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We investigate the applicability of Bell’s inequality based on the assumptions used in its
derivation. We find that it applies to a specific class of hidden variable theories referred
to as Bell theories, but not necessarily to other hidden variable dynamic theories. We
consider examples of quantum dynamical processes that cannot be represented by the
initial representation defined in Bell’s derivation. We highlight two hidden assumptions
identified by Jaynes [11] that limit the applicability of Bell’s inequality, as derived,
to Bell hidden variable theories and that show that there are no superluminal physical
influences, only logical inferences.

1 Introduction

Bell’s inequality [1–3] sets constraints for the existence of lo-
cal hidden variable theories in quantum mechanics. Bohr, of
the Copenhagen probabilistic school, and Einstein, of the ob-
jective reality school, who both contributed to the foundation
of quantum mechanics, did not agree on its interpretation –
their views and correspondence on the topic are well docu-
mented in many books [4–7].

In 1935, Einstein, Podolsky and Rosen published a pa-
per [8] that aimed to show that quantum mechanics was not a
complete description of physical reality. Bohr provided a re-
sponse to the challenge [9], but the EPR paper remained an ar-
gument for hidden variables in quantum mechanics. In 1964,
Bell [1] published an inequality that imposed constraints for
local hidden variable theories to be valid in quantum mechan-
ics. The experiments performed by Aspect et al [10] with
entangled photons confirmed that Bell’s inequality was vi-
olated within experimental errors, taken to mean that local
hidden variable theories are not valid in quantum mechanics.
Only non-local hidden variable theories are possible, based
on these results.

In this paper, we investigate the applicability of Bell’s in-
equality, based on the assumptions used in its derivation.

2 Bell’s inequality

Bell’s derivation [1] considers a pair of spin one-half particles
of spinσ1 andσ2 respectively, formed in the singlet state, and
moving freely in opposite directions. Then σ1 · a is the mea-
surement of the component of σ1 along some vector a, and
similarly for σ2 · b along some vector b. Bell then considers
the possibility of a more complete description using hidden
variable parameters λ.

He writes down the following equation for the expectation
value of the product of the two components σ1 · a and σ2 · b
with parameters λ:

P(a,b) =

∫
dλ ρ(λ) A(a, λ) B(b, λ) (1)

where
A(a, λ) = ±1 and B(b, λ) = ±1 (2)

and ρ(λ) is the probability distribution of parameter λ. This
should equal the quantum mechanical expectation value

<σ1 · a σ2 · b> = −a · b . (3)

Bell says that it does not matter whether λ is “a single
variable or a set, or even a set of functions, and whether the
variables are discrete or continuous” [1]. He uses a single
continuous parameter described by a probability distribution.
In a later paragraph, he states that (1) represents all kinds of
possibilities, such as any number of hidden variables, two sets
of hidden variables dependent on A and B, or even as initial
values of the variables λ at a given time if one wants to assign
“dynamical significance and laws of motion” [1] to it. How-
ever, it is doubtful that the probability distribution ρ(λ) can be
used to represent all possible theories of hidden variables.

Indeed, the basic limitation of (1) with its use of a proba-
bility distribution ρ(λ) is that it imposes a quantum mechani-
cal calculation representation on the analysis. Other quantum
level dynamic theories, which we will refer to as hidden vari-
able dynamic theories, could obey totally different dynamic
principles, in which case, (1) would not be applicable. Equa-
tion (1) is only applicable to a specific class of hidden vari-
able theories that can be represented by that equation, which
Jaynes [11] refers to as Bell theories. In the following sec-
tions, we consider examples of quantum dynamical processes
that cannot be represented by (1) or by the probability distri-
bution ρ(λ) used in (1).

3 Measurement limitations and inherent limitations

It is important to note that Bohr’s responses to Einstein’s ge-
danken experiments were based on measurements arguments,
which acted as a barrier to any further analysis beyond that
consideration. As pointed out by Jaynes [12], Einstein and
Bohr “were both right in the essentials, but just thinking on
different levels. Einstein’s thinking [was] always on the on-
tological level traditional in physics; trying to describe the
realities of Nature. Bohr’s thinking [was] always on the epis-
temological level, describing not reality but only our infor-
mation about reality”.
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As discussed in [13], the Heisenberg Uncertainty Princi-
ple arises because x and p form a Fourier transform pair of
variables at the quantum level due to the momentum p of a
quantum particle being proportional to the de Broglie wave
number k of the particle. It is a characteristic of quantum me-
chanics that conjugate variables are Fourier transform pairs
of variables.

It is thus important to differentiate between the measure-
ment limitations that arise from the properties of Fourier tran-
sform pairs, and any inherent limitations that may or may not
exist at the quantum level for those same variables, indepen-
dently of the measurement process. Conjugate variable mea-
surement limitations affect how we perceive quantum level
events as those can only be perceived by instrumented mea-
surements at that level. However, as shown in [13], conjugate
variable measurement limitations affect only our perception
of the quantum environment, and are not inherent limitations
of the quantum level.

The Nyquist-Shannon Sampling Theorem of Fourier tran-
sform theory allows access to the range of values of variables
below the Heisenberg Uncertainty Principle limit under sam-
pling measurement conditions, as demonstrated by the Bril-
louin zones formulation of solid state physics [13] [14, see
p. 21] [15, see p. 100]. Physically this result can be under-
stood from the sampling measurement operation building up
the momentum information during the sampling process, up
to the Nyquist limit. This shows that there are local hidden
variables at the quantum level, independently of the measure-
ment process. The dynamical process in this case is masked
by the properties of the Fourier transform.

4 Wave-particle duality in STCED

The Elastodynamics of the Spacetime Continuum (STCED)
[16] has similarities to Bohmian mechanics in that the so-
lutions of the STCED wave equations are similar to Louis
de Broglie’s “double solution” [17, 18]. Bohmian mechanics
also known as de Broglie-Bohm theory [19–21] is a theory
of quantum physics developed by David Bohm in 1952 [22],
based on Louis de Broglie’s original work on the pilot wave,
that provides a causal interpretation of quantum mechanics.
It is empirically equivalent to orthodox quantum mechanics,
but is free of the conceptual difficulties and the metaphysical
aspects that plague the interpretation of quantum theory.

Interestingly, Bell was aware of and a proponent of Boh-
mian mechanics when he derived his inequality [23]:

“Bohm showed explicitly how parameters could in-
deed be introduced, into nonrelativistic wave mechan-
ics, with the help of which the indeterministic descrip-
tion could be transformed into a deterministic one.Mo-
re importantly, in my opinion, the subjectivity of the
orthodox version, the necessary reference to the ‘ob-
server,’ could be eliminated... I will try to present the
essential idea... so compactly, so lucidly, that even
some of those who know they will dislike it may go

on reading, rather than set the matter aside for another
day.”

In Bohmian mechanics, a system of particles is described by
a combination of the wavefunction from Schrodinger’s equa-
tion and a guiding equation that specifies the location of the
particles. “Thus, in Bohmian mechanics the configuration
of a system of particles evolves via a deterministic motion
choreographed by the wave function” [21] such as in the two-
slit experiment. We will see a similar behavior in the STCED
wave equations below. Bohmian mechanics is equivalent to a
non-local hidden variables theory.

In the Elastodynamics of the Spacetime Continuum, as
discussed in [24], energy propagates in the spacetime contin-
uum by longitudinal (dilatation) and transverse (distortion)
wave displacements. This provides a natural explanation for
wave-particle duality, with the transverse mode correspond-
ing to the wave aspects of the deformations and the longitu-
dinal mode corresponding to the particle aspects of the defor-
mations.

The displacement uν of a deformation from its undeform-
ed state can be decomposed into a longitudinal component uν

‖

and a transverse component uν⊥. The volume dilatation ε is
given by the relation ε = u‖ µ;µ [16]. The wave equation for
uν
‖

describes the propagation of longitudinal displacements,
while the wave equation for uν⊥ describes the propagation of
transverse displacements in the spacetime continuum. The uν

displacement wave equations can be expressed as a longitu-
dinal wave equation for the dilatation ε and a transverse wave
equation for the rotation tensor ωµν [16].

Particles propagate in the spacetime continuum as lon-
gitudinal wave displacements. Mass is proportional to the
volume dilatation ε of the longitudinal mode of the defor-
mation [16, see (32)]. This longitudinal mode displacement
satisfies a wave equation for ε, different from the transverse
mode displacement wave equation for ωµν. This longitudinal
dilatation wave equation for ε is given by [16, see (204)]

∇2ε = −
k̄0

2µ̄0 + λ̄0
uν⊥ε;ν (4)

where µ̄0 and λ̄0 are the Lamé constants and k̄0 the elastic
volume force constant of the spacetime continuum. It is im-
portant to note that the inhomogeneous term on the R.H.S.
includes a dot product coupling between the transverse dis-
placement and the volume dilatation for the solution of the
longitudinal dilatation wave equation for ε.

The transverse distortion wave equation for ωµν [16, see
(210)]

∇2ωµν +
k̄0

µ̄0
ε (xµ) ωµν =

1
2

k̄0

µ̄0
(ε;µuν⊥ − ε

;νuµ⊥) (5)

also includes a R.H.S. coupling, in this case a cross product,
between the transverse displacement and the volume dilata-
tion for the solution of the transverse distortion wave equa-
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tion for ωµν. The transverse distortion wave ωµν corresponds
to a multi-component wavefunction Ψ.

A deformation propagating in the spacetime continuum
consists of a combination of longitudinal and transverse wa-
ves. The coupling between ε;µ and uν⊥ on the R.H.S. of both
wave equations explains the behavior of electrons in the dou-
ble slit interference experiment. It shows that even though
the transverse wave is the source of the interference pattern
in double slit experiments, the longitudinal dilatation wave,
which behaves as a particle, follows the interference pattern
dictated by the transverse distortion wave as observed ex-
perimentally. The longitudinal dilatation wave behaves as a
particle and goes through one of the slits, even as it follows
the interference pattern dictated by the transverse distortion
wave, as observed experimentally [25, see in particular Fig-
ure 4] and as seen in the coupling between ε;µ and uν⊥ in (4)
and (5) above. This behavior is the same as that in Bohmian
mechanics seen above. These results are in agreement with
the results of the Jánossy-Naray, Clauser, and Dagenais and
Mandel experiments on the self-interference of photons and
the neutron interferometry experiments performed by Bonse
and Rauch [26, see pp. 73-81].

As mentioned previously, the solutions of the STCED wa-
ve equations are similar to Louis de Broglie’s “double so-
lution”. The longitudinal wave is similar to the de Broglie
“singularity-wave function” [17]. In STCED however, the
particle is not a singularity of the wave, but is instead char-
acterized by its mass which arises from the volume dilatation
ε propagating as part of the longitudinal wave. There is no
need for the collapse of the wavefunction Ψ, as the particle
resides in the longitudinal wave, not the transverse one. A
measurement of a particle’s position is a measurement of the
longitudinal wave, not the transverse wave.

In addition, |Ψ|2 represents the physical energy density of
the transverse (distortion) wave. It corresponds to the trans-
verse field energy of the deformation. It is not the same as the
particle, which corresponds to the longitudinal (dilatation)
wave displacement and is localized within the deformation
via the massive volume dilatation. However, |Ψ|2 can be nor-
malized with the system energy and converted into a probabil-
ity density, thus allowing the use of the existing probabilistic
formulation of quantum theory.

The dynamical process, although it has some similarities
to Bohmian mechanics, is also different from it as it is cen-
tered on longitudinal (particle) and transverse (wavefunction)
wave equations derived from the properties of the spacetime
continuum of general relativity. It is thus deterministic and
causal as is general relativity.

5 Physical influence versus logical inference

We have considered two examples of quantum dynamical pro-
cesses where the starting equation (1) and the probability dis-
tribution ρ(λ) used in (1) do not apply to the situation. We

now examine in greater details the probabilistic formulation
of Bell’s inequality derivation of section 2 to better under-
stand its limitations.

Physicist E. T. Jaynes was one of the proponents of the us-
age of probability theory as an extension of deductive logic.
His textbook “Probability Theory: The Logic of Science”
[27] published posthumously is an invaluable resource for sci-
entists looking to understand the scientific use of probability
theory as opposed to the conventional mathematical measure
theory. As he states in [11],

“Many circumstances seem mysterious or paradoxi-
cal to one who thinks that probabilities are real phys-
ical properties existing in Nature. But when we adopt
the “Bayesian Inference” viewpoint of Harold Jeffreys
[28,29], paradoxes often become simple platitudes and
we have a more powerful tool for useful calculations.”

Jaynes clarifies this approach to probability theory and con-
trasts it to frequencies as follows [11]:

“In our system, a probability is a theoretical construct,
on the epistemological level, which we assign in order
to represent a state of knowledge, or that we calcu-
late from other probabilities according to the rules of
probability theory. A frequency is a property of the
real world, on the ontological level, that we measure
or estimate.”

The probability distributions used for inference do not de-
scribe a property of the world, only a certain state of infor-
mation about the world, which provides us with the means to
use prior information for analysis as powerfully demonstrated
in numerous applications in [11, 12, 27].

The Einstein–Podolsky–Rosen (EPR) paradox and Bell
inequality in quantum theory is one of the examples exam-
ined by Jaynes in [11]. In quantum mechanics, the belief
that probabilities are real physical properties leads to quan-
daries such as the EPR paradox which lead some to conclude
that there is no real world and that physical influences travel
faster than the speed of light, or worse (“a spooky kind of
action at a distance” as Einstein called it). As Jaynes points
out, it is important to note that the EPR article did not ques-
tion the existence of the correlations, which were expected,
but rather the need for a physical causation instead of what he
calls “instantaneous psychokinesis”, based on experimenter
decisions, to control distant events.

Jaynes’ analysis of the derivation of Bell’s inequality uses
the following notation for conditional probabilities which cor-
responds to Bell’s notation as follows:

P(AB | ab) = P(a,b) (6)
P(A | aλ) = A(a, λ) , (7)

such that Bell’s equation (1) above becomes

P(AB | ab) =

∫
dλ ρ(λ) P(A | aλ) P(B | bλ) . (8)
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However, as Jaynes notes, the fundamentally correct relation
for P(AB | ab) according to probability theory should be

P(AB | ab) =

∫
dλ P(AB | abλ) P(λ | ab) . (9)

Assuming that knowledge of the experimenters’ choices
gives no information about λ, then one can write

P(λ | ab) = ρ(λ) . (10)

The fundamentally correct factorization of the other probabil-
ity factor of (9), P(AB | abλ), is given by [11]

P(AB | abλ) = P(A | abλ) P(B | Aabλ) . (11)

However, as Jaynes notes, one could argue as Bell did that
EPR demands that A should not influence events at B for
space-like intervals. This requirement then leads to the fac-
torization used by Bell to represent the EPR problem

P(AB | abλ) = P(A | aλ) P(B | bλ) . (12)

Nonetheless, the factorization (12) disagrees with the formal-
ism of quantum mechanics in that the result of the measure-
ment at A must be known before the correlation affects the
measurement at B, i.e. P(B | Aab). Hence it is not surpris-
ing that Bell’s inequality is not satisfied in systems that obey
quantum mechanics.

Two additional hidden assumptions are identified by Jay-
nes in Bell’s derivation, in addition to those mentioned above:

1. Bell assumes that a conditional probability P(X |Y) re-
presents a physical causal influence of Y on X. How-
ever, consistency requires that conditional probabilities
express logical inferences not physical influences.

2. The class of Bell hidden variable theories mentioned
in section 2 does not include all local hidden variable
theories. As mentioned in that section, hidden variable
theories don’t need to satisfy the form of (1) (or alter-
natively (8)), to reproduce quantum mechanical results,
as evidenced in Bohmian mechanics.

Bell’s inequality thus applies to the class of hidden variable
theories that satisfy his relation (1), i.e. Bell hidden variable
theories, but not necessarily to other hidden variable dynamic
theories.

The superluminal communication implication stems from
the first hidden assumption above which shows that what is
thought to travel faster than the speed of light is actually a
logical inference, not a physical causal influence. As summa-
rized by Jaynes [11],

“The measurement at A at time t does not change the
real physical situation at B; but it changes our state of
knowledge about that situation, and therefore it chan-
ges the predictions we are able to make about B at
some time t′. Since this is a matter of logic rather than
physical causation, there is no action at a distance and
no difficulty with relativity.”

There is simply no superluminal communication, as required
by special relativity. Assuming otherwise would be similar
to Pauli assuming that the established law of conservation of
energy mysteriously fails in weak interactions instead of suc-
cessfully postulating a new particle (the neutrino).

6 Discussion and conclusion

In this paper, we have investigated the applicability of Bell’s
inequality, based on the assumptions used in its derivation.
We have considered two examples of hidden variable dyna-
mic theories that do not satisfy Bell’s initial equation (1) used
to derive his inequality, and consequently for which Bell’s in-
equality is not applicable: one based on the Nyquist-Shannon
Sampling Theorem of Fourier transform theory and the other
based on the wave-particle solutions of the STCED wave eq-
uations which are similar to Louis de Broglie’s “double so-
lution”. We highlight two hidden assumptions identified by
Jaynes [11] that limit the applicability of Bell’s inequality, as
derived, to Bell hidden variable theories and that show that
there are no superluminal physical influences, only logical
inferences.

We close with a quote from Jaynes [27, see p. 328] that
captures well the difficulty we are facing:

“What is done in quantum theory today... when no
cause is apparent one simply postulates that no cause
exists – ergo, the laws of physics are indeterministic
and can be expressed only in probability form.”

Thus we encounter paradoxes such as seemingly superlumi-
nal physical influences that contradict special relativity, and
“spooky action at a distance” is considered as an explanation
rather than working to understand the physical root cause of
the problem. This paper shows that, in this case, the root
cause is due to improper assumptions, specifically the first
hidden assumption identified by Jaynes highlighted in section
5 above, that is assuming that a conditional probability rep-
resents a physical influence instead of the physically correct
logical inference. In summary,

“He who confuses reality with his knowledge of real-
ity generates needless artificial mysteries.” [11]

Submitted on February 19, 2016 / Accepted on February 22, 2016

References
1. Bell J. S. On the Einstein–Podolsky–Rosen Paradox. Physics, 1964,

v. 1, 195–200. Reprinted in Bell J. S. Speakable and Unspeakable in
Quantum Mechanics. Cambridge University Press, Cambridge, 1987,
pp. 14–21.

2. Goldstein S., Norsen, T., Tausk D. V., Zanghi, N. Bell’s Theorem.
Scholarpedia, 2011, v. 6 (10), 8378.

3. Gouesbet G. Hidden Worlds in Quantum Physics. Dover Publications,
New York, 2013, p. 280–303.

4. Mehra J. Einstein, Physics and Reality. World Scientific Publishing,
Singapore, 1999.

214 Pierre A. Millette. On the Applicability of Bell’s Inequality



Issue 3 (April–July) PROGRESS IN PHYSICS Volume 12 (2016)

5. Whitaker A. Einstein, Bohr and the Quantum Dilemma; From Quan-
tum Theory to Quantum Information, 2nd ed. Cambridge University
Press, Cambridge, 2006.

6. Home D., Whitaker A. Einstein’s Struggles with Quantum Theory; A
Reappraisal. Springer, New York, 2007.

7. Stone A. D. Einstein and the Quantum; The Quest of the Valiant
Swabian. Princeton University Press, Princeton, 2013.

8. Einstein A, Podolsky B. and Rosen N. Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete? Phys. Rev.,
1935, v. 47, 777–780.

9. Bohr N. Can Quantum Mechanical Description of Reality Be Consid-
ered Complete? Phys. Rev., 1935, v. 48, 696.

10. Aspect A, Dalibard J. and Roger G. Experimental test of Bell’s in-
equalities using time-varying analyzers. Phys. Rev. Lett., 1982, v. 49,
1804–1807.

11. Jaynes E. T. Clearing Up Mysteries – The Original Goal. In Skilling
J., ed. Proceedings Volume, Maximum Entropy and Bayesian Methods.
Kluwer Academic Publishers, Dordrecht, 1989, pp. 1–27.

12. Jaynes E. T. Probability in Quantum Theory. In Zurek W. H., ed. Com-
plexity, Entropy and the Physics of Information. Addison Wesley Pub-
lishing, Reading, MA, 1990.

13. Millette P. A. The Heisenberg Uncertainty Principle and the Nyquist-
Shannon Sampling Theorem. Progress in Physics, 2013, v. 9 (3), 9–14.
arXiv: quant-ph/1108.3135.

14. Ziman J. M. Principles of the Theory of Solids, 2nd ed. Cambridge
University Press, Cambridge, 1979.

15. Chaikin P. M. and Lubensky T. C. Principles of Condensed Matter
Physics. Cambridge University Press, Camvridge, 1995.

16. Millette P. A. Elastodynamics of the Spacetime Continuum. The Abra-
ham Zelmanov Journal, 2012, v. 5, 221–277.

17. de Broglie L. Non-Linear Wave Mechanics. Elsevier Publishing, Am-
sterdam, 1960.

18. de Broglie L. Les incertitudes d’Heisenberg et l’interprétation pro-
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