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The behaviour of an electron with mass me and half spin when passing through a mag-

netic field with fixed strength B0 is studied. The motion of the particle is restricted to

a ring with radius R, thus assuming periodic boundary conditions. We also focused on

magnetic field evolving adiabatically in time, the magnetic field is expressed as a func-

tion of angle φ and θ i.e only the direction of the magnetic field vectors change while the

strength B0 is kept fixed. Expression for eigenenergies were drawn for a fixed energy

and sample values of α, ω, θ and x = mR2/~2.

1 Introduction

An intriguing example emerging from asymmetric spin-inter-

actions are skyrmion lattices. In 1989 Alexey Bogdanov pre-

dicted that for anisotropic chiral magnets there is a new mag-

netic order consisting of topologically stable spin whirls, na-

med skyrmions after the English particle physicist Tony Skyr-

me, who showed that localized solutions to non-linear quan-

tum field theories may be interpreted as elementary particles.

Briefly speaking, skyrmions are topologically stable whirls in

fields.

In 2009, a new magnetic order was observed in Man-

ganese Silicide (MnSi) for specific temperatures and mag-

netic fields by Mühlbauer et al [1]. The physics of an electron

moving through the magnetic field can be analyzed from two

different points of view:

From the point of view of the electron, i.e. considering

the problem in terms of emergent electric and magnetic fields,

the change in spin orientation is equal to an effective Lorentz

force acting on the electron, which is perpendicular to its mo-

tion [2]. As a result, the magnetic field induces a deflection

of the electron, which can be measured by making use of the

topological Hall-effect [3]. Because of the electron carrying

an electric charge, a potential may be measured perpendicular

to the direction of the current. Since the magnetic structure

of the skyrmion lattice is very smooth, the adjustment of the

spin of the electron to the magnetization of the skyrmion lat-

tice can be considered an adiabatic process.

On the other hand, there must be a corresponding counter-

force acting on the skyrmion. This force, arising from the

transfer of angular momentum from the conduction electrons

to the local magnetic structure (cf. [4]), can for example re-

sult in a drift of the domains of the lattice. A 1-D model

of an electron passing over a static magnetic field has previ-

ously been investigated in the Bachelor’s thesis of M. Bae-

dorf [5]. Berry phase physics and spin-scattering in time-

dependent magnetic fields has been studied by Sarah Maria

Schroeter [6].

In this work, the behaviour of an electron with mass me,

when passing through a magnetic field with a fixed strength

B0 is studied.

2 Formulation of the problem

The behaviour of a half spin particle, more specifically an

electron, when passing through a magnetic field with a fixed

strength B0 is considered. The parameter φ sets the position

where the particular magnetic field is measured. At every

position φ on border of the circle, we attach an imaginary

3D-sphere which determines the direction of the field vector.

In effect, the magnetic field is constituted by mere spherical

coordinates. In addition, we allow variation of both angle φ

and θ in time with frequency of ω1 and ω2 respectively:

B(r, t) = B0 n̂(φ, θ, t) (1)

B(r, t) = B0





















sin(θ − ω2t) cos(φ − ω1t)

sin(θ − ω2t) sin(φ − ω1t)

cos(θ − ω2t)





















(2)

B(r, t) = B0





















sin(θ̃) cos(φ̃)

sin(θ̃) sin(φ̃)

cos(θ̃)





















(3)

where φ̃ = φ−ω1t and θ̃ = θ−ω2t. The Hamiltonian is made

up of a kinetic part and a part arising from the interaction of

particle with the magnetic field:

H0(r, t) =
p̂2

2me

+ B(r, t)
gs|µB|

h
S (4)

where S is the electron spin, gs is the spin g-factor and µB is

the Bohr magneton

|µB|=
|e|~

2me

.

We confine ourselves to the xy-plane, with the real space pa-

rameter θ = π/2 and radius R kept fixed. The nabla-operator
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is simplified as:

∇ = êr

∂

∂r
+ êθ̃

1

R

∂

∂θ̃
+ êφ̃

1

R sin θ̃

∂

∂φ̃
(5)

which becomes

∇2 =

(

1

R

∂

∂φ̃

)2

. (6)

Thus, we can now rewrite the Hamiltonian H0 as

H0 = −
~

2

2mR2

(

∂

∂φ̃

)2

+ |µB| B0(r, t)σ (7)

where σ is a vector of Pauli matrices and for any unit vector

n̂, we find a rotation matrix ℜ such that ℜ ˆ̃φ = n̂ so that (7)

can be rewritten as

H0 =
~

2

mR2















−
1

2

(

∂

∂φ̃

)2

+
|µB|B0

~2/mR2
n̂σ















(8)

H0 =
~

2

mR2















−
1

2

(

∂

∂φ̃

)2

+ αn̂σ















=
~

2

mR2
H̃0 (9)

where

α =
|µB|B0

~2/mR2
; S =

~

2
σ ; gs = 2.

Combining the operators generating the translation and rota-

tion gives

g = −i~
∂

∂S
1 +
~

2R
σz = −

i~

R

∂

∂φ̃
1 +

~

2R
σz (10)

g̃ = −i
∂

∂φ̃
1 +

σz

2
(11)

where g̃ is a rescaled version of g. By careful construction

of g, H̃0 and g̃ commute, consequently H0 and g indeed com-

mute.

[H̃0, g̃] =















−
1

2

(

∂

∂φ̃

)2

+ αn̂σ,−i
∂

∂φ̃
1 +

σz

2















(12)

[H̃0, g̃] =















−
1

2

(

∂

∂φ̃

)2

,−i
∂

∂φ̃















+

[

αn̂σ,−i
∂

∂φ̃

]

+

+















−
1

2

(

∂

∂φ̃

)2

,
σz

2















+

[

αn̂σ,
σz

2

]

(13)

[H̃0, g̃] = iα

(

∂

∂φ̃
, n̂σ

)

+

+
n̂σ

2

(

[σx, σz], [σy, σz], [σz, σz]
)

(14)

with

[σi, σ j] = 2i ∈i jk σk.

[H̃0, g̃] = iα

[

∂

∂φ̃

(

sin θ̃ cos φ̃σx + sin θ̃ sin φ̃σy+

+ cos θ̃σz

)

]

+ iαn̂(−σy, σx, 0)

(15)

[H̃0, g̃] = iα
(

− sin θ̃ sin φ̃σx + sin θ̃ cos φ̃σy
)

+

+ iαn̂(−σy, σx, 0)

(16)

[H̃0, g̃] = 0. (17)

We have shown that H̃0 and g̃ possess the same system of

eigenfunctions, with that, we regard g̃ as a generalized mo-

mentum operator.

2.1 Solution to momentum operator

We now establish the eigenfunctions of g̃ solving the eigen-

system
(

−i
∂

∂φ̃
1 +

σz

2

)

|ψ〉 = K|ψ〉 (18)

−i
∂

∂φ̃
1 |ψ〉 =

(

K −
σz

2

)

|ψ〉 =















(

K − 1
2

)

0

0
(

K + 1
2

)















|ψ〉 (19)

with eigenvalues

λ 1
2
=

(

K ∓
1

2

)

(20)

and the respective eigenfunctions

|ψ1〉 =

(

1

0

)

ei (K− 1
2 )φ =

(

ψ1

0

)

(21)

|ψ2〉 =

(

0

1

)

ei (K+ 1
2 )φ =

(

0

ψ2

)

. (22)

As we study the motion of a particle on a ring, we require

|ψ(φ)〉 to fill periodic boundary condition

|ψ(φ)〉 = |ψ(φ + 2π)〉ei(K∓ 1
2 )2π = 1K = n +

1

2
; n ∈ Z (23)

This means that the momentum is quantized. The general

solution to (18) is linear combination of both eigenfunctions

|ψ(φ)〉 = C1(t)|ψ1(φ)〉+C2(t)|ψ2(φ)〉 =

(

C1(t)|ψ1(φ)〉

C2(t)|ψ2(φ)〉

)

(24)

where C1(t) and C2(t) do not depend on φ.

2.2 Solution to the time-dependent Hamiltonian

Ultimately, we are interested in computing the time-depen-

dent coefficients C1(t) and C2(t) in order to receive full so-

lution of the Schrödinger equation when solving the time-

dependent Schrödinger equation, we employ the solution to
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the momentum operator in order to simplify the eigensystem

associated with g̃ as follows:

i~∂t|ψ〉 = H0|ψ〉 =
~

2

mR2















−
1

2

(

∂

∂φ̃

)2

+ αn̂σ















|ψ〉. (25)

See the last page for intermediate equations (26) and (27)

i~∂t|ψ〉 = H0,K,φ̃(t)|ψ〉 (28)

where H0,K,φ̃(t) is defined by equation (27).

2.2.1 Setting up the Schrödinger equation for the time-

dependent coefficients

To set up the Schrödinger equation for the time-dependent co-

efficients C1(t) and C2(t) is by transforming the Schrödinger

equation for |ψ〉:

i~∂t|ψ〉

(

C1(t)ψ1

C2(t)ψ2

)

= H0(t)

(

C1(t)ψ1

C2(t)ψ2

)

i~∂t|ψ〉

(

C1(t)

C2(t)
ψ2

ψ1

)

= H0(t)

(

C1(t)

C2(t)
ψ2

ψ1

)

.

(29)

Employing the equation (27) computed solution to the

momentum operator, we know that
ψ2

ψ1
= eiφ and may write

(see the last page for intermediate equations (30) and (31)):

i~∂t

(

C1(t)

C2(t)

)

= H0,K,ω

(

C1(t)

C2(t)

)

(32)

where H0,K,ω is defined by equation (31).

2.3 Moving into a rotating coordinate system

To solve the eigensystem, we transform H0,K,ω(t) by changing

into a coordinate system rotating clockwise with a frequency

ω = ω1

(

˜C1(t)
˜C2(t)

)

= e−
i
~

S zωt

(

C1(t)

C2(t)

)

= e−
i
2
σzωt

(

C1(t)

C2(t)

)

. (33)

In another way, (33) becomes
(

C1(t)

C2(t)

)

= e
i
2
σzωt

(

˜C1(t)
˜C2(t)

)

(34)

where

e
i
2
σzωt = Σn

(

i
2
σzωt

)n

n!
= Σn

(

i
2
ωt

)n

n!

(

1n 0

0 (−1)n

)

=

(

e
i
2
ωt 0

0 e−
i
2
ωt

)

.

Substituting of (32) in (34) gives:

i~∂t

(

e
i
2
ωt 0

0 e−
i
2
ωt

) (

˜C1(t)
˜C2(t)

)

= H0,K,ω

(

e
i
2
ωt 0

0 e−
i
2
ωt

) (

˜C1(t)
˜C2(t)

)

.

(35)

Multiplying L.H.S of (35) by e
i
2
σzωt, we obtain

(

e−
i
2
ωt 0

0 e
i
2
ωt

)















e
i
2
ωt

(

−~ω
2
+ i~∂t

)

0

0 e−
i
2
ωt

(

~ω
2
+ i~∂t

)















(

˜C1(t)
˜C2(t)

)

=

(

− ~ω
2

0

0 − ~ω
2

) (

˜C1(t)
˜C2(t)

)

+ i~∂t

(

˜C1(t)
˜C2(t)

)

.

Also multiplying R.H.S of (35) by e
i
2
σzωt we have:

(

e−
i
2
ωt 0

0 e
i
2
ωt

)

HK

(

e
i
2
ωt 0

0 e−
i
2
ωt

) (

˜C1(t)
˜C2(t)

)

=

















1
2

(

K − 1
2

)2
+ α cos θ̃ α sin θ̃

α sin θ̃ 1
2

(

K + 1
2

)2
− α cos θ̃

















(

C̃1(t)

C̃2(t)

)

.

As a consequence, (35) yields (see the last page for interme-

diate equation (36))

i~∂t

(

C̃1(t)

C̃2(t)

)

= C

(

C̃1(t)

C̃2(t)

)

. (37)

Comparing (37) with the corresponding static Schrödinger

equation for time-independent coefficients, one observes that

C is the Hamiltonian one receives when considering static

magnetic field (cf. [5]) combined with an additional matrix

(

ωmR2

2~
0

0 −ωmR2

2~

)

.

We now deal with time-independent θ̃ and time-dependent φ̃,

so that θ̃ = θ = constant. As eigenvalues of the operator C

we get (see the last page for equation (38)), which correspond

to the energies of the lower and upper band. E− corresponds

to a magnetic moment which is parallel to the magnetic field.

2.4 Determining the rotated time-dependent coefficients

To determine the solution to (36) i.e find a representation of

the rotated time-dependent coefficients ˜C(t)1 and ˜C(t)2, an

equation of the form

i~∂t

(

C̃1(t)

C̃2(t)

)

= C

(

C̃1(t)

C̃2(t)

)

can immediately be found to have the solution

(

C̃1+(t)

C̃2+(t)

)

= e−iE+ tX+ (39)

(

C̃1−(t)

C̃2−(t)

)

= e−iE− tX+ (40)

where E+, E− and X+, X− are the eigenvalues and correspond-

ing normalized eigenvectors of the matrix C respectively.

More precisely, the later are found to be given by equation

(41) and normalization factor (42) given on the last page.
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2.5 Establishing the solution to the initial Schrödinger

equation

Combining (39) and (40) with already computed static parts

of the wave function (21) and (22) as well as multiplying

the respective components with the e factor which sets the

wave function back into a non-rotating coordinate system (see

(34)), we receive the exact solutions to the initial Schrödinger

equation (27)

|ψ〉K,+ = e−iE+ t

(

x1,+e
i(K− 1

2 )φei ω
2

t

x2,+ei(K+ 1
2 )φe−i ω

2
t

)

;

+,K〈ψ|ψ〉K,+ = 1

(43)

|ψ〉K,− = e−iE+ t

(

x1,−e
i(K− 1

2 )φei ω
2

t

x2,−ei(K+ 1
2 )φe−i ω

2
t

)

;

−,K〈ψ|ψ〉K,− = 1

(44)

The solutions (43) and (44) specific to energies E− and E+
(and respective bands + and -) corresponding to the solution

to one K, hence the indices.

3 Numerical solution to the eigenenergies

First, let us turn back to the exact eigenenergies we computed

in section 2.2, equation (38). We consider an incoming wave

function with a fixed energy ∈ (given on the last page). For a

fixed energy ∈n = ∈o + nω there are maximal four real solu-

tions for K(n, σ, δ), which correspond to the propagation di-

rections δ = l, r and the two possible eigenenergies of the re-

spective wave functions, i.e. the alignment of the spin σ = +,

− with respect to the magnetic field, (see Fig. 1).

4 Discussion

The Schrödinger equation for a half spin particle in a time

dependent magnetic field is presented. Depending on the en-

ergy, there are up to four real solutions for K. The energy

function E+(K) lies below the function E−(K) for all specific

K, (see Fig. 1). For a fixed energy below the minimum of E−
there are no real solutions. For a fixed energy between both

minima there are two real solutions which correspond to a

spin aligned in the direction of the magnetic field and waves

propagating towards the left or the right. For an energy above

two minima there are four real solutions. In this case, both

directions of propagation and both spin orientations occur.

5 Conclusion

In this paper, the exact wave function of a particle moving

through a non-colinear time-dependent magnetic field is com-

puted. Also, it is confirmed that the motion of a half spin

of an electron through the chosen magnetic field is an adia-

batic problem evolving with time. We found that for a time-

dependence of the position of the electron, there are no emer-

gent electric fields since the undisturbed Hamiltonian can be

mapped onto a time- independent one by unitary transforma-

tions.

Fig. 1: Eigenenergies E±(K) plotted versus the momentum eigen-

value K for sample values of α, ω, θ and x = mR2/~2. The points of

intersection Ki with a fixed energy ∈ determine the propagation di-

rection and the spin alignment of the wave function. We set α = 10,

ω = 0.1, θ = π and x = mR2/~2 = 10.
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i~∂t|ψ〉 =
~

2

mR2



















− 1
2

(

∂
∂φ̃

)2
+ α cos θ̃ α sin θ̃e−iφ̃

α sin θ̃eiφ̃ − 1
2

(

∂

∂φ̃

)2
− α cos θ̃



















|ψ〉 (26)

i~∂t|ψ〉 =
~

2

mR2

















1
2

(

K − 1
2

)2
+ α cos θ̃ α sin θ̃e−iφ̃

α sin θ̃eiφ̃ 1
2

(

K + 1
2

)2
− α cos θ̃

















|ψ〉 (27)

i~∂t

(

C1(t)

C2(t)
ψ2

ψ1

)

=
~

2

mR2























(

1
2

(

K − 1
2

)2
+ α cos θ̃

)

C1(t) + α sin θ̃e−iφ̃C2(t)eiφ

α sin θ̃eiφ̃C1(t) +

(

1
2

(

K − 1
2

)2
− α cos θ̃

)

C2(t)eiφ























(30)

i~∂t

(

C1(t)

C2(t)

)

=

















1
2

(

K − 1
2

)2
+ α cos θ̃ α sin θ̃eiω1t

α sin θ̃e−iω1 t 1
2

(

K + 1
2

)2
− α cos θ̃

















(

C1(t)

C2(t)

)

(31)

i~∂t

(

C̃1(t)

C̃2(t)

)

=
h2

mR2

















1
2

(

K − 1
2

)2
+ α cos θ̃ + ωmR2

2~
α sin θ̃

α sin θ̃ 1
2

(

K + 1
2

)2
− α cos θ̃ − ωmR2

2~

















(

C̃1(t)

C̃2(t)

)

(36)

E± =
~

2

mR2



























K2 + 1
4

2
±

√

√

√
(

K − ωmR2

2~

)2

4
− α

(

K −
ωmR2

2~

)2

cos θ + α2



























(38)

X± =

(

x1,±

x2,±

)

=
1

N±

















~
2

mR2

(

− 1
2

(

K + 1
2

)2
+ α cos θ

)

+ ~ω
2
+ E±

~
2

mR2α sin θ

















(41)

N2
± =















~
2

mR2















−
1

2

(

K +
1

2

)2

+ α cos θ















+
~ω

2
+ E±















2

+ (α sin θ)2 (42)

E± =
~

2

mR2



























K2 + 1
4

2
±

√

√

√
(

K − ωmR2

2~

)2

4
− α

(

K −
ωmR2

2~

)2

cos θ + α2



























= const =∈o (45)
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