
Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

Dislocations in the Spacetime Continuum:
Framework for Quantum Physics

Pierre A. Millette
PierreAMillette@alumni.uottawa.ca, Ottawa, Canada

This paper provides a framework for the physical description of physical processes at
the quantum level based on dislocations in the spacetime continuum within STCED
(Spacetime Continuum Elastodynamics). In this framework, photon and particle self-
energies and interactions are mediated by the strain energy density of the dislocations,
replacing the role played by virtual particles in QED. We postulate that the spacetime
continuum has a granularity characterized by a length b0 corresponding to the smallest
STC elementary Burgers dislocation-displacement vector. Screw dislocations corre-
sponding to transverse displacements are identified with photons, and edge dislocations
corresponding to longitudinal displacements are identified with particles. Mixed dislo-
cations give rise to wave-particle duality. The strain energy density of the dislocations
are calculated and proposed to explain the QED problem of mass renormalization.

1 Introduction

In a previous paper [1], the deformable medium properties
of the spacetime continuum (STC) led us to expect dislo-
cations, disclinations and other defects to be present in the
STC. The effects of such defects would be expected to ma-
nifest themselves mostly at the microscopic level. In this pa-
per, we present a framework to show that dislocations in the
spacetime continuum are the basis of quantum physics. This
paper lays the framework to develop a theory of the physi-
cal processes that underlie Quantum Electrodynamics (QED).
The theory does not result in the same formalism as QED,
but rather results in an alternative formulation that provides
a physical description of physical processes at the quantum
level. This framework allows the theory to be fleshed out in
subsequent investigations.

1.1 Elastodynamics of the Spacetime Continuum

As shown in a previous paper [1], General Relativity leads us
to consider the spacetime continuum as a deformable contin-
uum, which allows for the application of continuum mechan-
ical methods and results to the analysis of its deformations.
The Elastodynamics of the Spacetime Continuum (STCED)
[1–7] is based on analyzing the spacetime continuum within
a continuum mechanical and general relativistic framework.

The combination of all spacetime continuum deforma-
tions results in the geometry of the STC. The geometry of
the spacetime continuum of General Relativity resulting from
the energy-momentum stress tensor can thus be seen to be a
representation of the deformation of the spacetime continuum
resulting from the strains generated by the energy-momentum
stress tensor.

As shown in [1], for an isotropic and homogeneous space-
time continuum, the STC is characterized by the stress-strain
relation

2µ̄0ε
µν + λ̄0g

µνε = T µν (1)

where T µν is the energy-momentum stress tensor, εµν is the
resulting strain tensor, and

ε = εαα (2)

is the trace of the strain tensor obtained by contraction. The
volume dilatation ε is defined as the change in volume per
original volume [8, see pp. 149–152] and is an invariant of
the strain tensor. λ̄0 and µ̄0 are the Lamé elastic constants of
the spacetime continuum: µ̄0 is the shear modulus and λ̄0 is
expressed in terms of κ̄0, the bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (3)

in a four-dimensional continuum.
As shown in [1], energy propagates in the spacetime con-

tinuum as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is
the source of the associated rest-mass energy density of the
deformation. On the other hand, distortions correspond to a
change of shape of the spacetime continuum without a change
in volume and are thus massless. Thus deformations propa-
gate in the spacetime continuum by longitudinal (dilatation)
and transverse (distortion) wave displacements.

This provides a natural explanation for wave-particle du-
ality, with the transverse mode corresponding to the wave
aspects of the deformation and the longitudinal mode corre-
sponding to the particle aspects of the deformation [7]. The
rest-mass energy density of the longitudinal mode is given
by [1, see Eq.(32)]

ρc2 = 4κ̄0ε (4)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC (the resistance of the spacetime
continuum to dilatations), and ε is the volume dilatation.

This equation demonstrates that rest-mass energy density
arises from the volume dilatation of the spacetime continuum.
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The rest-mass energy is equivalent to the energy required to
dilate the volume of the spacetime continuum. It is a measure
of the energy stored in the spacetime continuum as mass. The
volume dilatation is an invariant, as is the rest-mass energy
density.

This is an important result as it demonstrates that mass is
not independent of the spacetime continuum, but rather mass
is part of the spacetime continuum fabric itself. Mass results
from the dilatation of the STC in the longitudinal propagation
of energy-momentum in the spacetime continuum. Matter
does not warp spacetime, but rather, matter is warped space-
time (i.e. dilated spacetime). The universe consists of the
spacetime continuum and energy-momentum that propagates
in it by deformation of its (STC) structure.

Note that in this paper, we denote the STCED spacetime
continuum constants κ̄0, λ̄0, µ̄0, ρ̄0 with a diacritical mark over
the symbols to differentiate them from similar symbols used
in other fields of Physics. This allows us to retain existing
symbols such as µ0 for the electromagnetic permeability of
free space, compared to the Lamé elastic constant µ̄0 used to
denote the spacetime continuum shear modulus.

1.2 Defects in the Spacetime Continuum

As discussed in [1], given that the spacetime continuum be-
haves as a deformable medium, there is no reason not to ex-
pect dislocations, disclinations and other defects to be present
in the STC. Dislocations in the spacetime continuum repre-
sent the fundamental displacement processes that occur in its
structure. These fundamental displacement processes should
thus correspond to basic quantum phenomena and provide a
framework for the description of quantum physics in STCED.

Defect theory has been the subject of investigation since
the first half of the XXth century and is a well-developed dis-
cipline in continuum mechanics [9–14]. The recent formula-
tion of defects in solids in based on gauge theory [15, 16].

The last quarter of the XXth century has seen the investi-
gation of spacetime defects in the context of string theory,
particularly cosmic strings [17, 18], and cosmic expansion
[20, 21]. Teleparallel spacetime with defects [18, 22, 23] has
resulted in a differential geometry of defects, which can be
folded into the Einstein-Cartan Theory (ECT) of gravitation,
an extension of Einstein’s theory of gravitation that includes
torsion [19, 20]. Recently, the phenomenology of spacetime
defects has been considered in the context of quantum grav-
ity [24–26].

In this paper, we investigate dislocations in the spacetime
continuum in the context of STCED. The approach followed
till now by investigators has been to use Einstein-Cartan dif-
ferential geometry, with dislocations (translational deformati-
ons) impacting curvature and disclinations (rotational defor-
mations) impacting torsion. The dislocation itself is modelled
via the line element ds2 [17]. In this paper, we investigate
spacetime continuum dislocations using the underlying dis-

placements uν and the energy-momentum stress tensor. We
thus work from the RHS of the general relativistic equation
(the stress tensor side) rather than the LHS (the geometric
tensor side). It should be noted that the general relativistic
equation used can be the standard Einstein equation or a suit-
ably modified version, as in Einstein-Cartan or Teleparallel
formulations.

In Section 2 of this paper, we review the basic physical
characteristics and dynamics of dislocations in the spacetime
continuum. The energy-momentum stress tensor is consid-
ered in Section 2.2. This is followed by a detailed review of
stationary and moving screw and edge dislocations in Sec-
tions 3, 4 and 5, along with their strain energy density as cal-
culated from STCED. The framework of quantum physics,
based on dislocations in the spacetime continuum is covered
in Section 6. Screw dislocations in quantum physics are con-
sidered in Section 6.2 and edge dislocations are covered in
Section 6.3. Section 7 covers dislocation interactions in quan-
tum physics, and Section 8 provides physical explanations of
QED phenomena provided by dislocations in the STC. Sec-
tion 9 summarizes the framework presented in this paper for
the development of a physical description of physical pro-
cesses at the quantum level, based on dislocations in the spa-
cetime continuum within the theory of the Elastodynamics of
the Spacetime Continuum (STCED).

2 Dislocations in the Spacetime Continuum

A dislocation is characterized by its dislocation-displacement
vector, known as the Burgers vector, bµ in a four-dimensional
continuum, defined positive in the direction of a vector ξµ tan-
gent to the dislocation line in the spacetime continuum [14,
see pp.17–24].

A Burgers circuit encloses the dislocation. A similar ref-
erence circuit can be drawn to enclose a region free of dislo-
cation (see Fig. 1). The Burgers vector is the vector required
to make the Burgers circuit equivalent to the reference circuit
(see Fig. 2). It is a measure of the displacement between the
initial and final points of the circuit due to the dislocation.

It is important to note that there are two conventions used
to define the Burgers vector. In this paper, we use the con-
vention used by Hirth [14] referred to as the local Burgers
vector. The local Burgers vector is equivalently given by the
line integral

bµ =

∮
C

∂uµ

∂s
ds (5)

taken in a right-handed sense relative to ξµ, where uµ is the
displacement vector.

A dislocation is thus characterized by a line direction ξµ

and a Burgers vector bµ. There are two types of dislocations:
an edge dislocation for which bµξµ = 0 and a screw disloca-
tion which can be right-handed for which bµξµ = b, or left-
handed for which bµξµ = −b, where b is the magnitude of the
Burgers vector. Arbitrary mixed dislocations can be decom-
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Fig. 1: A reference circuit in a region free of dislocation, S: start, F:
finish
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posed into a screw component, along vector ξµ, and an edge
component, perpendicular to vector ξµ.

The edge dislocation was first proposed by Orowan [27],
Polanyi [28] and Taylor [29] in 1934, while the screw dislo-
cation was proposed by Burgers [30] in 1939. In this paper,
we extend the concept of dislocations to the elastodynamics
of the spacetime continuum. Edge dislocations correspond
to dilatations (longitudinal displacements) and hence have an
associated rest-mass energy, while screw dislocations corre-
spond to distortions (transverse displacements) and are mass-
less [1].

2.1 Dislocation dynamics

In three-dimensional space, the dynamic equation is written
as [31, see pp. 88–89],

T i j
, j = −Xi + ρ̄0üi (6)

where ρ̄0 is the spacetime continuum density, Xi is the volume
(or body) force, the comma (,) represents differentiation and
u̇ denotes the derivative with respect to time. Substituting for
εµν = 1

2 (uµ;ν + uν;µ) in (1), using (2) and uµ;µ = εµµ = ε in this
equation, we obtain

µ̄0
−→
∇2ui + (µ̄0 + λ̄0)ε;i = −Xi + ρ̄0üi (7)

which, upon converting the time derivative to indicial nota-
tion and rearranging, is written as

µ̄0
−→
∇2ui − ρ̄0c2ui

,00 + (µ̄0 + λ̄0)ε;i = −Xi. (8)

We use the arrow above the nabla symbol to indicate the 3-
dimensional gradient whereas the 4-dimensional gradient is

Fig. 2: A dislocation showing the Burgers vector bµ, direction vector
ξµ which points into the paper and the Burgers circuit, S: start, F:
finish

E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

E
E
E
E
E
E
E
E
E

6
-

�
�
�
�
�
�
�
�
��� SF

�
bµ

e
ξµ

written with no arrow. Using the relation [1]

c =

√
µ̄0

ρ̄0
(9)

in the above, (8) becomes

µ̄0(
−→
∇2ui − ui

,00) + (µ̄0 + λ̄0)ε;i = −Xi (10)

and, combining the space and time derivatives, we obtain

µ̄0∇
2ui + (µ̄0 + λ̄0)ε;i = −Xi. (11)

This equation is the space portion of the STCED displacement
wave equation (51) of [1]

µ̄0∇
2uν + (µ̄0 + λ̄0)ε;ν = −Xν. (12)

Hence the dynamics of the spacetime continuum is described
by the dynamic equation (12), which includes the accelera-
tions from the applied forces.

In this analysis, we consider the simpler problem of dis-
locations moving in an isotropic continuum with no volume
force. Then (12) becomes

µ̄0 ∇
2uν + (µ̄0 + λ̄0)ε;ν = 0, (13)

where ∇2 is the four-dimensional operator and the semi-colon
(;) represents covariant differentiation.

Separating uν into its longitudinal (irrotational) compo-
nent uν

‖
and its transverse (solenoidal) component uν⊥ using

the Helmholtz theorem in four dimensions [32] according to

uν = uν
‖

+ uν⊥, (14)
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(12) can be separated into a screw dislocation displacement
(transverse) equation

µ̄0 ∇
2uν⊥ = 0 (15)

and an edge dislocation displacement (longitudinal) equation

∇2uν
‖

= −
µ̄0 + λ̄0

µ̄0
ε;ν. (16)

2.2 The energy-momentum stress tensor

The components of the energy-momentum stress tensor are
given by [33]:

T 00 = H

T 0 j = s j

T i0 = gi

T i j = σi j

(17)

where H is the total energy density, s j is the energy flux vec-
tor, gi is the momentum density vector, and σi j is the Cauchy
stress tensor which is the ith component of force per unit area
at x j.

From the stress tensor T µν, we can calculate the strain
tensor εµν and then calculate the strain energy density of the
dislocations. As shown in [3], for a general anisotropic con-
tinuum in four dimensions, the spacetime continuum is ap-
proximated by a deformable linear elastic medium that obeys
Hooke’s law [31, see pp. 50–53]

Eµναβεαβ = T µν (18)

where Eµναβ is the elastic moduli tensor. For an isotropic and
homogeneous medium, the elastic moduli tensor simplifies
to [31]:

Eµναβ = λ̄0

(
gµνgαβ

)
+ µ̄0

(
gµαgνβ + gµβgνα

)
. (19)

For the metric tensor gµν, we use the flat spacetime diag-
onal metric ηµν with signature (– + + +) as the STC is locally
flat at the microscopic level. Substituting for (19) into (18)
and expanding, we obtain

T 00 = (λ̄0 + 2µ̄0) ε00 − λ̄0 ε
11 − λ̄0 ε

22 − λ̄0 ε
33

T 11 = −λ̄0 ε
00 + (λ̄0 + 2µ̄0) ε11 + λ̄0 ε

22 + λ̄0 ε
33

T 22 = −λ̄0 ε
00 + λ̄0 ε

11 + (λ̄0 + 2µ̄0) ε22 + λ̄0 ε
33

T 33 = −λ̄0 ε
00 + λ̄0 ε

11 + λ̄0 ε
22 + (λ̄0 + 2µ̄0) ε33

T µν = 2µ̄0 ε
µν, µ , ν.

(20)

In terms of the stress tensor, the inverse of (20) is given
by

ε00 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 00+

+ λ̄0 (T 11 + T 22 + T 33)
]

ε11 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 11+

+ λ̄0 (T 00 − T 22 − T 33)
]

ε22 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 22+

+ λ̄0 (T 00 − T 11 − T 33)
]

ε33 =
1

4µ̄0(2λ̄0 + µ̄0)

[
(3λ̄0 + 2µ̄0) T 33+

+ λ̄0 (T 00 − T 11 − T 22)
]

εµν =
1

2µ̄0
T µν, µ , ν.

(21)

where T i j = σi j. We calculate ε = εαα from the values of
(21). Using ηµν, (3) and Tα

α = ρc2 from [2], we obtain (4)
as required. This confirms the validity of the strain tensor in
terms of the energy-momentum stress tensor as given by (21).

Eshelby [34–36] introduced an elastic field energy-mo-
mentum tensor for continuous media to deal with cases where
defects (such as dislocations) lead to changes in configura-
tion. The displacements uν are considered to correspond to a
field defined at points xµ of the spacetime continuum. This
tensor was first derived by Morse and Feshback [37] for an
isotropic elastic medium, using dyadics. The energy flux vec-
tor s j and the field momentum density vector gi are then given
by [34, 37]:

s j = −u̇k σk j

gi = ρ̄0 uk,i u̇k

bi j = L δi j − uk,i σk j

(22)

where ρ̄0 is the density of the medium, in this case the space-
time continuum, L is the Lagrangian equal to K−W where W
is the strain energy density and K is the kinetic energy den-
sity (H = K + W), and bi j is known as the Eshelby stress
tensor [38, see p. 27]. If the energy-momentum stress tensor
is symmetric, then gi = si. In this paper, we consider the
case where there are no changes in configuration, and use the
energy-momentum stress tensor given by (17) and (20).
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Fig. 3: A stationary screw dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates [14, see p. 60].

3 Screw dislocation

3.1 Stationary screw dislocation

We consider a stationary screw dislocation in the spacetime
continuum, with cylindrical polar coordinates (r, θ, z), with
the dislocation line along the z-axis (see Fig. 3). Then the
Burgers vector is along the z-axis and is given by br = bθ =

0, bz = b, the magnitude of the Burgers vector. The only
non-zero component of the deformations is given by [14, see
pp. 60–61] [13, see p. 51]

uz =
b

2π
θ =

b
2π

tan−1 y

x
. (23)

This solution satisfies the screw dislocation displacement eq-
uation (15).

Similarly, the only non-zero components of the stress and
strain tensors are given by

σθz =
b

2π
µ̄0

r

εθz =
b

4π
1
r

(24)

respectively.

3.2 Moving screw dislocation

We now consider the previous screw dislocation, moving a-
long the x-axis, parallel to the dislocation, at a constant speed
vx = v. Equation (13) then simplifies to the wave equation
for massless transverse shear waves for the displacements uz

along the z-axis, with speed ct = c given by (9), where ct

is the speed of the transverse waves corresponding to c the
speed of light.

If coordinate system (x′, y′, z′, t′) is attached to the uni-
formly moving screw dislocation, then the transformation be-
tween the stationary and the moving screw dislocation is gi-

ven by [14]

x′ =
x − vt

(1 − v2/c2)1/2

y′ = y

z′ = z

t′ =
t − vx/c2

(1 − v2/c2)1/2 .

(25)

which is the special relativistic transformation.
The only non-zero component of the deformation in carte-

sian coordinates is given by [14, see pp. 184–185]

uz =
b

2π
tan−1 γy

x − vt
, (26)

where

γ =

√
1 −

v2

c2 . (27)

This solution also satisfies the screw dislocation displacement
equation (15). It simplifies to the case of the stationary screw
dislocation when the speed v = 0.

Similarly, the only non-zero components of the stress ten-
sor in cartesian coordinates are given by [14]

σxz = −
bµ̄0

2π
γy

(x − vt)2 + γ2y2

σyz =
bµ̄0

2π
γ(x − vt)

(x − vt)2 + γ2y2 .

(28)

The only non-zero components of the strain tensor in car-
tesian coordinates are derived from εµν = 1

2 (uµ;ν+uν;µ) [1, see
Eq.(41)]:

εxz = −
b

4π
γy

(x − vt)2 + γ2y2

εyz =
b

4π
γ(x − vt)

(x − vt)2 + γ2y2 ,

(29)

in an isotropic continuum.
Non-zero components involving time are given by

εtz = εzt =
1
2

(
∂uz

∂(ct)
+
∂ut

∂z

)
εtz =

b
4π

v

c
γy

(x − vt)2 + γ2y2

(30)

where ut = 0 has been used. This assumes that the screw
dislocation is fully formed and moving with velocity v as de-
scribed. Using (20), the non-zero stress components involv-
ing time are given by

σtz = σzt =
bµ̄0

2π
v

c
γy

(x − vt)2 + γ2y2 . (31)

Screw dislocations are thus found to be Lorentz invariant.
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3.3 Screw dislocation strain energy density

We consider the stationary screw dislocation in the space-
time continuum of Section 3.1, with cylindrical polar coor-
dinates (r, θ, z), with the dislocation line along the z-axis and
the Burgers vector along the z-axis bz = b.

Then the strain energy density of the screw dislocation
is given by the transverse distortion energy density [1, see
Eq. (74)]

E⊥ = µ̄0 eαβeαβ (32)

where from [1, see Eq. (33)],

eαβ = εαβ − esg
αβ (33)

where es = 1
4ε

α
α is the dilatation which for a screw dislo-

cation is equal to 0. The screw dislocation is thus massless
(E‖ = 0).

The non-zero components of the strain tensor are as de-
fined in (24). Hence

E⊥ = µ̄0

(
εθz

2 + εzθ
2
)
. (34)

Substituting from (24),

E⊥ =
µ̄0 b2

8π2

1
r2 = E. (35)

We now consider the more general case of the moving
screw dislocation in the spacetime continuum of Section 3.2,
with cartesian coordinates (x, y, z). The non-zero components
of the strain tensor are as defined in (29) and (30). Substitut-
ing in (32), the equation becomes [1, see Eqs.(114–115)]

E⊥ = 2µ̄0

(
−εtz

2 + εxz
2 + εyz

2
)
. (36)

Substituting from (29) and (30) into (36), the screw disloca-
tion strain energy density becomes

E⊥ =
µ̄0 b2

8π2

γ2

(x − vt)2 + γ2y2 = E. (37)

This equation simplifies to (35) in the case where v = 0, as
expected. In addition, the energy density (which is quadratic
in energy as per [1, see Eq.(76)]) is multiplied by the special
relativistic γ factor.

4 Edge dislocation

4.1 Stationary edge dislocation

We consider a stationary edge dislocation in the spacetime
continuum in cartesian coordinates (x, y, z), with the disloca-
tion line along the z-axis and the Burgers vector bx = b, by =

bz = 0 (see Fig. 4). Then the non-zero components of the
deformations are given in cartesian coordinates by [14, see

Fig. 4: A stationary edge dislocation in cartesian (x, y, z) and cylin-
drical polar (r, θ, z) coordinates [14, see p. 74].

p. 78]

ux =
b

2π

(
tan−1 y

x
+
µ̄0 + λ̄0

2µ̄0 + λ̄0

xy
x2 + y2

)
uy = −

b
2π

(
1
2

µ̄0

2µ̄0 + λ̄0
log(x2 + y2)+

+
1
2
µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
.

(38)

This solution results in a non-zero R.H.S. of the edge dislo-
cation displacement equation (16) as required. Equation (16)
can be evaluated to give a value of ε in agreement with the
results of Section 4.3 as shown in that section.

The cylindrical polar coordinate description of the edge
dislocation is more complex than the cartesian coordinate de-
scription. We thus use cartesian coordinates in the follow-
ing sections, transforming to polar coordinate expressions as
warranted. The non-zero components of the stress tensor in
cartesian coordinates are given by [14, see p. 76]

σxx = −
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(3x2 + y2)
(x2 + y2)2

σyy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

y(x2 − y2)
(x2 + y2)2

σzz =
1
2

λ̄0

µ̄0 + λ̄0

(
σxx + σyy

)
= −

bµ̄0

π

λ̄0

2µ̄0 + λ̄0

y

x2 + y2

σxy =
bµ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)
(x2 + y2)2 .

(39)

The non-zero components of the strain tensor in carte-
sian coordinates are derived from εµν = 1

2 (uµ;ν + uν;µ) [1, see
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Eq.(41)]:

εxx = −
b

2π
y

x2 + y2

(
1 +

µ̄0 + λ̄0

2µ̄0 + λ̄0

x2 − y2

x2 + y2

)
= −

by
2π

(3µ̄0 + 2λ̄0)x2 + µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εyy = −
b

2π
µ̄0

2µ̄0 + λ̄0

y

x2 + y2

(
1 −

µ̄0 + λ̄0

µ̄0

2x2

x2 + y2

)
=

by
2π

(µ̄0 + 2λ̄0)x2 − µ̄0y
2

(2µ̄0 + λ̄0) (x2 + y2)2

εxy =
b

2π
µ̄0 + λ̄0

2µ̄0 + λ̄0

x(x2 − y2)
(x2 + y2)2

(40)

in an isotropic continuum.

4.2 Moving edge dislocation

We now consider the previous edge dislocation, moving a-
long the x-axis, parallel to the z-axis, along the slip plane
x−z, at a constant speed vx = v. The solutions of (13) for the
moving edge dislocation then include both longitudinal and
transverse components. The only non-zero components of the
deformations in cartesian coordinates are given by [11, see
pp. 39–40] [39, see pp. 218–219]

ux =
bc2

πv2

(
tan−1 γly

x − vt
− α2 tan−1 γy

x − vt

)
uy =

bc2

2πv2

(
γl log

[
(x − vt)2 + γ2

l y
2
]
−

−
α2

γ
log

[
(x − vt)2 + γ2y2

] )
,

(41)

where

α =

√
1 −

v2

2c2 , (42)

γl =

√
1 −

v2

c2
l

(43)

and cl is the speed of longitudinal deformations given by

cl =

√
2µ̄0 + λ̄0

ρ̄0
. (44)

This solution again results in a non-zero R.H.S. of the edge
dislocation displacement equation (16) as required, and (16)
can be evaluated to give a value of ε as in Section 4.3. This
solution simplifies to the case of the stationary edge disloca-
tion when the speed v = 0.

The non-zero components of the stress tensor in carte-
sian coordinates are given by [14, see pp. 189–190] [11, see

pp. 39–40]

σxx =
bc2y

πv2

(
λ̄0γ

3
l − (2µ̄0 + λ̄0)γl

(x − vt)2 + γ2
l y

2
+

+
2µ̄0α

2γ

(x − vt)2 + γ2y2

)
σyy =

bc2y

πv2

(
(2µ̄0 + λ̄0)γ3

l − λ̄0γl

(x − vt)2 + γ2
l y

2
−

−
2µ̄0α

2γ

(x − vt)2 + γ2y2

)
σzz =

1
2

λ̄0

µ̄0 + λ̄0

(
σxx + σyy

)
=
λ̄0b
π

c2

c2
l

−γly

(x − vt)2 + γ2
l y

2

=
b
π

λ̄0µ̄0

2µ̄0 + λ̄0

−γly

(x − vt)2 + γ2
l y

2

σxy =
µ̄0bc2(x − vt)

πv2

(
2γl

(x − vt)2 + γ2
l y

2
−

−
α2(γ + 1/γ)

(x − vt)2 + γ2y2

)
.

(45)

It is important to note that for a screw dislocation, the
stress on the plane x − vt = 0 becomes infinite at v = c.
This sets an upper limit on the speed of screw dislocations
in the spacetime continuum, and provides an explanation for
the speed of light limit. This upper limit also applies to edge
dislocations, as the shear stress becomes infinite everywhere
at v = c, even though the speed of longitudinal deformations
cl is greater than that of transverse deformations c [14, see
p. 191] [11, see p. 40].

The non-zero components of the strain tensor in carte-
sian coordinates are derived from εµν = 1

2 (uµ;ν + uν;µ) [1, see
Eq.(41)]:

εxx =
bc2y

πv2

(
−γl

(x − vt)2 + (γly)2 +
α2γ

(x − vt)2 + (γy)2

)
εyy =

bc2y

πv2

(
γ3

l

(x − vt)2 + (γly)2 −
α2γ

(x − vt)2 + (γy)2

)
εxy =

bc2(x − vt)
2πv2

(
2γl

(x − vt)2 + (γly)2−

−
α2(γ + 1/γ)

(x − vt)2 + (γy)2

)
(46)

in an isotropic continuum.
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Non-zero components involving time are given by

εtx = εxt =
1
2

(
∂ux

∂(ct)
+
∂ut

∂x

)
εty = εyt =

1
2

(
∂uy
∂(ct)

+
∂ut

∂y

)
εtx =

b
2π

c
v

(
γly

(x − vt)2 + γ2
l y

2
−

−α2 γy

(x − vt)2 + γ2y2

)
εty = −

b
2π

c
v

(
γl(x − vt)

(x − vt)2 + γ2
l y

2
−

−
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

)

(47)

where ut = 0 has been used. This assumes that the edge
dislocation is fully formed and moving with velocity v as de-
scribed. Using (20), the non-zero stress components involv-
ing time are given by

σtx =
bµ̄0

π

c
v

(
γly

(x − vt)2 + γ2
l y

2
−

−α2 γy

(x − vt)2 + γ2y2

)
σty = −

bµ̄0

π

c
v

(
γl(x − vt)

(x − vt)2 + γ2
l y

2
−

−
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

)
.

(48)

4.3 Edge dislocation strain energy density

As we have seen in Section 3.3, the screw dislocation is mass-
less as ε = 0 and hence E‖ = 0 for the screw dislocation: it
is a pure distortion, with no dilatation. In this section, we
evaluate the strain energy density of the edge dislocation.

As seen in [1, see Section 8.1], the strain energy density
of the spacetime continuum is separated into two terms: the
first one expresses the dilatation energy density (the mass lon-
gitudinal term) while the second one expresses the distortion
energy density (the massless transverse term):

E = E‖ + E⊥ (49)

where
E‖ =

1
2
κ̄0ε

2 ≡
1

32κ̄0

(
ρc2

)2
≡

1
2κ̄0

t2
s (50)

where ε is the volume dilatation and ρ is the mass energy
density of the edge dislocation, and

E⊥ = µ̄0eαβeαβ ≡
1

4µ̄0
tαβtαβ. (51)

where from [1, see Eq. (36)] the energy-momentum stress ten-
sor Tαβ is decomposed into a stress deviation tensor tαβ and a
scalar ts, according to

tαβ = Tαβ − tsg
αβ (52)

where ts = 1
4 Tα

α. Then the dilatation strain energy density
of the edge dislocation is given by the (massive) longitudinal
dilatation energy density (50) and the distortion (massless)
strain energy density of the edge dislocation is given by the
transverse distortion energy density (51).

4.3.1 Stationary edge dislocation energy density

We first consider the case of the stationary edge dislocation of
Section 4.1. The volume dilatation ε for the stationary edge
dislocation is given by

ε = εαα = εxx + εyy (53)

where the non-zero diagonal elements of the strain tensor are
obtained from (40). Substituting for εxx and εyy from (40),
we obtain

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 . (54)

In cylindrical polar coordinates, (54) is expressed as

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

sin θ
r
. (55)

We can disregard the negative sign in (54) and (55) as it can
be eliminated by using the FS/RH convention instead of the
SF/RH convention for the Burgers vector [14, see p. 22]).

As mentioned in Section 4.1, the volume dilatation ε can
be calculated from the edge dislocation displacement (longi-
tudinal) equation (16), viz.

∇2uν
‖

= −
µ̄0 + λ̄0

µ̄0
ε;ν.

For the x-component, this equation gives

∇2ux =
∂2ux

∂x2 +
∂2ux

∂y2 = −
µ̄0 + λ̄0

µ̄0
ε,x. (56)

Substituting for ux from (38), we obtain

∇2ux = −
2b
π

µ̄0 + λ̄0

2µ̄0 + λ̄0

xy
(x2 + y2)2 = −

µ̄0 + λ̄0

µ̄0
ε,x. (57)

Hence

ε,x =
2b
π

µ̄0

2µ̄0 + λ̄0

xy
(x2 + y2)2 (58)

and

ε =
2b
π

µ̄0

2µ̄0 + λ̄0

∫
xy

(x2 + y2)2 dx. (59)
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Evaluating the integral [40], we obtain

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 (60)

in agreement with (54).
Similarly for the y-component, substituting for uy from

(38), the equation

∇2uy =
∂2uy
∂x2 +

∂2uy
∂y2 = −

µ̄0 + λ̄0

µ̄0
ε,y (61)

gives

ε,y = −
b
π

µ̄0

2µ̄0 + λ̄0

x2 − y2

(x2 + y2)2 . (62)

Evaluating the integral [40]

ε = −
b
π

µ̄0

2µ̄0 + λ̄0

∫
x2 − y2

(x2 + y2)2 dy, (63)

we obtain
ε = −

b
π

µ̄0

2µ̄0 + λ̄0

y

x2 + y2 (64)

again in agreement with (54).
The mass energy density is calculated from (4)

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε (65)

where (3) has been used. Substituting for ε from (54), the
mass energy density of the stationary edge dislocation is gi-
ven by

ρc2 =
4b
π

κ̄0µ̄0

2µ̄0 + λ̄0

y

x2 + y2 . (66)

In cylindrical polar coordinates, (66) is expressed as

ρc2 =
4b
π

κ̄0µ̄0

2µ̄0 + λ̄0

sin θ
r
. (67)

Using (54) in (50), the stationary edge dislocation longi-
tudinal dilatation strain energy density is then given by

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

y2

(x2 + y2)2 . (68)

In cylindrical polar coordinates, (68) is expressed as

E‖ =
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 . (69)

The distortion strain energy density is calculated from
(51). The expression is expanded using the non-zero elements
of the strain tensor (40) to give

E⊥ = µ̄0

(
exx

2 + eyy2 + exy
2 + eyx

2
)
. (70)

As seen previously in (33),

eαβ = εαβ − esg
αβ (71)

where es = 1
4ε is the volume dilatation calculated in (54) and

eαβeαβ =

(
εαβ −

1
4
εgαβ

) (
εαβ −

1
4
εgαβ

)
. (72)

For gαβ = ηαβ, the off-diagonal elements of the metric tensor
are 0, the diagonal elements are 1 and (70) becomes

E⊥ = µ̄0

(εxx −
1
4
ε

)2

+

(
εyy −

1
4
ε

)2

+ 2ε2
xy

 . (73)

Expanding the quadratic terms and making use of (53), (73)
becomes

E⊥ = µ̄0

(
ε2

xx + ε2
yy −

3
8
ε2 + 2ε2

xy

)
(74)

and finally

E⊥ = µ̄0

(
5
8
ε2 − 2εxxεyy + 2ε2

xy

)
. (75)

Substituting from (40) and (54) in the above,

E⊥ =
5
8

b2µ̄0

π2

(
µ̄0

2µ̄0 + λ̄0

)2
y2

(x2 + y2)2 +
b2µ̄0

2π2

y2
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)x4 − 2µ̄2

0x2y2 − µ̄2
0y

4
]

(2µ̄0 + λ̄0)2(x2 + y2)4
+

+
b2µ̄0

2π2

(
µ̄0 + λ̄0

2µ̄0 + λ̄0

)2 x2(x2 − y2)2

(x2 + y2)4 .

(76)

which becomes

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

1
(x2 + y2)4{

5
4
µ̄2

0 y
2 (x2 + y2)2 −

−y2
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)x4 − 2µ̄2

0 x2y2 − µ̄2
0 y

4
]
+

+ (µ̄0 + λ̄0)2 x2(x2 − y2)2
}
.

(77)

In cylindrical polar coordinates, (77) is expressed as

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −
sin2 θ

r2[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ−

−2µ̄2
0 cos2 θ sin2 θ − µ̄2

0 sin4 θ
]
+

+ (µ̄0 + λ̄0)2 cos2 θ

r2

(
cos2 θ − sin2 θ

)2
}

(78)
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or

E⊥ =
b2

2π2

µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
.

(79)

4.3.2 Moving edge dislocation energy density

We next consider the general case of the moving edge disloca-
tion in the spacetime continuum of Section 4.2, with cartesian
coordinates (x, y, z). We first evaluate the volume dilatation ε
for the moving edge dislocation. The volume dilatation is
given by

ε = εαα = εxx + εyy (80)

where the non-zero diagonal elements of the strain tensor are
obtained from (46). Substituting for εxx and εyy from (46) in
(80), we notice that the transverse terms cancel out, and we
are left with the following longitudinal term:

ε =
bc2y

πv2

γ3
l − γl

(x − vt)2 + γ2
l y

2
(81)

This equation can be further reduced to

ε =
bc2

πv2

v2

cl
2

γly

(x − vt)2 + γ2
l y

2
(82)

and finally, using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (9) and (44)),

ε(xi, t) =
b

2π
2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2
. (83)

As seen previously, the mass energy density is calculated
from (65):

ρc2 = 4κ̄0 ε = 2(2λ̄0 + µ̄0) ε. (84)

Substituting for ε from (83), the mass energy density of an
edge dislocation is given by

ρ(xi, t) c2 =
b

2π
8κ̄0µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2
. (85)

Using (83) in (50), the edge dislocation longitudinal dilatation
strain energy density is then given by

E‖ =
1
2
κ̄0

 b
2π

2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

. (86)

The distortion strain energy density is calculated from
(51). The expression is expanded using the non-zero elements
of the strain tensor (46) and (47) and, from (71) and (72), we
obtain [1, see Eqs.(114–115)])

E⊥ = µ̄0

[ (
εxx −

1
4
ε

)2

+

(
εyy −

1
4
ε

)2

−2εtx
2 − 2εty

2 + 2ε2
xy

]
.

(87)

Expanding the quadratic terms and making use of (53) as in
(74), (87) becomes

E⊥ = µ̄0

(
ε2

xx + ε2
yy −

3
8
ε2 − 2εtx

2 − 2εty
2 + 2ε2

xy

)
. (88)

Substituting from (46), (47) and (82),

E⊥ = µ̄0

(
b

2π
c2

v2

)2 {
−

3
8

2 v2

cl
2

γly

(x − vt)2 + γ2
l y

2

2

+

+4
 −γly

(x − vt)2 + γ2
l y

2
+

α2γy

(x − vt)2 + γ2y2

2

+

+4
 γ3

l y

(x − vt)2 + γ2
l y

2
−

α2γy

(x − vt)2 + γ2y2

2

−

−2
v2

c2

 γly

(x − vt)2 + γ2
l y

2
− α2 γy

(x − vt)2 + γ2y2

2

−

−2
v2

c2

 −γl(x − vt)
(x − vt)2 + γ2

l y
2

+
α2

γ2

γ(x − vt)
(x − vt)2 + γ2y2

2

+

+2
 2γl(x − vt)

(x − vt)2 + γ2
l y

2
−
α2(γ + 1/γ)(x − vt)

(x − vt)2 + γ2y2

2 }

(89)

which simplifies to

E⊥ = µ̄0
b2

2π2

c4

v4

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
.

(90)

We consider the above equations for the moving edge dis-
location in the limit as v→ 0. Then the terms

γy

(x − vt)2 + γ2y2 →
sin θ

r
(91)

and
x − vt

(x − vt)2 + γ2y2 →
cos θ

r
(92)

296 Pierre A. Millette. Dislocations in the Spacetime Continuum: Framework for Quantum Physics



Issue 4 (October) PROGRESS IN PHYSICS Volume 11 (2015)

in cylindrical polar coordinates. Similarly for the same terms
with γl instead of γ.

The volume dilatation obtained from (83) is then given in
cylindrical polar coordinates (r, θ, z) by

ε→
b

2π
2µ̄0

2µ̄0 + λ̄0

sin θ
r
. (93)

The mass energy density is obtained from (85) to give

ρc2 →
b

2π
8κ̄0µ̄0

2µ̄0 + λ̄0

sin θ
r
. (94)

From (86), the edge dislocation dilatation strain energy den-
sity is then given by

E‖ →
b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 . (95)

These equations are in agreement with (55), (67) and (69)
respectively.

The edge dislocation distortion strain energy density in
the limit as v → 0 is obtained from (89) by making use of
(91) and (92) as follows:

E⊥ → µ̄0
b2

4π2

c4

v4

{
−

3
2
v4

cl
4

sin2 θ

r2 +

+4
(
−

sin θ
r

+ α2 sin θ
r

)2

+ 4
(
γ2

l
sin θ

r
− α2 sin θ

r

)2

−

−2
v2

c2

(
sin θ

r
− α2 sin θ

r

)2

−

−2
v2

c2

(
−γl

cos θ
r

+
α2

γ

cos θ
r

)2

+

+2
(
2γl

cos θ
r
− α2

(
γ +

1
γ

)
cos θ

r

)2 }
.

(96)

Simplifying,

E⊥ → µ̄0
b2

4π2

c4

v4

{
−

3
2
v4

cl
4

sin2 θ

r2 +

+4
(
−1 + α2

)2 sin2 θ

r2 + 4
(
γ2

l − α
2
)2 sin2 θ

r2 −

−2
v2

c2

(
1 − α2

)2 sin2 θ

r2 −

−2
v2

c2

(
−γl +

α2

γ

)2 cos2 θ

r2 +

+2
(
2γl − α

2
(
γ +

1
γ

))2 cos2 θ

r2

}
.

(97)

Using the definitions of γ2, γ2
l and α2 from (27), (42) and (43)

respectively, using the first term of the Taylor expansion for

γ and γl as v → 0, and neglecting the terms multiplied by
−2v2/c2 in (97) as they are of order v6/c6, (97) becomes

E⊥ → µ̄0
b2

4π2

c4

v4

{ [
−

3
2
v4

cl
4 +

v4

c4 +

+4
1 − v2

c2
l

− 1 +
v2

2c2

2 ]
sin2 θ

r2 +

+4
1 − 1

2
v2

c2
l

− 1 +
v2

2c2

2 cos2 θ

r2

}
.

(98)

Squaring and simplifying, we obtain

E⊥ → µ̄0
b2

4π2

c4

v4

{ 5
2
v4

cl
4 + 2

v4

c4 + 4
v4

c2
l c2

 sin2 θ

r2 +

+

 v4

cl
4 +

v4

c4 − 2
v4

c2
l c2

 cos2 θ

r2

} (99)

and further

E⊥ → µ̄0
b2

2π2

{ 1 + 2
c2

c2
l

+
5
4

c4

cl
4

 sin2 θ

r2 +

+
1
2

1 − 2
c2

c2
l

+
c4

cl
4

 cos2 θ

r2

}
.

(100)

Using c2/cl
2 = µ̄0/(2µ̄0 + λ̄0) (see (9) and (44)), (100) be-

comes

E⊥ → µ̄0
b2

2π2

{(
1 +

2µ̄0

2µ̄0 + λ̄0
+

+
5
4

µ̄2
0

(2µ̄0 + λ̄0)2

)
sin2 θ

r2 +
1
2

(
1−

−
2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

)
cos2 θ

r2

}
.

(101)

This equation represents the impact of the time terms inclu-
ded in the calculation of (87) and the limit operation v → 0
used in (89).

5 Curved dislocations

In this section, we consider the equations for generally curved
dislocations generated by infinitesimal elements of a disloca-
tion. These allow us to handle complex dislocations that are
encountered in the spacetime continuum.

5.1 The Burgers displacement equation

The Burgers displacement equation for an infinitesimal ele-
ment of a dislocation dl = ξdl in vector notation is given
by [14, see p. 102]

u(r) =
b
4π

∫
A

R̂ · dA
R2 −

1
4π

∮
C

b × dl′

R
+

+
1

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
∇

[ ∮
C

(b × R) · dl′

R

] (102)
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where u is the displacement vector, r is the vector to the dis-
placed point, r′ is the vector to the dislocation infinitesimal
element dl′, R = r′ − r, b is the Burgers vector, and closed
loop C bounds the area A.

In tensor notation, (102) is given by

uµ(rν) = −
1

8π

∫
A

bµ
∂

∂x′α
(
∇′2R

)
dAα−

−
1

8π

∮
C

bβ εµβγ ∇′2R dx′γ−

−
1

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bβ εβαγ
∂2R

∂x′µ ∂x′α
dx′γ

(103)

where εαβγ is the permutation symbol, equal to 1 for cyclic
permutations, −1 for anti-cyclic permutations, and 0 for per-
mutations involving repeated indices. As noted by Hirth [14,
see p. 103], the first term of this equation gives a discontinuity
∆u = b over the surface A, while the two other terms are con-
tinuous except at the dislocation line. This equation is used
to calculate the displacement produced at a point r by an ar-
bitrary curved dislocation by integration over the dislocation
line.

5.2 The Peach and Koehler stress equation

The Peach and Koehler stress equation for an infinitesimal el-
ement of a dislocation is derived by differentiation of (103)
and substitution of the result in (20) [14, see p. 103–106]. In
this equation, the dislocation is defined continuous except at
the dislocation core, removing the discontinuity over the sur-
face A and allowing to express the stresses in terms of line
integrals alone.

σµν = −
µ̄0

8π

∮
C

bα εβαµ
∂

∂x′β
(
∇′2R

)
dx′ν−

−
µ̄0

8π

∮
C

bα εβαν
∂

∂x′β
(
∇′2R

)
dx′µ−

−
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C

bα εβαγ(
∂3R

∂x′β ∂x′µ∂x′ν
− δµν

∂

∂x′β
(
∇′2R

))
dx′γ.

(104)

This equation is used to calculate the stress field of an arbi-
trary curved dislocation by line integration.

6 Framework for quantum physics

In a solid, dislocations represent the fundamental displace-
ment processes that occur in its atomic structure. A solid
viewed in electron microscopy or other microscopic imaging
techniques is a tangle of screw and edge dislocations [10, see
p. 35 and accompanying pages]. Similarly, dislocations in the
spacetime continuum are taken to represent the fundamental
displacement processes that occur in its structure. These fun-
damental displacement processes should thus correspond to

basic quantum phenomena and provide a framework for the
description of quantum physics in STCED.

We find that dislocations have fundamental properties that
reflect those of particles at the quantum level. These include
self-energy and interactions mediated by the strain energy
density of the dislocations. The role played by virtual par-
ticles in Quantum Electrodynamics is replaced by the inter-
action of the energy density of the dislocations. This theory
is not perturbative as in QED, but rather calculated from ana-
lytical expressions. The analytical equations can become very
complicated, and in some cases, perturbative techniques are
used to simplify the calculations, but the availability of ana-
lytical expressions permit a better understanding of the fun-
damental processes involved.

Although the existence of virtual particles in QED is gen-
erally accepted, there are physicists who still question this in-
terpretation of QED perturbation expansions. Weingard [41]
“argues that if certain elements of the orthodox interpretation
of states in QM are applicable to QED, then it must be con-
cluded that virtual particles cannot exist. This follows from
the fact that the transition amplitudes correspond to super-
positions in which virtual particle type and number are not
sharp. Weingard argues further that analysis of the role of
measurement in resolving the superposition strengthens this
conclusion. He then demonstrates in detail how in the path in-
tegral formulation of field theory no creation and annihilation
operators need appear, yet virtual particles are still present.
This analysis shows that the question of the existence of vir-
tual particles is really the question of how to interpret the
propagators which appear in the perturbation expansion of
vacuum expectation values (scattering amplitudes).” [42]

The basic Feynman diagrams can be seen to represent
screw dislocations as photons, edge dislocations as particles,
and their interactions. The exchange of virtual particles in in-
teractions can be taken as the forces resulting from the over-
lap of the dislocations’ strain energy density, with suitably
modified diagrams. The perturbative expansions are also re-
placed by finite analytical expressions.

6.1 Quantization

The Burgers vector as defined by expression (5) has similari-
ties to the Bohr-Sommerfeld quantization rule∮

C
p dq = nh (105)

where q is the position canonical coordinate, p is the momen-
tum canonical coordinate and h is Planck’s constant. This
leads us to consider the following quantization rule for the
STC: at the quantum level, we assume that the spacetime
continuum has a granularity characterized by a length b0 cor-
responding to the smallest elementary Burgers dislocation-
displacement vector possible in the STC. The idea that the
existence of a shortest length in nature would lead to a natu-
ral cut-off to generate finite integrals in QED has been raised
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before [43]. The smallest elementary Burgers dislocation-
displacement vector introduced here provides a lower bound
as shown in the next section. Then the magnitude of a Burg-
ers vector can be expressed as a multiple of the elementary
Burgers vector:

b = nb0. (106)

We find that b is usually divided by 2π in dislocation equa-
tions, and hence we define

b̄ =
b

2π
, (107)

and similarly for the elementary Burgers dislocation-displa-
cement vector b0,

b̄0 =
b0

2π
. (108)

6.2 Screw dislocations in quantum physics

Screw dislocations in the spacetime continuum are identified
with massless, transverse deformations, specifically photons.
Consider the displacement of a stationary screw dislocation
as derived in Section 3.1:

uz =
b

2π
θ = b̄ θ. (109)

Taking the derivative with respect to time, we obtain

u̇z = vz =
b

2π
θ̇ =

b
2π

ω. (110)

The speed of the transverse displacement is c, the speed of
light. Substituting for ω = 2πν, (110) becomes

c = b ν. (111)

Hence
b = λ, (112)

the wavelength of the screw dislocation. This result is illus-
trated in Fig. 5. It is important to note that this relation applies
only to screw dislocations.

The strain energy density of the screw dislocation is given
by the transverse distortion energy density derived in Section
3.3. For a stationary screw dislocation, substituting (107) into
(35),

E⊥ =
µ̄0 b̄2

2
1
r2 . (113)

The total strain energy of the screw dislocation is then
given by

W⊥ =

∫
V
E⊥ dV (114)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz. Substituting for E⊥ from (113), (114)
becomes

W⊥ =

∫
V

µ̄0 b̄2

2r2 rdr dθ dz. (115)

Fig. 5: A wavelength of a screw dislocation.

From (106), b̄ can be taken out of the integral to give

W⊥ =
µ̄0 b̄2

2

∫ Λ

b

1
r

dr
∫
θ

dθ
∫

z
dz (116)

where Λ is a cut-off parameter corresponding to the radial
extent of the dislocation, limited by the average distance to
its nearest neighbours.

The strain energy per wavelength is then given by

W⊥
λ

=
µ̄0 b̄2

2
log

Λ

b

∫ 2π

0
dθ (117)

and finally
W⊥
λ

=
µ̄0 b2

4π
log

Λ

b
. (118)

The implications of the total strain energy of the screw
dislocation are discussed further in comparison to Quantum
Electrodynamics (QED) in Section 7.

6.3 Edge dislocations in quantum physics

The strain energy density of the edge dislocation is derived in
Section 4.3. The dilatation (massive) strain energy density of
the edge dislocation is given by the longitudinal strain energy
density (50) and the distortion (massless) strain energy den-
sity of the edge dislocation is given by the transverse strain
energy density (51).

For the stationary edge dislocation of (79), using (107)
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into (79), we have

E⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
.

(119)

The distortion strain energy of the edge dislocation is then
given by

W⊥ =

∫
V
E⊥ dV (120)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz. Substituting for E⊥ from (119) and tak-
ing b̄ out of the integral, (120) becomes

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2

∫
z

∫
θ

∫ Λ

b0

{
5
4
µ̄2

0
sin2 θ

r2 −

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ

sin2 θ

r2 −

−2µ̄2
0 cos2 θ

sin4 θ

r2 − µ̄2
0

sin6 θ

r2

]
+

+(µ̄0 + λ̄0)2 cos2 2θ
cos2 θ

r2

}
rdr dθ dz

(121)

where again Λ is a cut-off parameter corresponding to the ra-
dial extent of the dislocation, limited by the average distance
to its nearest neighbours.

Evaluating the integral over r,

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫
z

∫ 2π

0

{
5
4
µ̄2

0 sin2 θ−

−
[
(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0) cos4 θ sin2 θ−

−2µ̄2
0 cos2 θ sin4 θ − µ̄2

0 sin6 θ
]
+

+(µ̄0 + λ̄0)2 cos2 2θ cos2 θ

}
dθ dz.

(122)

Evaluating the integral over θ [40], we obtain (123) at the
top of the next page. Applying the limits of the integration,
both the coefficients of λ̄2

0 and µ̄0λ̄0 are equal to 0 and only the
coefficient of µ̄2

0 is non-zero. Equation (123) then becomes

W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫ `

0

9π
4
µ̄2

0 dz. (124)

where ` is the length of the edge dislocation.

Evaluating the integral over z, we obtain the stationary
edge dislocation transverse strain energy per unit length

W⊥
`

=
9π
2

b̄2µ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
. (125)

We find that the stationary edge dislocation transverse strain
energy per unit length (where we have added the label E)

WE
⊥

`
=

9
8π

b2µ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
(126)

is similar to the stationary screw dislocation transverse strain
energy per unit length

WS
⊥

`
=

1
4π

b2µ̄0 log
Λ

b0
(127)

except for the proportionality constant.
Similarly, the longitudinal strain energy of the stationary

edge dislocation is given by

WE
‖ =

∫
V
E‖ dV. (128)

Substituting for E‖ from (69), this equation becomes

WE
‖ =

∫
V

b2

2π2

κ̄0 µ̄
2
0

(2µ̄0 + λ̄0)2

sin2 θ

r2 dV. (129)

Similarly to the previous derivation, this integral gives

WE
‖

`
=

1
2π

b2 κ̄0

(
µ̄0

2µ̄0 + λ̄0

)2

log
Λ

b0
. (130)

The total strain energy of the stationary screw and edge
dislocations have similar functional forms, with the differ-
ence residing in the proportionality constants. This is due
to the simpler nature of the stationary dislocations and their
cylindrical polar symmetry. This similarity is not present for
the general case of moving dislocations as evidenced in equa-
tions (37), (86) and (90).

For the moving edge dislocation in the limit as v → 0,
subsituting for (101) in (120) and using (107), we have

WE
⊥ → 2b̄2µ̄0

∫
z

∫
θ

∫ Λ

b0

rdr dθ dz{ 1 +
2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 sin2 θ

r2 +

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 cos2 θ

r2

} (131)

where again Λ is a cut-off parameter corresponding to the ra-
dial extent of the dislocation, limited by the average distance
to its nearest neighbours.
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W⊥ =
2b̄2µ̄0

(2µ̄0 + λ̄0)2
log

Λ

b0

∫
z

[
5
4
µ̄2

0

(
θ

2
−

1
4

sin 2θ
)
−

−(3µ̄0 + 2λ̄0)(µ̄0 + 2λ̄0)
(
θ

16
+

1
64

sin 2θ −
1
64

sin 4θ −
1

192
sin 6θ

)
+

+2µ̄2
0

(
θ

16
−

1
64

sin 2θ −
1

64
sin 4θ +

1
192

sin 6θ
)
+

+µ̄2
0

(
5θ
16
−

15
64

sin 2θ +
3

64
sin 4θ −

1
192

sin 6θ
)
+

+(µ̄0 + λ̄0)2
(
θ

4
+

3
16

sin 2θ +
1

16
sin 4θ +

1
48

sin 6θ
) ]2π

0
dz

(123)

Evaluating the integral over r,

WE
⊥ → 2b̄2µ̄0 log

Λ

b0

∫
z

∫ 2π

0
dθ dz{ 1 +

2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 sin2 θ+

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 cos2 θ

}
.

(132)

Evaluating the integral over θ [40] and applying the limits of
the integration, we obtain

WE
⊥ → 2b̄2µ̄0 log

Λ

b0

∫ `

0
dz{ 1 +

2µ̄0

2µ̄0 + λ̄0
+

5
4

µ̄2
0

(2µ̄0 + λ̄0)2

 (π) +

+
1
2

1 − 2µ̄0

2µ̄0 + λ̄0
+

µ̄2
0

(2µ̄0 + λ̄0)2

 (π)
} (133)

and evaluating the integral over z, we obtain the moving edge
dislocation transverse strain energy per unit length in the limit
as v→ 0

WE
⊥

`
→

3
4π

b2µ̄0

(
1 +

2
3

µ̄0

2µ̄0 + λ̄0
+

+
7
6

µ̄2
0

(2µ̄0 + λ̄0)2

)
log

Λ

b0

(134)

where ` is the length of the edge dislocation.

6.4 Strain energy of moving dislocations

In the general case of moving dislocations, the derivation of
the screw dislocation transverse strain energy and the edge
dislocation transverse and longitudinal strain energies is more
difficult. In this section, we provide an overview discussion
of the topic.

6.4.1 Screw dislocation transverse strain energy

The transverse strain energy of a moving screw dislocation,
which also corresponds to its total strain energy, is given by

WS
⊥ =

∫
V
ES
⊥ dV (135)

where the strain energy density ES
⊥ is given by (113), viz.

ES
⊥ =

1
2

b̄2 µ̄0
γ2

(x − vt)2 + γ2y2 (136)

and V is the 4-dimensional volume of the screw dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for ES
⊥, (135) becomes

WS
⊥ =

∫
V

1
2

b̄2 µ̄0
γ2

(x − vt)2 + γ2y2 dx dy dz d(ct). (137)

As before, b̄ is taken out of the integral from (106), and the
integral over z is handled by considering the strain energy per
unit length of the dislocation:

WS
⊥

`
=

b̄2 µ̄0

2

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

γ2

(x − vt)2 + γ2y2 dx dy d(ct) (138)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

Evaluating the integral over x [40],

WS
⊥

`
=

b̄2 µ̄0

2
γ2

∫
ct

∫
y

dy d(ct)

[
1
γy

arctan
(

x − vt
γy

) ]√Λ2−y2

√
y2−b2

(139)
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where the limits corresponding to the maximum cut-off pa-
rameter Λ and minimum cut-off parameter b are stated ex-
plicitly. Applying the limits of the integration, we obtain

WS
⊥

`
=

b̄2 µ̄0

2
γ2

∫
ct

∫
y

dy d(ct){
1
γy

arctan

 √
Λ2 − y2 − vt

γy

−
−

1
γy

arctan

 √
y2 − b2 − vt

γy

 }.
(140)

This integration over y is not elementary and likely does
not lead to a closed analytical form. If we consider the fol-
lowing simpler integral, the solution is given by∫

y

1
γy

arctan
(

x − vt
γy

)
dy =

−
i
2

[
Li2

(
−i

x − vt
γy

)
− Li2

(
i

x − vt
γy

)] (141)

where Lin(x) is the polylogarithm function. As pointed out
in [44], “[t]he polylogarithm arises in Feynman diagram inte-
grals (and, in particular, in the computation of quantum elec-
trodynamics corrections to the electrons gyromagnetic ratio),
and the special cases n = 2 and n = 3 are called the dilog-
arithm and the trilogarithm, respectively.” This is a further
indication that the interaction of strain energies are the phys-
ical source of quantum interaction phenomena described by
Feynman diagrams as will be seen in Section 7.

6.4.2 Edge dislocation longitudinal strain energy

The longitudinal strain energy of a moving edge dislocation
is given by

WE
‖ =

∫
V
EE
‖ dV (142)

where the strain energy density EE
⊥ is given by (86), viz.

EE
‖ =

1
2
κ̄0 b̄2

 2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

(143)

and V is the 4-dimensional volume of the edge dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for EE
‖

, (142) becomes

WE
‖ =

∫
V

1
2
κ̄0 b̄2

 2µ̄0

2µ̄0 + λ̄0

γly

(x − vt)2 + γ2
l y

2

2

dx dy dz d(ct).

(144)

As before, b̄ is taken out of the integral from (106), and the
integral over z is handled by considering the strain energy per

unit length of the dislocation:

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

(γly)2(
(x − vt)2 + γ2

l y
2
)2 dx dy d(ct)

(145)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

The integrand has a functional form similar to that of
(138), and a similar solution behaviour is expected. Evalu-
ating the integral over x [40],

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct)[
1
2

x − vt
(x − vt)2 + (γly)2 +

+
1

2γly
arctan

(
x − vt
γly

) ]√Λ2−y2

√
y2−b2

(146)

where the limits corresponding to the maximum cut-off pa-
rameter Λ and minimum cut-off parameter b are stated ex-
plicitly. Applying the limits of the integration, we obtain

WE
‖

`
= 2 κ̄0 b̄2 µ̄2

0

(2µ̄0 + λ̄0)2

∫
ct

∫
y

dy d(ct){
1
2

√
Λ2 − y2 − vt

(
√

Λ2 − y2 − vt)2 + (γly)2
−

−
1
2

√
y2 − b2 − vt

(
√
y2 − b2 − vt)2 + (γly)2

+

+
1

2γly
arctan

 √
Λ2 − y2 − vt

γly

−
−

1
2γly

arctan

 √
y2 − b2 − vt

γly

 }.

(147)

This integration over y is again found to be intractable,
including that of (140), and likely does not lead to a closed
analytical form. In the arctan Λ integral of (140) and (147),
we can make the approximation

√
Λ2 − y2 ' Λ and evaluate

this term as seen in (141):∫
y

1
γly

arctan
(
Λ − vt
γly

)
dy =

−
i
2

[
Li2

(
−i

Λ − vt
γly

)
− Li2

(
i

Λ − vt
γly

)] (148)

where Lin(x) is the polylogarithm function as seen previously.
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6.4.3 Edge dislocation transverse strain energy

The transverse strain energy of a moving edge dislocation is
given by

WE
⊥ =

∫
V
EE
⊥ dV (149)

where the strain energy density EE
⊥ is given by (90), viz.

EE
⊥ = 2µ̄0 b̄2 c4

v4

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
(150)

and V is the 4-dimensional volume of the edge dislocation.
The volume element dV in cartesian coordinates is given by
dx dy dz d(ct).

Substituting for EE
⊥ as before, taking b̄ out of the integral

from (106), and handling the integral over z by considering
the strain energy per unit length of the dislocation, (149) be-
comes

WE
⊥

`
= 2µ̄0 b̄2 c4

v4

∫
ct

∫
y

∫
x

b2≤x2+y2≤Λ2

dx dy d(ct)

{
α4 (3 + γ2)

(x − vt)2 + γ2y2−

−2α2

(
3 + 1

γ2

)
γl γ (x − vt)2 +

(
2γ2

l −
v2

c2

)
γl γ y

2(
(x − vt)2 + γ2

l y
2
) (

(x − vt)2 + γ2y2
) +

+

(3 + γ2)γ2
l (x − vt)2 + 2

(
α2 + γ4

l −
3
8
v4

c4
l

)
γ2

l y
2(

(x − vt)2 + γ2
l y

2
)2

}
(151)

where ` is the length of the dislocation and as before, Λ is a
cut-off parameter corresponding to the radial extent of the dis-
location, limited by the average distance to its nearest neigh-
bours.

Again, the integrand has functional forms similar to that
of (138) and (145). A similar, but more complex, solution
behaviour is expected, due to the additional complexity of
(151).

7 Dislocation interactions in quantum physics

As mentioned is Section 6, the basic Feynman diagrams can
be seen to represent screw dislocations as photons, edge dislo-
cations as particles, and their interactions. More specifically,
the external legs of Feynman diagrams that are on mass-shell
representing real particles correspond to dislocations, while
the virtual off mass-shell particles are replaced by the inter-
action of the strain energy densities. The exchange of virtual

particles in QED interactions can be taken as the perturba-
tion expansion representation of the forces resulting from the
overlap of the strain energy density of the dislocations. The
Feynman diagram propagators are replaced by the dislocation
strain energy density interaction expressions.

The properties of Burgers vectors and dislocations [14,
see pp. 25-26] have rules similar to those of Feynman dia-
grams, but not equivalent as virtual particles are replaced by
dislocation strain energy density interactions. A Burgers vec-
tor is invariant along a dislocation line. Two Burgers circuits
are equivalent if one can be deformed into the other with-
out crossing dislocation lines. The resultant Burgers vector
within equivalent Burgers circuits is the same.

Dislocation nodes are points where multiple dislocations
meet. If all the dislocation vectors ξi are taken to be positive
away from a node, then

N∑
i=1

ξi = 0 (152)

for the N dislocations meeting at the node. Burgers vectors
are conserved at dislocation nodes.

In this section, we consider the interactions of disloca-
tions which are seen to result from the force resulting from
the overlap of their strain energy density in the STC [14, see
p. 112].

7.1 Parallel dislocation interactions

From Hirth [14, see pp. 117-118], the energy of interaction
per unit length between parallel dislocations (including screw
and edge dislocation components) is given by

W12

`
= −

µ̄0

2π
(b1 · ξ) (b2 · ξ) log

R
RΛ

−

−
µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ) log

R
RΛ

−

−
µ̄0

π

µ̄0 + λ̄0

2µ̄0 + λ̄0

[(b1 × ξ) · R] [(b2 × ξ) · R]
R2

(153)

where ξ is parallel to the z axis, (bi · ξ) are the screw compo-
nents, (bi × ξ) are the edge components, R is the separation
between the dislocations, and RΛ is the distance from which
the dislocations are brought together, resulting in the decrease
in energy of the “system”.

The components of the interaction force per unit length
between the parallel dislocations are obtained by differentia-
tion:

FR

`
= −

∂(W12/`)
∂R

Fθ

`
= −

1
R
∂(W12/`)

∂θ
.

(154)
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Substituting from (153), (154) becomes

FR

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ) +

+
µ̄0

πR
µ̄0 + λ̄0

2µ̄0 + λ̄0
(b1 × ξ) · (b2 × ξ)

Fθ

`
=

µ̄0

πR3

µ̄0 + λ̄0

2µ̄0 + λ̄0

[
(b1 · R) [(b2 × R) · ξ] +

+ (b2 · R) [(b1 × R) · ξ]
]
.

(155)

7.2 Curved dislocation interactions

In this section, we extend the investigation of curved disloca-
tions initiated in Section 5, to the interaction energy and in-
teraction force between curved dislocations [14, see pp. 106-
110]. The derivation considers the interaction between two
dislocation loops, but has much more extensive applications,
being extendable to the interaction energy between two arbi-
trarily positioned segments of dislocation lines.

If a dislocation loop 1 is brought in the vicinity of an-
other dislocation loop 2, the stresses originating from loop
2 do work −W12 on loop 1 where W12 is the interaction en-
ergy between the two dislocation loops. The work done on
loop 1 represents a decrease in the strain energy of the to-
tal system. In that case, if W12 is negative, the energy of the
system decreases and an attractive force exists between the
loops [14, see p. 106].

The interaction energy between the two dislocation loops
is given by [14, see p. 108]

W12 = −
µ̄0

2π

∮
C1

∮
C2

(b1 × b2) · (dl1 × dl2)
R

+

+
µ̄0

4π

∮
C1

∮
C2

(b1 · dl1) (b2 · dl2)
R

+

+
µ̄0

2π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1

∮
C2

(b1 × dl1) · T · (b2 × dl2)
R

(156)

where T is given by

Ti j =
∂2R
∂xi∂x j

. (157)

The force produced by an external stress acting on a dis-
location loop is given by [14, see p. 109]

dF = (b · σ) × dl (158)

where σ is the stress tensor in the medium, b is the Burgers
vector, and dl is the dislocation element. This equation can
be used with (104) to determine the interaction force between
dislocation segments.

As each element dl of a dislocation loop is acted upon by
the forces caused by the stress of the other elements of the

dislocation loop, the work done against these corresponds to
the self-energy of the dislocation loop. The self-energy of a
dislocation loop can be calculated from (156) to give [14, see
p. 110]

Wsel f =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)
R

+

+
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b × dl1) · T · (b × dl2)
R

(159)
where T is as defined in (157).

More complicated expressions can be obtained for inter-
actions between two non-parallel straight dislocations [14,
see pp. 121-123] and between a straight segment of a disloca-
tion and a differential element of another dislocation [14, see
pp. 124-131]. This latter derivation can be used for more ar-
bitrary dislocation interactions.

7.3 Physical application of dislocation interactions

In Quantum Electrodynamics, these correspond to particle-
particle and particle-photon interactions, which are taken to
be mediated by virtual particles. This is in keeping with
the QED picture, but as shown above, particle-particle and
particle-photon interactions physically result from the overlap
of their strain energy density which results in an interaction
force. Again, this improved understanding of the physical
nature of dislocation interactions demonstrates that the inter-
actions do not need to be represented by virtual particle ex-
change as discussed in Section 6.

This theory provides a straightforward physical explana-
tion of particle-particle and particle-photon interactions that
is not based on perturbation theory, but rather on a direct eval-
uation of the interactions.

7.4 Photons and screw dislocation interactions

Screw dislocations interact via the force resulting from the
overlap of the strain energy density of the dislocations in the
STC [14, see p. 112].

As seen in Section 6.2, screw dislocations in the space-
time continuum are identified with the massless, transverse
deformations, photons. As pointed out in [45], it has been
known since the 1960s that photons can interact with each
other in atomic media much like massive particles do. A
review of collective effects in photon-photon interactions is
given in [46].

In QED, photon-photon interactions are known as photon-
photon scattering, which is thought to be mediated by virtual
particles. This is in keeping with the QED picture, but as
shown in this work, photon-photon interactions physically re-
sult from the overlap of their strain energy density. This im-
proved understanding of the physical nature of photon-photon
interactions demonstrates that the interaction does not need to
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be represented by virtual particle exchanges, in that the nature
of the physical processes involved is now understood.

From (153), the energy of interaction per unit length be-
tween parallel screw dislocations (photons) is given by

W ss
12

`
= −

µ̄0

2π
(b1 · ξ) (b2 · ξ) log

R
RΛ

(160)

where ξ is parallel to the z axis, (bi · ξ) are the screw compo-
nents, R is the separation between the dislocations, and RΛ is
the distance from which the dislocations are brought together,
resulting in the reduction in the energy of the 2-photon “sys-
tem”.

From (155), the components of the interaction force per
unit length between the parallel screw dislocations are given
by:

F ss
R

`
=

µ̄0

2πR
(b1 · ξ) (b2 · ξ)

F ss
θ

`
= 0.

(161)

The interaction force is radial in nature, independent of the
angle θ, as expected.

8 Physical explanations of QED phenomena

As we have seen in previous sections, spacetime continuum
dislocations have fundamental properties that reflect those of
phenomena at the quantum level. In particular, the improved
understanding of the physical nature of interactions mediated
by the strain energy density of the dislocations. The role
played by virtual particles in Quantum Electrodynamics is
replaced by the work done by the forces resulting from the
dislocation stresses, and the resulting interaction of the strain
energy density of the dislocations. In this section, we exam-
ine the physical explanation of QED phenomena provided by
this theory, including self-energy and mass renormalization.

8.1 Dislocation self-energy and QED self energies

Dislocation self energies are found to be similar in structure to
Quantum Electrodynamics self energies. They are also diver-
gent if integrated over all of spacetime, with the divergence
being logarithmic in nature. However, contrary to QED, dis-
location self energies are bounded by the density of dislo-
cations present in the spacetime continuum, which results in
an upperbound to the integral of half the average distance be-
tween dislocations. As mentioned by Hirth [14], this has little
impact on the accuracy of the results due to the logarithmic
dependence.

The dislocation self-energy is related to the dislocation
self-force. The dislocation self-force arises from the force
on an element in a dislocation caused by other segments of
the same dislocation line. This process provides an explana-
tion for the QED self-energies without the need to resort to

the emission/absorption of virtual particles. It can be under-
stood, and is particular to, dislocation dynamics as disloca-
tions are defects that extend in the spacetime continuum [14,
see p. 131]. Self-energy of a straight-dislocation segment of
length L is given by [14, see p. 161]:

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L

(
log

L
b
− 1

)
,

(162)

where there is no interaction between two elements of the
segment when they are within ±b, or equivalently

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L log

L
eb
,

(163)

where e = 2.71828... . These equations provide analytic ex-
pressions for the non-perturbative calculation of quantum self
energies and interaction energies, and eliminate the need for
the virtual particle interpretation.

In particular, the pure screw (photon) self-energy

WS
sel f =

µ̄0

4π
(b · ξ)2 L log

L
eb

(164)

and the pure edge (particle) self-energy

WE
sel f =

µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2 L log

L
eb

(165)

are obtained from (163), while (163) is also the appropriate
equation to use for the dual wave-particle “system”.

8.2 Dislocation strain energy and QED mass renormal-
ization

This approach also resolves and eliminates the mass renor-
malization problem. This problem arises in QED due to the
incomplete description of particle energies at the quantum
level. This paper shows that the strain energy density of an
edge dislocation, which corresponds to a particle, consists of
a longitudinal dilatation mass density term and a transverse
distortion energy density term, as shown in (49), (50), and
(51).

QED, in its formulation, only uses the transverse distor-
tion strain energy density in its calculations. This is referred
to as the bare mass m0. However, there is no dilatation mass
density term used in QED, and hence no possibility of prop-
erly deriving the mass. The bare mass m0 is thus renormalized
by replacing it with the actual experimental mass m. Using
the longitudinal dilatation mass density term as in this paper
will provide the correct mass m and eliminate the need for
mass renormalization.
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9 Discussion and conclusion

This paper provides a framework for the physical description
of physical processes at the quantum level based on dislo-
cations in the spacetime continuum within the theory of the
Elastodynamics of the Spacetime Continuum (STCED).

We postulate that the spacetime continuum has a granu-
larity characterized by a length b0 corresponding to the small-
est elementary Burgers dislocation-displacement vector pos-
sible. One inference that comes out of this paper is that the
basic structure of spacetime consists of a lattice of cells of
size b0, rather than the “quantum foam” currently preferred
in the literature. The “quantum foam” view may well be a
representation of the disturbances and fragmentation of the
b0 lattice due to dislocations and other defects in the space-
time continuum.

There are two types of dislocations: Edge dislocations
correspond to dilatations (longitudinal displacements) which
have an associated rest-mass energy, and are identified with
particles. Screw dislocations correspond to distortions (trans-
verse displacements) which are massless and are identified
with photons when not associated with an edge dislocation.
Arbitrary mixed dislocations can be decomposed into a screw
component and an edge component, giving rise to wave-parti-
cle duality.

We consider both stationary and moving dislocations, and
find that stationary dislocations are simpler to work with due
to their cylindrical polar symmetry, but are of limited appli-
cability. Moving screw dislocations are found to be Lorentz
invariant. Moving edge dislocations involve both the speed of
light corresponding to transverse displacements and the speed
of longitudinal displacements cl. However, the speed of light
c upper limit also applies to edge dislocations, as the shear
stress becomes infinite everywhere at v = c, even though the
speed of longitudinal deformations cl is greater than that of
transverse deformations c.

We calculate the strain energy density of both stationary
and moving screw and edge dislocations. The strain energy
density of the screw dislocation is given by the transverse dis-
tortion energy density, and does not have a mass component.
On the other hand, the dilatation strain energy density of the
edge dislocation is given by the (massive) longitudinal dilata-
tion energy density, and the distortion (massless) strain en-
ergy density of the edge dislocation is given by the transverse
distortion energy density. This provides a solution to the mass
renormalization problem in QED. Quantum Electrodynamics
only uses the equivalent of the transverse distortion strain en-
ergy density in its calculations, and hence has no possibility
of properly deriving the mass, which is in the longitudinal di-
latation massive strain energy density term that is not used in
QED.

The theory provides an alternative model for Quantum
Electrodynamics processes, without the mathematical forma-
lism of QED. In this framework, self-energies and interac-

tions are mediated by the strain energy density of the disloca-
tions. The role played by virtual particles in Quantum Elec-
trodynamics is replaced by the interaction of the strain energy
densities of the dislocations. This theory is not perturbative
as in QED, but rather calculated from analytical expressions.
The analytical equations can become very complicated, and
in some cases, perturbative techniques will need to be used to
simplify the calculations, but the availability of analytical ex-
pressions permits a better understanding of the fundamental
physical processes involved.

We provide examples of dislocation-dislocation interac-
tions, applicable to photon-photon, photon-particle, and par-
ticle-particle interactions, and of dislocation self-energy cal-
culations, applicable to photons and particles. These equa-
tions provide analytical expressions for the non-perturbative
calculation of quantum self energies and interaction energies,
and provides a physical process replacement for the virtual
particle interpretation used in QED.

The theory proposed in this paper is formulated in a for-
malism based on Continuum Mechanics and General Rela-
tivity. This formalism is different from that used in Quantum
Mechanics and Quantum Electrodynamics, and is currently
absent of quantum states and uncertainties as is common-
place in quantum physics. Both formalisms are believed to be
equivalent representations of the same physical phenomena.
It may well be that as the theory is developed further, the for-
malism of orthonormal basis function sets in Hilbert spaces
will be introduced to facilitate the solution of problems.

As shown in [47], it is a characteristic of Quantum Me-
chanics that conjugate variables are Fourier transform pairs of
variables. The Heisenberg Uncertainty Principle thus arises
because the momentum p of a particle is proportional to its
de Broglie wave number k. Consequently, we need to differ-
entiate between the measurement limitations that arise from
the properties of Fourier transform pairs of conjugate vari-
ables, and any inherent limitations that may or may not ex-
ist at the quantum level, independently of the measurement
process. Quantum theory currently assumes that the inher-
ent limitations are the same as the measurement limitations.
As shown in [47], quantum measurement limitations affect
our perception of the quantum environment only, and are not
inherent limitations of the quantum level, i.e. there exists a
physical world, independently of an observer or a measure-
ment, as seen here. See also the comments in [48, pp. 3–15].

This framework lays the foundation to develop a theory
of the physical description of physical processes at the quan-
tum level, based on dislocations in the spacetime continuum,
within the theory of the Elastodynamics of the Spacetime
Continuum. The basis of this framework is given in this ini-
tial paper. This framework allows the theory to be fleshed
out in subsequent investigations. Disclinations in the space-
time continuum are expected to introduce new physical pro-
cesses at the quantum level, to be worked out in future in-
vestigations. Additional spacetime continuum fundamental
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processes based on ongoing physical defect theory investiga-
tions will emerge as they are applied to STCED, and will lead
to further explanation of current quantum physics challenges.
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