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Standard Model Particles from Split Octonions
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We model physical signals using elements of the algebra of split octonions over the field

of real numbers. Elementary particles are corresponded to the special elements of the

algebra that nullify octonionic norms (zero divisors). It is shown that the standard model

particle spectrum naturally follows from the classification of the independent primitive

zero divisors of split octonions.

The algebra of octonions [1–3] is interesting mathemati-

cal structure for physical applications (see reviews [4–7]). In

this paper we suggest that split octonions over the reals form

proper mathematical framework to describe elementary par-

ticles and show that some physical properties, like the variety

of their spices, naturally follows from the structure of the al-

gebra.

In [8–10] different aspects of geometrical applications of

split octonions over the reals were considered. It is suggested

to use split octonions as universal mathematical structure in

physics, instead of vectors, tensors, spinors, etc. In this ap-

proach world-lines (paths) of particles are parameterized by

the elements of split octonions,

s = ω + λnJn + xn jn + ctI . (n = 1, 2, 3) (1)

Here a pair of repeated upper and lower indices implies a

summation, i.e. xn jn = δnmxn jm, where δnm is Kronecker’s

delta.

Four of the eight real parameters in (1), t and xn, denote

the ordinary space-time coordinates, and ω and λn are inter-

preted as the phase (classical action) and the wavelengths as-

sociated with the octonionic signals.

The eight octonionic basis units in (1) are represented by

one scalar (denoted by 1), the three vector-like objects Jn, the

three pseudo vector-like elements jn and one pseudo scalar-

like unit I. The squares (inner products) of seven of the hy-

percomplex basis elements of split octonions give the unit el-

ement with the different signs,

J2
n = 1 , j2n = −1 , I2 = 1 . (2)

It is known that to generate a complete basis of split oc-

tonions the multiplication and distribution laws of only three

vector-like elements Jn are enough [1–3]. The three pseudo

vector-like basis units, jn, in (1) can be defined as the binary

products,

jn =
1

2
εnmk JmJk , (n,m, k = 1, 2, 3) (3)

where εnmk is the totally antisymmetric unit tensor, and thus

describe orthogonal planes spanned by vector-like elements

Jn. The seventh basis unit I (the oriented volume) is defined

as the triple product of all three vector-like elements and has

three equivalent representation in terms of Jn and jn,

I = J1 j1 = J2 j2 = J3 j3 . (4)

So the complete algebra of all non-commuting hypercomplex

basis units has the form:

JnJm = −JmJn = εnmk jk

jn jm = − jm jn = εnmk jk

jmJn = −Jn jm = εnmk Jk

JnI = −IJn = jn

jnI = −I jn = Jn



























































. (5)

The conjugation of vector-like octonionic basis units,

J†n = −Jn , (6)

can be understand as reflections. Conjugation reverses the

order of Jn in products, i.e.

j†n =
1

2

(

εnmk JmJk
)†
=

1

2
εnmk Jk†Jm† = − jn

I† = (J1J2 J3)† = J
†
3
J
†
2
J
†
1
= −I























. (7)

So the conjugation of the pass function (1) gives

s† = ω − λnJn − xn jn − ctI . (8)

Using (2), (5) and (8) one can find the norm (interval) of

the pass function (1),

N2 = ss† = s†s = ω2 − λ2 + x2 − c2t2 , (9)

which is assumed to be non-negative. A second condition is

that for physical events the vector part of (1) should be time-

like [10],

c2t2 + λnλ
n > xnxn . (10)

One can represent rotations in the space of the split octo-

nions (1) by the maps,

s′ = eǫθ/2se−ǫθ/2 , (11)
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where θ is some real angle and ǫ denotes the (3+4)-vector de-

fined by the seven basis units Jn, jn and I [1–3, 10]. The set

of transformations (11), which satisfy the conditions (9) and

(10), form the group S O(3, 4) of passive transformations of

the coordinates xn, λn and t [11]. However, to represent the

active rotations in the space of s, which preserves the multi-

plicative structure (5) as well, we would need the transforma-

tions to be automorphisms. It means not all tensorial trans-

formations of the coordinates λn, xn and t, represent real rota-

tions, only the transformations that have a realization as asso-

ciative multiplications should be considered. Automorphisms

of split-octonions form subgroup of S O(3, 4), the noncom-

pact form of Cartan’s smallest exceptional Lie group GNC
2

[12, 13].

Infinitesimal transformations of coordinates, which cor-

respond to the action of the main geometrical group of the

model, GNC
2

, can be written as [10]:

x′n = xn − εnmkα
m xk − θnct +

+
1

2
(|εnmk|φm + εnmkθ

m) λk +















ϕn −
1

3

∑

m

ϕm















λn

ct′ = ct − βnλ
n − θnxn

λ′n = λn − εnmk (αm − βm) λk + βnct+

+
1

2
(|εnmk|φm − εnmkθ

m) xk +















ϕn −
1

3

∑

m

ϕm















xn























































































, (12)

with no summing over n in the last terms of x′n and λ′n. From

the 15 parameters (five 3-angles: αm, βm, φm, θm and ϕm) in

(12), due to the condition

∑

n















ϕn −
1

3

∑

m

ϕm















= 0 , (13)

only 14 are independent.

The transformations (12) can be divided into several dis-

tinct classes [10]. For instance, the GNC
2

-rotations by the an-

gles αn, βn and θn of the space-time coordinates only, imitate

the ordinary infinitesimal Poincaré transformations of (3+1)-

Minkowski space,

ct′ = ct − θn xn + a0

x′n = xn − εnmkα
m xk − θnct + an















, (14)

where the space-time translations are defined as:

a0 = − βnλ
n

an =
1

2
εnmkθ

mλk























. (15)

Time translations a0 are smooth, since βn are compact angles,

but θm are hyperbolic and for the spatial translations an we

have the Rindler-like horizons.

Note that Poincaré-like transformations (14) do not form

subgroup of GNC
2

(the subgroup structure of GNC
2

one can

be find, for example, in [13]), since we had neglected rota-

tions of the extra time-like parameters λn. Complete GNC
2

-

transformations reveal some new features in compare to the

Minkowski case, like parity violations [10].

Another class of automorphisms,

x′n = xn +
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3
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m
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λ′n = λn +















ϕn −
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3
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m
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, (16)

represent rotations through hyperbolic angles, ϕ1, ϕ2 and ϕ3

(of the three, due to (13), only two are independent) of the

pairs of space-like and time-like coordinates xn and λn, into

the orthogonal planes (x1 − λ1), (x2 − λ2) and (x3 − λ3). It

is convenient to define 2-parameter Abelian subalgebra of

GNC
2

by the generators of two independent rotations in these

planes. It is known that the rank of GNC
2

is two, as of the

group S U(3) [13,14]. In terms of the two parameters, K1 and

K2, which are related to the angles ϕn as

K1 =
1

3
(2ϕ1 − ϕ2 − ϕ3)

K2 = −
1

2
√

3
(2ϕ3 − ϕ1 − ϕ2)































, (17)

the transformations (16) can be written more concisely,
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= e(K1Λ3+K2Λ8)I

















λ1 + Ix1

λ2 + Ix2

λ3 + Ix3

















, (18)

where I is the vector-like octonionic basis unit (I2 = 1) and

Λ3 and Λ8 are the standard 3 × 3 Gell-Mann matrices [10].

Then one can classify irreducible representations of GNC
2

by

two fundamental simple roots of the algebra (K1 and K2) and

using analogies with S U(3) interpret them as corresponding

to the spin and hypercharge of particles. It is known that all

quarks, antiquarks, and mesons can be imbedded in the ad-

joint representation of GNC
2

[14].

In the approach [8–10] the norm (9) can be viewed as

some kind of space-time interval with four time-like dimen-

sions. The ordinary time parameter, t, corresponds to the dis-

tinguished octonionic basis unit, I, while the other three time-

like parameters, λn, have a natural interpretation as wave-

lengths, i.e. do not relate to time as conventionally under-

stood. Within this picture, in front of time-like coordinates in

the expression of pseudo-Euclidean octonionic intervals there

naturally appear two fundamental physical parameters, the

light speed and Planck’s constant. Then from the requirement

of positive definiteness of norms under GNC
2

-transformations,
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together with the introduction of the maximal velocity, there

follow conditions which are equivalent to uncertainty rela-

tions [9, 10]. Also it is known that a unique physical system

in multi-time formalism generates a large variety of “shad-

ows” (different dynamical systems) in (3+1)-subspace [15–

19]. One can speculate that information of multi-dimensional

structures, which is retained by these images of the initial sys-

tem, might takes the form of hidden symmetries in the octo-

nionic particle Lagrangians [10].

Split algebras contain special elements with zero norms

(zero divisors) [1], which are important structures in physi-

cal applications [20]. For the coordinate function (1) we can

define the deferential zero divisor,

d

ds
=

1

2

[

d

dω
− Jn

d

dλn

− jn
d

dxn

− I
d

cdt

]

, (19)

such that its action upon s is:

ds

ds
= 1 . (20)

The operator (19) annihilates s†, while the conjugated deriva-

tive operator,

d

ds†
=

1

2

[

d

dω
+ Jn

d

dλn

+ jn
d

dxn

+ I
d

cdt

]

, (21)

is zero divisor for s, i.e.

ds†

ds
=

ds

ds†
= 0 . (22)

From these relations it is clear that the interval (9) is a con-

stant function for the restricted left octonionic gradient oper-

ators,
d

dsL

(

s†s
)

=

(

ds†

ds

)

s = 0

d

ds
†
L

(

ss†
)

=

(

ds

ds†

)

s† = 0







































, (23)

and the invariance of the intervals,

ds2 = dsds† = ds†ds , (24)

in the space of split octonions can be viewed as an algebraic

property.

The octonionic wavefunctions Ψ, in general, should de-

pend on s and on s† as well. Thus we need the condition of

analyticity of functions of split octonionic variables,

dΨ(s, s†)

ds†
= 0 , (25)

which is similar to the Cauchy-Riemann equations from com-

plex analysis. It can be shown that the system of eight alge-

braic conditions (25), in certain cases [21], lead to the octo-

nionic Maxwell and Dirac equations [8].

Now consider non-differential zero divisors. These type

of quantities are distinct elements of the algebra and thus

in physical applications could be corresponded to the unit

signals (elementary particles). In the algebra of split octo-

nions two types of primitive zero divisors, idempotent ele-

ments (projection operators) and nilpotent elements (Grass-

mann numbers), can be constructed [1, 10]. There exist four

classes (totally eight) of primitive idempotents,

D±n =
1

2
(1 ± Jn) , (n = 1, 2, 3)

d± =
1

2
(1 ± I)































, (26)

which obey the relations:

D±n D±n = D±n

d±d± = d±















. (27)

The pairs (D+n ,D
−
n ) and (d+, d−) are zero divisors for each

other,
D±n D∓n = 0

d±d∓ = 0















, (28)

and thus commute,

[D+n ,D
−
n ] = [d+, d−] = 0 . (29)

We have also twelve classes (twenty four in total) of prim-

itive nilpotents,

G±nm =
1

2
(Jn ± jm) , (n,m = 1, 2, 3)

g±n =
1

2
(I ± jn)































, (30)

which are zero divisors for themselves,

G±nmG±nm = 0

g±ng
±
n = 0















. (31)

We see that separately the quantities (30) can be considered

as the Grassmann numbers, but do not commute with their

conjugates,

G±nnG∓nn = d∓

G±nmG∓nm = ǫnmkD±
k
, n , m (n,m, k = 1, 2, 3)

g±ng
∓
n = D±n































, (32)

in contrast to the case of projection operators (29). The quan-

tities G±nm and g±n are the elements of so-called algebra of

Fermi operators with the anti-commutators,

G±nmG∓nm +G∓nmG±nm = 1

g±ng
∓
n + g

∓
ng
±
n = 1















, (33)
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which is some syntheses of the Grassmann and Clifford

algebras.

We want to emphasize that the number of distinct prim-

itive idempotents (four) and nilpotents (twelve), and there

conjugates, coincides with the number of particle/antiparticle

spices (bosons and fermions, respectively) of the standard

model. This justifies our assumption that primitive zero di-

visors, which describe unit signals in the space of split octo-

nions, can be corresponded to the elementary particles. The

properties that the product of two projection operators re-

duces to the same idempotent (27), while the product of two

Grassmann numbers is zero (31), naturally explains the va-

lidity of the Bose and Fermi statistics for the corresponding

particles. In this picture distinct statistics follows from the

existence of the two types of “light-cones” in the octonionic

(4+4)-space (9), what shows itself in the definitions of the

primitive zero divisors (26) and (30). Also note that the num-

ber of the standard model particle generations and the amount

of spatial dimensions, both follow from the structure of the al-

gebra of split octonions and are connected with the exitance

of the three fundamental vector-like elements Jn.

To conclude, in this paper geometrical applications of real

split octonions are considered and elementary particles are

connected with zero divisors, the special elements of the al-

gebra which nullify octonionic intervals. It is shown that the

standard model particle spectrum naturally follows from the

classification of the independent primitive zero divisors of the

algebra.
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7. Lõhmus J., Paal P. & Sorgsepp L. Nonassociative Algebras in Physics,

Hadronic Press, Palm Harbor 1994; Acta Appl. Math., 1998, v.50, 3.

8. Gogberashvili M. Int. J. Mod. Phys. A, 2006, v.21, 3513, arXiv: hep-

th/0505101; J. Phys. A, 2006, v.39, 7099, arXiv: hep-th/0512258.

9. Gogberashvili M. arXiv: hep-th/0212251; Adv. Appl. Clif. Alg., 2005,

v.15, 55, arXiv: hep-th/0409173; Adv. Math. Phys., 2009, 483079,

arXiv: 0808.2496 [math-ph].

10. Gogberashvili M. & Sakhelashvili O. Adv. Math. Phys., 2015, 196708,

arXiv: 1506.01012 [math-ph].

11. Manogue C.A. & Schray J. J. Math. Phys., 1993, v.34, 3746.
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