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A desired solution of the four-potential is presented for free-space photons, obtained

with wave equations derived from the Maxwell equations and the Lorenz condition.

The solution shows that an electromagnetic field in wave form propagating at the speed

of light with a fixed internal phase may exist as a particle taking a limited space at

a specific point of time. It reveals the existence of electric charge distributed as an

electric capacitor on the parallel cylindrical surface of constant radius to the central axis

of the solution. And the charge distribution has a phase change both in the azimuthal

angle and along the direction of the wave propagation. The solution is applied to the

case of a model photon to determine several parameter values of the solution, which in

turn provides a view on the model photon.

1 Introduction

The year of 2015 has been the International Year of Light and

Light-Based Technologies, designated by the United Nations

Educational, Scientific, Cultural Organization (UNESCO).

This designation further emphasizes the importance of light

to people’s life. As a part of the support for the designation,

we present in this paper a theoretical model for the elements

of light, photons, based on our knowledge of classical elec-

trodynamics, classical mechanics and mathematical method

for quantization rules.

In this paper we consider a single free photon in which

photon-photon interactions [1] are neglected. A photon [2]

is a quantum of light which is a wave form of the electro-

magnetic radiation and is characterized by its speed c and

wavelength λ. It is known that a photon has both physical

properties of wave and particle.

As a particle, the photon has a certain energy and mo-

mentum. In the study of the black body radiation [3], Max

Planck proposed that the energy ǫ of a radiation oscillator was

quantized and each energy was proportional to its vibrational

frequency ν as

ǫ = hν , (1)

where h is the Planck constant. Then Einstein applied the idea

to the light and proposed that light was made of quanta, in-

separable entities, with the energy ǫ in terms of the frequency

being given in Eq. (1), which successfully explained the pho-

toelectric effect [4].

The Compton Scattering Experiment [5] further demon-

strated that a photon had a certain energy as specified in

Eq. (1) as well as a momentum in the direction of its motion.

And the magnitude of the momentum p is given by

p =
ǫ

c
=

hν

c
=

h

λ
, (2)

where the relation ν = c/λ is used.

Furthermore it is known from quantum mechanics [6],

that there is an angular momentum difference involved in the

magnitude of integral ~ between the two transitional atomic

states, where ~ is the reduced Planck constant which equals to

the Planck constant h divided by 2π. In the case of light emis-

sion this angular momentum difference may be transfered to

the photon.

On the other hand the Young’s two slit experiment [7]

shows the wave property of light. In a typical Young’s ex-

periment one observes the interference pattern of light from a

monochromatic light source of wavelength λ passing through

two small-spaced parallel slits, which demonstrates the wave

property of light.

It is also known that light is a form of the electromagnetic

wave. In the electromagnetism [8], the set of Maxwell equa-

tions for vacuum gives relationships among the electric field

E, magnetic field B, electric charge density ρ, and electric

current density J as following:

∇ · E = ρ

ǫ0

, (3)

∇ · B = 0 , (4)

∇ × E +
∂B

∂t
= 0 , (5)

∇ × B −
1

c2

∂E

∂t
= µ0J , (6)

where ǫ0 is the permittivity of vacuum and µ0 is the perme-

ability of vacuum; ∇ represents the differential operator and

∇ = î ∂
∂x
+ ĵ ∂

∂y
+ k̂ ∂

∂z
in Cartesian coordinates with î, ĵ, k̂ be-

ing unit vectors for the Cartesian coordinates; t represents the

time and x, y, z are, respectively, the Cartesian components;

the “×” symbol represents the cross operation and the “·” rep-

resents the dot operation. In this paper we use SI units. And

for simplicity we shall consider in the following the medium

to be vacuum. For vacuum where ρ = 0 and J = 0, the fol-

lowing equations may be obtained for the electric field E and

the magnetic field B from Eqs. (3) to (6),

1

c2

∂2E

∂t2
− ∇2E = 0 , (7)
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1

c2

∂2B

∂t2
− ∇2B = 0 , (8)

where c is the speed of light, which is equal to 1/
√
ǫ0µ0 for

vacuum, and ∇2 is the Laplacian operator. Eqs. (7) and (8)

are wave equations with the propagation speed equal to the

speed of light, which shows the light to be a form of the elec-

tromagnetic wave. But we believe that the achieved solution

from Eqs. (7) and (8) so far for free-space photon is limited to

one-dimension and our current view on the photon is limited.

As we know that an electric field or a magnetic field has

energy. And the total energy density η is equal to the sum

of the electric field energy density ηE and the magnetic field

energy density ηB and is given by

η = ηE + ηB =
1

2
ǫ0|E|2 +

1

2µ0

|B|2 , (9)

where |E| is the magnitude of the electric field and |B| the

magnitude of the magnetic field.

The Poynting vector S, which is the energy current den-

sity of the electromagnetic wave, is given by

S =
1

µ0

E × B . (10)

The Poynting vector is perpendicular to both E and B vectors

and is in the direction of the thumb while using the right-

hand-rule turning fingers from E to B.

Both the electric field E and the magnetic field B can be

expressed in terms of the four-potential, a scalar electric po-

tential ψ plus a magnetic vector potential A as following,

B = ∇ × A , (11)

E = −∇ψ − ∂A

∂t
. (12)

The Lorenz condition [9], named after the Danish math-

ematician and physicist, L. V. Lorenz, provides a covariant

form of the four-potential and is given by

∇ · A + 1

c2

∂ψ

∂t
= 0 . (13)

Eq. (13) appears similar to the continuity equation and may

represent a “local form” of the conservation of electric po-

tential energy for a point charge in the electromagnetic field.

With the Lorenz condition, both the scalar potential ψ and

the vector potential A satisfy the following equations, respec-

tively,

1

c2

∂2ψ

∂t2
− ∇2ψ =

ρ

ǫ0

, (14)

1

c2

∂2A

∂t2
− ∇2A = µ0J . (15)

The purpose of the paper is to present a model view of

the photon by obtaining a three-dimensional solution from

Eqs. (14) and (15) for vacuum without external electric charge

nor external electric current. The three-dimensional solution

hence is theoretical analyzed to reveal its physics meaning. It

is finally applied to the case of a model photon to gain a deep

insight into the photon, which is new since we are not aware

of such a report in the literatures.

This paper is organized as these: Introduction, Solution,

Discussions, and Conclusion. The Introduction section pro-

vides a brief overview on our fundamental understandings of

light and photon. In the Solution section, two expressions of

the four-potential as a solution for three-dimensional space

are presented, which are obtained from Eqs. (14) and (15) for

vacuum without external electric charge nor external electric

current. The characteristic of the solution shows that its quan-

tities are in limited space at a specific point of time, which is

desirable for photons. In the Discussions section, expressions

for the electric field and the magnetic field are derived from

the four-potential solution. An analysis of the electric field

reveals the existence of electric charge distributed on the par-

allel cylindrical surface of constant radius to the central axis

of the solution. The solution then is applied to the case of a

model photon to determine the constant parameter values of

the solution from physical quantities of the photon, which in

turn provides a view on the model photon. The Conclusion

section provides a brief summary of the paper together with

some comments.

2 Solution

In vacuum where electric charge density ρ = 0 and electric

current density J = 0, Eqs. (14) and (15) are reduced respec-

tively to

1

c2

∂2ψ

∂t2
− ∇2ψ = 0 , (16)

1

c2

∂2A

∂t2
− ∇2A = 0 . (17)

Eqs. (16) and (17) are wave equations and their solutions

for one-dimensional space are easily obtained and are known

as a traveling wave,

ψ = ψ0 sin(kx − ωt) , (18)

A = A0 sin(kx − ωt) , (19)

where ψ0 represents the amplitude of the scalar potential, A0

the amplitude of the vector potential, ω is the angular fre-

quency which equals to 2πν and ν is the wave frequency, and

k is the wavenumber and k = ω/c = 2π/λ. The reason to

choose the sine function instead of the cosine function here

is arbitrary, but with no difference, since the sine and cosine

functions are different by a phase difference of π/2, they may

represent the same physical wave. Also as we know that the

electric potential is a measurable quantity which is real, we

shall restrict the solution to the real number domain in this

paper.
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In the following, Eqs. (16) and (17) are solved for three-

dimensional space to reveal more features of the solution.

First we choose the circular cylindrical coordinates (or cylin-

drical polar coordinates) as in Fig. 1 for our coordinate sys-

tem [10]. Here we use the r symbol to represent the polar axis

since the ρ symbol is used for the electric charge density. And

φ represents the azimuthal angle and z represents the central

axis and is the same as the Cartesian z axis. Their respective

unit vectors are r̂, φ̂, and ẑ as in Fig. 1.

Fig. 1: A drawing of the circular cylindrical coordinate system with

respect to the Cartesian coordinates, where r̂, φ̂, and ẑ are unit vec-

tors for the coordinate system. The wave symbol represents a photon

moving in the direction of the positive z axis at the speed of light c.

The Laplacian operator ∇2 in the cylindrical coordinates

is expressed as

∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂φ2
+
∂2

∂z2
, (20)

and hence we get a solution of the four-potential from Eqs.

(16) and (17) as following

ψ = ψ0 sin(kz + mφ − ωt)
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r

r0

)m
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r

)m

r > r0 ,

(21)

A = ẑA0 sin(kz + mφ − ωt)































(

r

r0

)m

r < r0 ,

(

r0

r

)m

r > r0 ,

(22)

where we choose the wave to propagate along the positive z

axis, ψ0 is a strength constant for the scalar potential and A0

is a strength constant for the vector potential whose direction

is in that of the wave propagation, r0 is a constant polar ra-

dius to be determined in the next section by the wavelength

of the photon, m is a positive integer to satisfy the 2π peri-

odic boundary condition of the azimuthal angle. Here m is a

quantum number which may be associated with the angular

momentum of the wave. Again the choice of the sine func-

tion instead of the cosine function here is arbitrary but has no

physics difference. The solution at r0 is not defined but has

finite quantities. r0 is a boundary of the solution and in the

following treatment we shall let the boundary thickness to ap-

proach to zero so the solution is approximately defined at r0.

Eqs. (21) and (22) represent a traveling wave propagating

along the positive z axis. The solution by the two expressions

is desirable since its quantities are limited in the polar axis.

It is worthwhile to mention that this solution may be for in-

dividual photons free from interactions with each other. The

study of photon interactions is out of the scope of this paper.

In the following section we will analyze the solution to reveal

its physics meaning.

3 Discussions

Applying the Lorenz condition, Eq. (13), to Eqs. (21) and

(22), we have

A0 =
ψ0

c
. (23)

Hence the vector potential and the scalar potential are related

to each other, only one of them is independent.

Now applying Eqs. (11) and (12) to the solution Eqs. (21)

and (22) and using Eq. (23), we may have for the electric field

E and the magnetic field B as following:

E = −mψ0



































































rm−1

r0
m

(

r̂ sin(kz + mφ − ωt)+

+ φ̂ cos(kz + mφ − ωt)

)

r < r0 ,

r0
m

rm+1

(

−r̂ sin(kz + mφ − ωt)+

+ φ̂ cos(kz + mφ − ωt)

)

r > r0 ,

(24)

B = mA0



































































rm−1

r0
m

(

r̂ cos(kz + mφ − ωt)−

− φ̂ sin(kz + mφ − ωt)

)

r < r0 ,

r0
m

rm+1

(

r̂ cos(kz + mφ − ωt)+

+ φ̂ sin(kz + mφ − ωt)

)

r > r0 ,

(25)

where r̂ is the unit vector for the polar axis, φ̂ is the unit vec-

tor for the azimuthal angle. From Eqs. (24) and (25) we know

that both the electric field E and the magnetic field B are trav-

eling in the direction of the positive z axis and are perpendic-

ular to the direction of the wave propagation. Furthermore we

have E · B = 0, meaning that the electric field and the mag-

netic field are perpendicular to each other, which is consistent

with the basic electromagnetic theory for free-space.
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For better understanding of the fields, in the following dis-

cussions we shall restrict ourself to the case of the angular

momentum number m = 1, which may correspond to the case

of the photon we know. For general case of m > 1, following

treatments are similarly applicable. Hence Eqs. (24) and (25)

become

E = −ψ0































































1

r0

(

r̂ sin(kz + φ − ωt)+

+ φ̂ cos(kz + φ − ωt)

)

r < r0 ,

r0

r2

(

−r̂ sin(kz + φ − ωt)+

+ φ̂ cos(kz + φ − ωt)

)

r > r0 ,

(26)

B = A0































































1

r0

(

r̂ cos(kz + mφ − ωt)−

− φ̂ sin(kz + mφ − ωt)

)

r < r0 ,

r0

r2

(

r̂ cos(kz + mφ − ωt)+

+ φ̂ sin(kz + mφ − ωt)

)

r > r0 .

(27)

From Eqs. (26) and (27), for r > r0 both field strengths are

inversely proportional to r2 and approach to zero as r goes to

infinity, which is a desirable result because a photon takes a

limited space at a specific point of time. The electric field E at

r0, or on the parallel cylindrical surface in a three-dimensional

view, is not continue in the radial direction, meaning charge

may exist on the surface. To derive an expression for the sur-

face charge density σ, apply Eq. (3) to Eq. (26), we have

σ = 2ǫ0ψ0

1

r0

sin(kz + φ − ωt) . (28)

Hence the charge density is also in the form of a traveling

wave, moving uniformly in the direction of the positive z axis

with a fixed internal phase both in the azimuthal angle and

along the z axis.

To get a precise sense of the fields and charge distribution,

we simplify Eqs. (26), (27), and (28) by letting z = 0, and

t = 0, which allows us to better understand the solution at the

specific point of time and space. And hence we have

E = ψ0































− 1

r0

ĵ r < r0 ,

r0

r2

(

î sin(2φ) − ĵ cos(2φ)

)

r > r0 ,

(29)

B = A0































1

r0

î r < r0 ,

r0

r2

(

î cos(2φ) + ĵ sin(2φ)

)

r > r0 ,

(30)

and

σ = 2ǫ0ψ0

1

r0

sin φ , (31)

where î is the unit vector for the x axis and ĵ is the unit vector

for the y axis. In deriving Eqs. (29) and (30), we use the

following relations for unit vector transformations between

the polar and Cartesian coordinates

r̂ = î cosφ + ĵ sin φ , (32)

φ̂ = −î sinφ + ĵ cos φ . (33)

The electric field E, magnetic field B, and the surface

charge density σ at z = 0 and t = 0 are shown in Fig. 2.

Fig. 2: A schematic diagram of the electric field E (solid lines), mag-

netic field B (dash lines), and charge distribution (“+” for positive

charge and “−” for negative charge) on an imaging cylindrical sur-

face (r = r0) of the solution in the x-y plane, where z = 0, t = 0. The

wave is propagating along the positive z axis (pointing out of the x-y

plane). r0 is the constant radius, and φ is the azimuthal angle.

As we know from Eqs. (29) and (30), both the electric

field E and the magnetic field B are constant inside of the

circle r0; For outside of the r0 both fields decreases as the

radius squared, r2, increases, and the field direction changes

two times as fast as the azimuthal angle φ (Fig. 2). The distri-

bution of the surface charge densityσ is described by the sine

function of the azimuthal angle, and the total charge by the r0

circle is zero. Referring to Fig. 2, the charge distribution is

polarized, i.e., the positive charge on its corresponding half-

circle at r0 is distributed symmetrically to the negative charge

on the other half-circle, or vice versa. The total charge dis-

tribution appears as an electric capacitor made of circularly

distributed electric dipoles.

In the following discussions we apply the solution to a

model photon and shall use the physical quantities of the pho-

ton to determine the values of the constants used in the solu-

tion.

For z , 0 and t = 0 the electric field E, the magnetic field

B and the surface electric charge density σ are distributed

around the central axis z with a certain phase. And the phase
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change depends on both the azimuthal angle φ and the z axis.

We show the charge distribution for z < 0 and t = 0 in Fig. 3.

Fig. 3: A schematic diagram showing the surface charge distribu-

tion(“+” for positive charge and “−” for negative charge) on the sur-

face of r = r0 in the z axis direction for one wavelength λ, where

t = 0, the model photon is moving along the positive z axis at the

speed of light c and r0 is the constant radius. For clarity we only

show two lines of charges here.

The charge distribution appears as a circularly distributed

electric dipole “twisted” in the azimuthal angle and along the

z axis. The twisting phase change is exactly the same as that

of the photon (one cycle of the charge phase change by one

wavelength λ). The model photon picture in Fig. 3 represents

a “frozen” view at t = 0. For t , 0, by the phase analy-

sis of the sine wave (Eq. (28)), the model photon is doing a

displacement along the positive z without changing its inter-

nal phase. Now imaging that if we place an observer facing

the incoming photon at a fixed z position, it may see the cir-

cularly distributed charge rotating counter-clockwise (in the

direction of the azimuthal angle) around the photon’s central

axis. Since this rotation represents a certain angular momen-

tum, the photon may carry an angular momentum in the phase

of the charge distribution.

In the following we shall assume that the length of the

model photon, l, equals to nλ, where n is a positive integer

to satisfy the periodic condition in the propagation direction.

Here n may be considered as a quantum number and its min-

imum value is one, which makes a minimum complete cycle.

Now applying Eq. (23) to Eqs. (26) and (27), we find that

the electric field energy density ηE and the magnetic field

energy density ηB (Eq. (9)) are equal to each other for the

photon. And we have the total energy density η as following

η = ǫ0|E|2 = ǫ0ψ0
2































1

r0
2

r < r0 ,

r0
2

r4
r > r0 ,

(34)

where |E| is the magnitude of the electric field. The energy

density is constant for r < r0 and is inversely proportional to

r4 for r > r0. The photon energy (Eq. (1)) may be equal to

the integration value of Eq. (34) in the photon space at time

t = 0. The integration path for r is 0 to r0 and r0 to ∞, for z

is -nλ to 0, and for φ is 0 to 2π. And hence we find the ψ0 to

have the following relationship

ψ0 =

√

~c

ǫ0n

1

λ
. (35)

In deriving Eq. (35) we used Eq. (1). It is interesting to note

that the potential strength constant, ψ0, is inversely propor-

tional to the wavelength λ.

By using Eqs. (10), (26), and (27), the Poynting vector is

S = ẑ
ψ0A0

µ0































1

r0
2

r < r0 ,

r0
2

r4
r > r0 .

(36)

According to Eq. (36), the photon energy flows in the direc-

tion of the positive z axis, which is consistent with the photon

direction of motion. The total energy by the Poynting vector

for the photon is hν, which may be calculated by integrating

out the Poynting vector, Eq. (36), for the photon and using

Eqs. (23) and (35). This is an expected result.

Since the charge is distributed in the r0 cylindrical sur-

face, which generates a surface electric current by the dis-

placement of the photon at the speed of light, the density of

the photon self energy may also be expressed in the following

relationship,

η′ =
1

2
σψ +

1

2
A · J′ , (37)

where η′ represents the surface energy density, σ the surface

charge density, ψ the electric potential, A the vector potential,

and J′ represents the surface electric current density. For the

photon, A · J′ = AJ′ and J′ = σc, the second term is equal to

the first term on the right hand side of Eq. (37) and we have.

η′ = σψ . (38)

Using Eqs. (28), (21) for m = 1, and (35), we may calcu-

late the photon energy ǫ by integrating out Eq. (38) on the r0

cylindrical surface of length nλ,

ǫ =
∫ 0

−nλ

∫ 2π

0
η′dS =

∫ 0

−nλ
dz

∫ 2π

0
σψr0 dφ

=

∫ 0

−nλ

dz

∫ 2π

0

2ǫ0ψ
2
0 sin2(kz + φ) dφ

=

∫ 0

−nλ

dz

∫ kz+2π

kz

2ǫ0ψ
2
0 sin2(φ′) dφ′

= nλ2ǫ0ψ
2
0π = hν ,

(39)

where dS represents an infinite small area on the r0 cylindri-

cal surface, the time t = 0, and a variable change, kz+φ = φ′.

Hence we get that the energy is hν. This result indicates that
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it is equivalent to consider the photon energy being stored in

the r0 cylindrical surface.

Now we evaluate the value of the constant length of the

polar radius, r0, of the model photon. We first assume that r0

is proportional to the wavelength λ as

r0 =
λ

2π
. (40)

Then we support it by two reasons. The first reason is that

with this assumption the phase velocity of the charge distri-

bution on the r0 cylindrical surface is equal to the speed of

light c, i.e., ωr0 = 2πνλ/2π = νλ = c. This is consistent with

the nature of the photon. This velocity may be physically ex-

perienced by an electron in an atom as in light absorption.

The second reason is that the angular momentum carried

by the photon is ~, which is consistent with the angular mo-

mentum number m = 1. To evaluate the angular momentum,

we use following expression

dJ = r0 × dP , (41)

where we consider the angular momentum to be generated in

the r0 cylindrical surface, dJ represents an infinite

small quantity of angular momentum, dP represents an in-

finite small quantity of momentum in the cylindrical surface,

and r0 is the polar radius vector pointing to the cylindrical

surface where the small momentum is considered. Referring

to Fig. 3, an observer like an electron in an atom may experi-

ence a rotational force from the photon, which corresponds to

a momentum in the direction of the azimuthal angle φ. This

momentum may generate an angular momentum in the direc-

tion of the positive z axis.

Similar to Eq. (2), the magnitude of the infinite small

quantity of momentum dP may be written as

dP =
dǫ

c
, (42)

where dǫ represents an infinite small amount of energy in the

cylindrical surface and c is the speed of light. Using Eq. (38),

we have for the dǫ,

dǫ = η′dS = σψdS , (43)

where dS represents an infinite small area on the r0 cylin-

drical surface. And finally we have for the magnitude of the

infinite small quantity of the angular momentum dJ as

dJ =
r0

c
σψdS , (44)

where r0 is given in Eq. (40). The direction of the angular

momentum is in the positive z axis.

By integrating out Eq. (44) for the photon on the r0 cylin-

drical surface at the time t = 0, as has been done in Eq. (39),

we get that the total angular momentum of the photon is in-

deed ~. Hence from the second reasoning we prove that the

constant radius r0 of the photon cylindrical surface is λ/2π.

This angular momentum, derived from the classical me-

chanics, may be considered as the spin angular momentum of

the photon since it is generated by the self-rotation around its

central axis.

Now based on the solution of Eqs. (21) and (22), we have

built a consistent three-dimensional model of the photon: a

quantized electromagnetic wave of length nλ with a charged

cylindrical surface core of radius λ/2π. Such a model may be

tested for it is expected that the photon is very hard to pass a

pinhole of radius less than λ/2π.

4 Conclusion

Conclusion by summarizing what have been presented in the

paper. First a desirable solution was shown in terms of the

two expressions, Eqs. (21) and (22), for the four-potential,

obtained from wave Eqs. (16) and (17) derived by using the

Maxwell equations together with the Lorenz condition. Al-

though we assumed the medium to be vacuum in the solution

for simplicity, our solution may be extended to the case of

a homogeneous medium by using the medium parameters of

the permittivity, permeability, and the speed of light. Also for

clarity we limited our consideration in the Discussions sec-

tion to the case of φ ≥ 0 and t ≥ 0, but the solution itself is

equally applicable if we substitute φ by -φ or t by -t. In the

case of φ, the ± signs respectively may represent the right or

left spin state of the photon.

Then the solution was analyzed for understanding its

characteristics, which showed that an electromagnetic field

in isolated wave form at the speed of light might exist in a

limited space at a specific point of time. The solution re-

quires the existence on the r0 cylindrical surface of electric

charge distributed in certain phase with the azimuthal angle φ

and along the direction of the light propagation. The solution

was specifically studied for the case of the angular momen-

tum number m = 1.

We then applied the solution to the case of a model photon

and determined the constant values of the solution in terms

of the photon quantities. By doing that, a detailed theoreti-

cal three-dimensional model of the photon was achieved. We

showed that the angular momentum of the photon might be

considered as coded in the r0 cylindrical surface by the phase

of the charge distribution.

Notice that we have solved a special case of Eqs. (16) and

(17) by restricting the angular momentum of the photon in the

direction of the light propagation. Furthermore, the length of

the photon was assumed to be nλ, but the upper bound of n

was not determined specifically.

Finally it is theoretically interesting to mention that by

letting the angular momentum number m > 1 in the solution,

which could correspond to a photon with spin larger than one,

we may get similar results as the spin one photon in terms of

the wave taking a limited space at a specific point of time.
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