a geomet-

rical point or an independent field from a macroscopic point,

which leads physicists to assume the internal structures me-

chanically for hold the behaviors of particles such as those

shown in Fig. 2 on hadrons. However, such an assumption

is a little ambiguous in logic, i.e. we can not even conclude

which is the point or the independent field, the hadron or its

subparticle, the quark.

In fact, a point is non-divisible in geometry. Even so, the

assumption on the internal structure of particles by physicists

was mathematically verified by extending Banach spaces to

extended Banach spaces on topological graphs
−→
G in [12]:

Let (V ;+, ·) be a Banach space over a field F and
−→
G a

strong-connected topological graph with vertex set V and arc

set X. A vector labeling
−→
G

L
on
−→
G is a 1−1 mapping L :

−→
G →

V such that L : (u, v)→ L(u, v) ∈ V for ∀(u, v) ∈ X
(−→
G

)
and

it is a
−→
G-flow if it holds with

L (u, v) = −L (v, u) and
∑

u∈NG (v)

L (vu) = 0

for ∀(u, v) ∈ X
(−→
G

)
, ∀v ∈ V(

−→
G), where 0 is the zero-vector in

V .

For
−→
G-flows

−→
G

L
,
−→
G

L1

,
−→
G

L2

on a topological graph
−→
G and

ξ ∈ F a scalar, it is clear that
−→
G

L1

+
−→
G

L2

and ξ · −→G
L

are also
−→
G-flows, which implies that all

−→
G-flows on

−→
G form a linear

space over F with unit O under operations + and ·, denoted

by
−→
G

V

, where O is such a
−→
G-flow with vector 0 on (u, v) for

∀(u, v) ∈ X
(−→
G

)
. Then, it was shown that

−→
G

V

is a Banach

space, and furthermore a Hilbert space if introduce

∥∥∥∥∥
−→
G

L
∥∥∥∥∥ =

∑

(u,v)∈X
(−→
G

)
‖L(u, v)‖ ,

〈−→
G

L1

,
−→
G

L2
〉
=

∑

(u,v)∈X
(−→
G

)
〈L1(u, v), L2(u, v)〉

for ∀−→G
L
,
−→
G

L1

,
−→
G

L2 ∈ −→G
V

, where ‖L(u, v)‖ is the norm of

L(u, v) and 〈·, ·〉 the inner product in V if it is an inner space.

The following result generalizes the representation theorem

of Fréchet and Riesz on linear continuous functionals on
−→
G-

flow space
−→
G

V

, which enables us to find
−→
G-flow solutions on

linear equations (1.2).

Theorem 2.1([12]) Let T :
−→
G

V

→ C be a linear continuous

functional. Then there is a unique
−→
G

L̂
∈ −→G

V

such that

T

(−→
G

L
)
=

〈
−→
G

L
,
−→
G

L̂
〉

for ∀−→G
L
∈ −→G

V

.

For non-linear equations (1.2), we can also get
−→
G-flow

solutions on them if
−→
G can be decomposed into circuits.

Theorem 2.2([12]) If the topological graph
−→
G is strong-

connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i
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such that L(uv) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the

Cauchy problem

{
Fi

(
x, u, ux1

, · · · , uxn
, ux1 x2

, · · ·) = 0

u|x0
= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ Rn for inte-

gers 1 ≤ i ≤ l, then the Cauchy problem


Fi

(
x, X, Xx1

, · · · , Xxn
, Xx1 x2

, · · ·) = 0

X|x0
=
−→
G

L

such that L (uv) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for

X ∈ −→G
V

.

Theorems 2.1−2.2 conclude the existence of
−→
G-flow solu-

tion on linear or non-linear differential equations for a topo-

logical graph
−→
G, such as those of the Schrödinger equation

(1.3), Dirac equation (2.4) and the Klein-Gordon equation

(2.5), which all implies the rightness of physicists assuming

the internal structures for hold the behaviors of particles be-

cause there are infinite many such graphs
−→
G satisfying condi-

tions of Theorem 2.1− 2.2, particularly, the bouquet
−→
B

Lψ

N , the

dipoles
−−→
D⊥

Lψ

0,2N,0 for elementary particles in [13].

3 In-observations

An in-observation observes on the internal behaviors of a par-

ticle, particularly, a composed particle P. Let P be composed

by particles P1, P2, · · · , Pm. Different from out-observation

from a macro viewing, in-observation requires the observer

holding the respective behaviors of particles P1, P2, · · · , Pm in

P, for instance an observer enters a water molecule H2O re-

ceiving information on the Hydrogen or Oxygen atoms H,O.

For such an observation, there are 2 observing ways:

(1) there is an apparatus such that an observer can simul-

taneously observe behaviors of particles P1, P2, · · · , Pm, i.e.

P1, P2, · · · , Pm can be observed independently as particles at

the same time for the observer;

(2) there are m observers O1,O2, · · · ,Om simultaneously

observe particles P1, P2, · · · , Pm, i.e. the observer Oi only

observes the behavior of particle Pi for 1 ≤ i ≤ m, called

parallel observing, such as those shown in Fig. 3 for the water

molecule H2O with m = 3.

✶

❄

❨

❄

■❃

O1

P1

O2

P2

O3

P3

Fig. 3

Certainly, each of these observing views a particle in P to

be an independent particle, which enables us to establish the

dynamic equation (1.2) by Euler-Lagrange equation (2.3) for

Pi, 1 ≤ i ≤ m, respectively, and then we can apply the system

of differential equations



∂L1

∂q
− d

dt

∂L1

∂q̇
= 0

∂L2

∂q
− d

dt

∂L2

∂q̇
= 0

· · ·
∂Lm

∂q
− d

dt

∂Lm

∂q̇
= 0

q(t0) = q0, q̇(t0) = q̇0

(3.1)

for characterizing particle P in classical mechanics, or



∂L1

∂ψ
− ∂µ

∂L1

∂(∂µψ)
= 0

∂L2

∂ψ
− ∂µ

∂L2

∂(∂µψ)
= 0

· · ·
∂Lm

∂ψ
− ∂µ

∂Lm

∂(∂µψ)
= 0

ψ(t0) = ψ0

(3.2)

for characterizing particle P in field theory, where the ith equ-

ation is the dynamic equation of particle Pi with initial data

q0, q̇0 or ψ0.

We discuss the solvability of systems (3.1) and (3.2). Let

S qi
=

{
(xi, yi, zi)(qi, t) ∈ R3

∣∣∣∣∣
∂L1

∂qi

− d

dt

∂L1

∂q̇i

= 0,

qi(t0) = q0, q̇i(t0) = q̇0 }

for integers 1 ≤ i ≤ m. Then, the system (3.1) of equations is

solvable if and only if

D(q) =

m⋂

i=1

S qi
, ∅. (3.3)

Otherwise, the system (3.1) is non-solvable. For example, let

particles P1, P2 of masses M,m be hanged on a fixed pulley,

such as those shown in Fig. 4.

Then, the dynamic equations on P1 and P2 are respec-

tively

P1 : ẍ = g, x(t0) = x0 and P2 : ddotx = −g, x(t0) = x0

but the system

{
ẍ = g

ẍ = −g, x(t0) = x0

is contradictory, i.e. non-solvable.
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Similarly, let ψi(x, t) be the state function of particle Pi,

i.e. the solution of



∂Li

∂ψi

− ∂µ
∂Li

∂(∂µψi)
= 0

ψ(t0) = ψ0.

Then, the system (3.2) is solvable if and only if there is a state

function ψ(x, t) on P hold with each equation of system (3.2),

i.e.

ψ(x, t) = ψ1(x, t) = · · · = ψm(x, t), x ∈ R3,

which is impossible because if all state functions ψi(x, t), 1 ≤
i ≤ m are the same, the particles P1, P2, · · · , Pm are nothing

else but just one particle. Whence, the system (3.2) is non-

solvable if m ≥ 2, which implies we can not characterize

the behavior of particle P by classical solutions of differential

equations.

m

M
✻

❄

P1

P2

g

g

Fig. 4

For example, if the state function ψO(x, t) = ψH1
(x, t) =

ψH2
(x, t) in the water molecule H2O for x ∈ R3 hold with



−i~
∂ψO

∂t
=
~

2

2mO

∇2ψO − V(x)ψO

−i~
∂ψH1

∂t
=
~

2

2mH1

∇2ψH1
− V(x)ψH1

−i~
∂ψH2

∂t
=
~

2

2mH2

∇2ψH2
− V(x)ψH2

Then ψO(x, t) = ψH1
(x, t) = ψH2

(x, t) concludes that

AOe−
i
~

(EO t−pO x) = AH1
e−

i
~
(EH1

t−pH1
x) = AH2

e−
i
~
(EH2

t−pH2
x)

for ∀x ∈ R3 and t ∈ R, which implies that

AO = AH1
= AH2

, EO = EH1
= EH2

and pO = pH1
= pH2

,

a contradiction.

Notice that each equation in systems (3.1) and (3.2) is

solvable but the system itself is non-solvable in general, and

they are real in the nature. Even if the system (3.1) holds

with condition (3.3), i.e. it is solvable, we can not apply the

solution of (3.1) to characterize the behavior of particle P be-

cause such a solution only describes the coherent behavior of

particles P1, P2, · · · , Pm. Thus, we can not characterize the

behavior of particle P by the solvability of systems (3.1) or

(3.2). We should search new method to characterize systems

(3.1) or (3.2).

Philosophically, the formula (1.1) is the understanding of

particle P and all of these particles P1, P2, · · · , Pm are inher-

ently related, not isolated, which implies that P naturally in-

herits a topological structure GL[P] in space of the nature,

which is a vertex-edge labeled topological graph determined

by:

V
(
GL [P]

)
= {P1, P2, · · · , Pm},

E
(
GL [P]

)
= {(Pi, P j)|Pi

⋂
P j , ∅, 1 ≤ i , j ≤ m}

with labeling

L : Pi → L(Pi) = Pi and

L : (Pi, P j)→ L(Pi, P j) = Pi

⋂
P j

for integers 1 ≤ i , j ≤ m. For example, the topological

graphs GL[P] of water molecule H2O, meson and baryon in

the quark model of Gell-Mann and Ne’eman are respectively

shown in Fig. 5,

H H

O

H ∩ O H ∩ O

H2O

q1

q2q3

q1 ∩ q3 q1 ∩ q2

q2 ∩ q3

Baryon

q q
′q ∩ q′

Meson

Fig. 5

where O,H, q, q′ and qi, 1 ≤ i ≤ 3 obey the Dirac equation

but O ∩ H, q ∩ q′, qk ∩ ql, 1 ≤ k, l ≤ 3 comply with the Klein-

Gordon equation.

Such a vertex-edge labeled topological graph GL[P] is

called GL-solution of systems (3.1)–(3.2). Clearly, the global

behaviors of particle P are determined by particles P1, P2, · · · ,
Pm. We can hold them on GL-solution of systems (3.1) or

(3.2). For example, let u[v] be the solution of equation at ver-

tex v ∈ V
(
GL[P]

)
with initial value u

[v]

0
and GL0 [P] the ini-

tial GL-solution, i.e. labeled with u
[v]

0
at vertex v. Then, a

GL-solution of systems (3.1) or (3.2) is sum-stable if for any

number ε > 0 there exists δv > 0, v ∈ V(GL0 [P]) such that

each GL′ -solution with

∣∣∣u′[v]
0
− u

[v]

0

∣∣∣ < δv, ∀v ∈ V(GL0 [P])

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣∣∣

∑

v∈V(GL′ [P])

u′[v] −
∑

v∈V(GL [P])

u[v]

∣∣∣∣∣∣∣∣
< ε
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holds, denoted by GL[P]
Σ∼ GL0 [P]. Furthermore, if there

exists a number βv > 0 for ∀v ∈ V(GL0 [P]) such that every

GL′ [P]-solution with

∣∣∣u′[v]
0
− u

[v]

0

∣∣∣ < βv, ∀v ∈ V(GL0 [P])

satisfies

lim
t→∞

∣∣∣∣∣∣∣∣

∑

v∈V(GL′ [P])

u′[v] −
∑

v∈V(GL [P])

u[v]

∣∣∣∣∣∣∣∣
= 0,

then the GL[P]-solution is called asymptotically stable, de-

noted by GL[P]
Σ→ GL0 [P]. Similarly, the energy integral of

GL-solution is determined by

E(GL[P]) =
∑

G≤GL0 [P]

(−1)|G|+1

∫

OG

(
∂uG

∂t

)2

dx1dx2 · · ·dxn−1,

where uG is the C2 solution of system

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]

0
(x1, x2, · · · , xn−1)


v ∈ V(G)

and OG =
⋂

v∈V(G)

Ov with Ov ⊂ Rn determined by the vth equa-

tion 

∂u

∂t
= Hv(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[v]

0
(x1, x2, · · · , xn−1).

All of these global properties were extensively discussed

in [7–11], which provides us to hold behaviors of a composed

particle P by its constitutions P1, P2, · · · , Pm.

4 Reality

Generally, the reality is the state characters (1.1) of existed,

existing or will exist things whether or not they are observable

or comprehensible by human beings, and the observing objec-

tive is on the state of particles, which then enables us to find

the reality of a particle. However, an observation is dependent

on the perception of the observer by his organs or through by

instruments at the observing time, which concludes that to

hold the reality of a particle P can be only little by little, and

determines local reality of P from a macro observation at a

time t, no matter what P is, a macro or micro thing. Why is

this happening because we always observe by one observer

on one particle assumed to be a point in space, and then es-

tablish a solvable equation (1.2) on coherent, not individual

behaviors of P. Otherwise, we get non-solvable equations on

P contradicts to the law of contradiction, the foundation of

classical mathematics which results in discussions following:

4.1 States of particles are multiverse

A particle P understood by formula (1.1) is in fact a multi-

verse consisting of known characters µ1, µ2, · · · , µn and un-

known characters νk, k ≥ 1, i.e. different characters charac-

terize different states of particle P. This fact also implies that

the multiverse exist everywhere if we understand a particle P

with in-observation, not only those levels of I − IV of Max

Tegmark in [24]. In fact, the infinite divisibility of a matter

M in philosophy alludes nothing else but a multiverse ob-

served on M by its individual submatters. Thus, the nature of

a particle P is multiple in front of human beings, with unity

character appeared only in specified situations.

4.2 Reality only characterized by non-compatible sys-

tem

Although the dynamical equations (1.2) established on uni-

lateral characters are individually compatible but they must

be globally contradictory with these individual features un-

less all characters are the same one. It can not be avoided by

the nature of a particle P. Whence, the non-compatible sys-

tem, particularly, non-solvable systems consisting of solvable

differential equations are suitable tools for holding the real-

ity of particles P in the world, which also partially explains a

complaint of Einstein on mathematics, i.e. as far as the laws

of mathematics refer to reality, they are not certain; and as

far as they are certain, they do not refer to reality because the

multiple nature of all things.

4.3 Reality really needs mathematics on graph

As we know, there always exists a universal connection be-

tween things in a family in philosophy. Thus, a family F of

things naturally inherits a topological graph GL[F ] in space

and we therefore conclude that

F = GL[F ] (4.1)

in that space. Particularly, if all things in F are nothing else

but manifolds MT (x1, x2, x3; t) of particles P determined by

equation

fT (x1, x2, x3; t) = 0, T ∈ F (4.2)

in R3 × R, we get a geometrical figure
⋃

T∈F
MT (x1, x2, x3; t),

a combinatorial field ([6]) for F . Clearly, the graph GL[F ]

characterizes the behavior of F no matter whether the system

(4.2) is solvable or not. Calculation shows that the system

(4.2) of equations is non-solvable or not dependent on

⋂

T∈F
MT (x1, x2, x3; t) = ∅ or not.

Particularly, if
⋂

T∈F
MT (x1, x2, x3; t) = ∅, the system (4.2) is

non-solvable and we can not just characterize the behavior

of F by the solvability of system (4.2). We must turn the

contradictory system (4.2) to a compatible one, such as those
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shown in [10] and have to extend mathematical systems on

graph GL[F ] ([12]) for holding the reality of F .

Notice that there is a conjecture for developing mathe-

matics in [4] called CC conjecture which claims that any

mathematical science can be reconstructed from or turned

into combinatorization. Such a conjecture is in fact a com-

binatorial notion for developing mathematics on topological

graphs, i.e. finds the combinatorial structure to reconstruct or

generalize classical mathematics, or combines different math-

ematical sciences and establishes a new enveloping theory on

topological graphs for hold the reality of things F .

5 Conclusion

Reality of a thing is hold on observation with level depen-

dent on the observer standing out or in that thing, particu-

larly, a particle classified to out- or in-observation, or paral-

lel observing from a macro or micro view and characterized

by solvable or non-solvable differential equations, consistent

with the universality principle of contradiction in philosophy.

For holding on the reality of things, the out-observation is

basic but the in-observation is cardinal. Correspondingly, the

solvable equation is individual but the non-solvable equations

are universal. Accompanying with the establishment of com-

patible systems, we are also needed to characterize those of

contradictory systems, particularly, non-solvable differential

equations on particles and establish mathematics on topolog-

ical graphs, i.e. mathematical combinatorics, and only which

is the appropriate way for understanding the nature because

all things are in contradiction.
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