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In July, 2015, the New Horizons spacecraft passing by Pluto did not discover any more

moons. Therefore, we know the Pluto system total angular momentum to within 2.4%,

more accurately than any other system with more than two orbiting bodies. We there-

fore update our previous analysis to determine whether a definitive test of the quantum

celestial mechanics (QCM) angular momentum constraint can now be achieved.

1 Introduction

In 2012 we analyzed the angular momentum properties of the

Pluto system with its 5 moons [1] not knowing the total angu-

lar momentum in the system. The New Horizons spacecraft

passing by Pluto and its large moon Charon in July, 2015,

did not discover any more moons than its earlier discovery

of 4 additional tiny moons. Therefore, the Pluto system that

we know is the final configuration of orbiting bodies, so we

now know its total angular momentum to within 3%. Conse-

quently, we can consider this gravitationally bound system as

a possible definitive test of the theory called quantum celes-

tial mechanics (QCM) first proposed in 2003 by H. G. Preston

and F. Potter [2].

They derived a new gravitational wave equation from the

general relativistic Hamilton-Jacobi equation for a test parti-

cle of mass µ as given by Landau and Lifshitz:

gαβ
∂S

∂xα
∂S

∂xβ
− µ2 c2 = 0 , (1)

where gαβ is the metric of the general theory of relativity

(GTR) and S is the action. This general relativistic Hamilton-

Jacobi equation becomes a scalar wave equation via the trans-

formation to eliminate the squared first derivative, i.e., by

defining the wave function Ψ(q, p, t) of position q, momen-

tum p, and time t as

Ψ = eiS ′/H (2)

with S ′ = S/µc. The H is defined as the Preston distance

characterizing the specific gravitational system and is a func-

tion of only two physical parameters of the system

H =
LT

MT c
, (3)

where MT is the total mass of the system and LT its total

angular momentum. Only these two parameters of the system

are required to define all the stable quantization states of the

gravitationally bound system. We call the resulting theory

quantum celestial mechanics or QCM.

The end result of the transformation is the new scalar

“gravitational wave equation” (GWE)

gαβ
∂2Ψ

∂xα ∂xβ
+
Ψ

H2
= 0. (4)

One can now consider the behavior of the test particle in dif-

ferent gravitational metrics. In the Schwarzschild metric, we

find good agreement with predictions for all systems to which

the QCM constraints have been applied.

There have been numerous applications of QCM to grav-

itationally bound systems, including multi-planetary exosys-

tems [3], the Solar System [2], the five moons of Pluto [1],

the S-stars at the galactic center [4], and circumbinary sys-

tems [5, 6] with planets. All these systems have been shown

to obey the quantization of angular momentum per unit mass

constraint dictated by QCM in the Schwarzschild metric ap-

proximation for each orbiting body µi, i.e.,

Li

µi

= mi cH. (5)

Of course, one assumes that the body in consideration

has been in an equilibrium orbit for at least tens of millions

of years. Then if one knows the semi-major axis r, the ec-

centricity e, and the period of orbit, the QCM value for Li

in the specific equilibrium orbit equals the Newtonian value

L = µ
√

GMT r (1 − e2). The value of MT is nearly the central

body mass for most cases.

Knowing the period of orbit is an additional constraint

that allows one to determine a set of integers m for the QCM

angular momentum per unit mass linear regression fit, with

R2 > 0.999, which we seek in all cases. Moreover, if one

knows the total angular momentum for the gravitationally

bound system, then a unique set of m values is possible. How-

ever, if the system total angular momentum is unknown, then

several sets of integers could meet the liner regression fit,

in which case we will accept the set beginning with the small-

est integer.

From the slope of the resulting plot of L/µc vs. m for all
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the known orbiting bodies in the system, one can calculate

the predicted QCM total system angular momentum LT and

therefore can predict whether additional mass orbiting the star

is needed to account for this total angular momentum value.

Many m values for the gravitationally bound system will be

unoccupied, for the occupancy of the specific QCM orbits de-

pends upon the history of formation and the subsequent evo-

lution of the planetary system.

For simplicity, applications have concentrated on circular

or near-circular orbits only. Whereas in GTR and its New-

tonian approximation all allowed circular or nearly-circular

orbits about a massive central object are equilibrium orbits,

QCM dictates that only a subset of these equilibrium orbits

are permitted by the quantization of angular momentum per

unit mass constraint.

With any new theory, one needs a definitive test. Until

now there has been no laboratory test of QCM. Finding a

convincing, definitive test for QCM has not been successful.

As of this date, the satellites of Pluto actually offer the best

test of QCM and its quantization of angular momentum per

unit mass prediction. Why? Because the total angular mo-

mentum of the Pluto-Charon system with its 4 tiny moons is

well-known now to within 2.4%.

One would expect that the Solar System as a whole or the

many satellites of the Jovian planets would be a better test.

However, one does not know the total angular momentum to

within 10% of either the Solar System or each of the Jovian

planets. The Jovian planets themselves dominate the angular

momentum contributions in their systems but their internal

differential rotations lead to large uncertainties in their total

angular momentum.

And, unfortunately, we do we not know the total angular

momentum of the Solar System to within 10%. Why not?

Because the Oort Cloud dominates the Solar System angu-

lar momentum [7], providing about 50 times the total angular

momentum contribution from the Sun and the planets! The

total mass of the Oort Cloud is unknown but can be estimated

by assuming perhaps 100 Earth masses of ice chunks at more

than 40,000 AU. The dominance of the Oort Cloud can be

verified by estimating the Newtonian value of its angular mo-

mentum.

Although we have determined excellent linear regression

fits to all planetary-like systems by the QCM angular mo-

mentum constraint, there remain two limitations of the fits:

(1) they are not unique and (2) all integers are candidates for

m, i.e., there being no upper limit. For example, even with

a linear regression fit R2 = 1.000 for the set of m values 3,

5, 8, 14, 17, for a 5 planet system, the set of double values

6, 10, 16, 28, 34, fits equally well. The slope of the graph

of L/µ c versus m is used to predict the total angular momen-

tum of the system, the former set predicting twice the angular

momentum. However, if one knows the total system angular

momentum value, such as we do now for the Pluto system,

then the set of m values is unique.

Fig. 1: The Pluto System fit to QCM.

r × 106 m Period (d) m P2/P1 (n2/n1)3

Pluto 2.035 6.38723 4

Charon 17.536 6.38723 10 1 1

Styx 42.656 20.16155 15 3.156 3.077

Nix 48.694 24.85463 16 3.891 3.691

Kerberos 57.783 32.16756 18 5.036 5.153

Hydra 64.738 38.20177 19 5.981 6.011

Table 1: Pluto system orbital parameters and QCM m values.

2 Pluto and its 5 moons

Will a random set of orbital distances fit the QCM angular

momentum quantization constraint? Yes, because there is no

upper limit to the integers available for the m values. One

can always fit the constraint using very large integers! This

possibility is eliminated when the total angular momentum is

known. If one uses this random set of orbital distances with

a specific mass for the central star but the other masses are

unknown, the system obeys Newton’s law of universal gravi-

tation and the angular momentum per unit mass is known but

the unique set of integer values for m cannot be achieved.

The New Horizons spacecraft passing Pluto in July, 2015,

did not discover any more moons. The Pluto satellite sys-

tem [8] has five moons, Charon, Styx, Nix, Kerberos, and

Hydra, which are nearly in a 1:3:4:5:6 resonance condition!

The orbital behavior of the five moons is considered by using

distances from the Pluto-Charon barycenter. The important

physical parameters of the Pluto system satellites are given in

Table 1. The orbits are very close to circular.

The system total mass is essentially the combined mass

of Pluto (13.05 × 1021 kg) and Charon (1.52 × 1021 kg). The

QCM values of m in the fourth column were determined by

the linear regression fit (R2 = 0.998) to the angular momen-

tum quantization per mass equation as shown in Figure 1 with

L′ = L/µc plotted against m with resulting slope H = 1.43

meters. The uncertainty bars are within the circles. Our pre-

vious fit [1] of these Pluto moons proposed the m values 2, 6,

9, 10, 11, 12, with R2 = 0.998 also.

This new value of H produces a total angular momentum

value LT = 6.28×1030 kg m2/s that is commensurate with the

total angular momentum of 6.26(±0.14)×1030 kg m2/s for the
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known Pluto system when both orbital and rotational angular

momentum are included.

In QCM the predicted period ratios for the orbital reso-

nance conditions in the last column of Table 1 are calculated

from the m values using

P2

P1

=
(m2 + 1)3

(m1 + 1)3
. (6)

With Charon as the reference, this system of moons has nearly

a 1:3:4:5:6 commensuration, with Kerberos having the largest

discrepancy of about 5.2%.

These moons have distances from the barycenter that are

within 2.4% of their QCM equilibrium orbital radii. If in the

next few million years they adjust their orbital semi-major

axes, their positions on the plot may improve to increase the

R2 value but their m values will remain the same. Dynamic

analysis via the appropriate QCM equations could be done to

predict their possible movements.

Note that some additional extremely tiny moons of Pluto

may be found at some of the non-occupied m values, but their

angular momentum contributions will be very small. The for-

mation history of Pluto determines which m values are actu-

ally occupied by orbiting bodies.

3 Discussion

QCM predicts the quantization of angular momentum per unit

mass for all orbiting bodies in gravitationally bound systems.

Unfortunately, the total angular momentum of planetary-like

systems is usually not known to within 10%. Fortunately,

the New Horizons spacecraft passing by Pluto in 2015 did

not discover any additional moons of Pluto, so we now know

the extent of this system and its total angular momentum to

within 2.4%.

We have determined the best set of m integers for a fit

to the QCM angular momentum constraint, and the predicted

resonances in its moon system are in agreement with the mea-

sured period ratios to within 5.2%.

Therefore, we claim to have a definitive test of QCM in

the Schwarzschild metric in a planetary-like system because

the best understood system, Pluto and its 5 moons, obeys the

quantization of angular momentum per unit mass constraint.

Consequently, we expect that all such systems obey QCM,

and in the future we will search for systems that seem to vio-

late the angular momentum constraint.

One would prefer the ability to vary the parameters in a

gravitationally bound system, but we do not have that lux-

ury in astronomical systems. A laboratory test would allow

the variation of the system parameters in a controlled man-

ner and should be undertaken with perhaps a pendulum in a

vacuum chamber near to a rotating mass. In the ideal case

one would expect the maximum repulsion of the pendulum

to occur when the angular momentum constraint is met and

its magnitude to be comparable to the Newtonian attraction.

This type of additional definitive test of QCM might be able

to achieve an reduced uncertainty down to about 0.1%.
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