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Mass of a Charged Particle with Complex Structure in Zeropoint Field
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A charged particle immersed in the fluctuating zeropoint field may be visualized as an
oscillator and such an oscillating particle is considered to possess an extended structure
with center of mass and center of charge separated by radius of rotation in a complex
vector space. Considering stochastic electrodynamics with spin, the zeropoint energy
absorbed by the particle due to its internal motion has been derived. One may initially
assume a massless charged particle with complex structure and after interaction with
zeropoint field, the absorbed energy of the particle may correspond to the particle mass.
This gives an idea that an elementary particle may acquire mass from the interaction of
zeropoint field. When the particle moves as a whole, there appears to be a small energy
correction of the order of fine structure constant and it may be attributed to the mass
correction due to particle motion in the zeropoint field.

1 Introduction
The Dirac electron executes rapid oscillations superimposed
on its normal average translational motion and this oscillatory
motion is known as zitterbewegung and it was first shown by
Schrödinger. In the zitterbewegung motion, the electron ap-
pears vibrating rapidly with a very high frequency equal to
2mc2~−1 and with internal velocity equal to the velocity of
light. These oscillations are confined to a region of the order
of Compton wavelength of the particle. It has been shown
by several authors over decades that the center of charge and
center of mass of charged particle are not one and the same
but they are separated by a distance of the order of Compton
wavelength of the particle. The approach of extended particle
structure was developed by Wyssenhoff and Raabe [1], Barut
and Zhanghi [2], Salesi and Recami [3] and others. The list
of references connected with the validity of the extended or
internal structure of charged particle are too many and some
of them are mentioned in the reference [4]. Thus the struc-
ture of an elementary charged particle is not definitely a point
particle with charge and mass or a spherical rigid body with
charge distribution. The structure of electron may be visu-
alized as the point charge in a circular motion with spin an-
gular momentum. The frequency of rotation is equal to the
zitterbewegung frequency and the radius of rotation is equal
to half the average Compton wavelength. The circular mo-
tion is observed from the rest frame positioned at the centre
of rotation which is the centre of mass point. Thus the centre
of mass point and the centre of charge point are separated by
the radius of rotation. The electron spin generated from the
circular motion of zitterbewegung was advocated by several
researchers. Holten [5] discussed the classical and quantum
electrodynamics of spinning particles. In the Holten theory,
the spinning particle emerges as a modification of relativis-
tic time dilation by a spin dependent term and the zitterbewe-
gung appears as a circular motion and the angular momentum
of such circular motion represents the spin. In the Hestene
model of Dirac electron [6], the spin was considered as a dy-

namical property of the electron motion. In the approach of
geometric algebra, using multivector valued Lagrangian, the
angular momentum of this internal rotation represents parti-
cle spin and it has been explicitly shown as a bivector quantity
representing the orientation of the plane of rotation [7, 8]. In
quantum theories, the internal oscillations of the particle are
attributed due to vacuum fluctuations. However, in stochastic
electrodynamics, the internal oscillatory motion of the parti-
cle is attributed to the presence of zeropoint field throughout
space [9]. The mass of the particle is seen as the energy of os-
cillations confined to a region of space of dimensions of the
order of Compton wavelength [10].

The classical concept of space is an infinite void and fea-
tureless. However, it has been replaced by the vacuum field
or the zeropoint random electromagnetic field when the quan-
tum oscillator energy was found to contain certain zeropoint
energy and with the substitution of the quantum oscillator
energy into the Planck’s radiation formula yields the energy
density of zeropoint field at absolute zero temperature [11].
In a classical approach to the radiation problem, Einstein and
Stern obtained blackbody radiation spectrum and suggested
that a dipole oscillator possessed zeropoint energy. In 1916,
Nernst proposed that the universe might actually contain ubi-
quitous zeropoint field without any presence of external elec-
tromagnetic sources [12, 13]. Thus the origin of zeropoint
field is presumed to be purely a quantum mechanical effect
and considered to be uniformly present throughout space in
the form of stochastic fluctuating electromagnetic field. The
zeropoint radiation is found to be homogeneous and isotropic
in space. The spectral density of zeropoint radiation is pro-
portional to ω3 and it is therefore Lorentz invariant. The elec-
tromagnetic zeropoint field consists of fluctuating radiation
that can be expressed as a superposition of polarised plane
waves. Because of the random impulses from fluctuating ze-
ropoint field, a free particle cannot remain at rest but oscil-
lates about its equilibrium position.

The Planck’s idea of zeropoint radiation field was revis-
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ited by Marshall and explicitly showed that the equivalence
between classical and quantum oscillators in the ground state
[14]. This has inspired interesting modifications to classical
electrodynamics and the developed subject is called stochas-
tic electrodynamics. Stochastic electrodynamics deals with
the movement of charged particles in the classical electro-
magnetic fluctuating zeropint field. The presence of classical,
isotropic, homogeneous and Lorentz invariant zeropoint field
in the universe is an important constituent of stochastic elec-
trodynamics. The stochastic electrodynamics approach was
used to explain classically several important fundamental re-
sults and problems of quantum mechanics [15–20]. Boyer
[15] showed that for a harmonic oscillator, the fluctuations
produced by zeropint field are exactly in agreement with the
quantum theory and as a consequence the Heisenberg min-
imum uncertainty relation is satisfied for the oscillator im-
mersed in the zeropoint field. Stochastic electrodynamics was
used to explain the long standing problems of quantum me-
chanics, namely the stability of an atom, Van der Walls force
between molecules [16], Casimir force [17], etc. All these
studies reveal the fact that the conventional concept of space
has been changed by the emergence of zeropoint field. A de-
tailed account of stochastic electrodynamics as a real classical
electromagnetic field and a phenomenological stochastic ap-
proach to the fundamental aspects of quantum mechanics was
given by de La Pena et al., [13, 21]. In the stochastic electro-
dynamics, if the upper cut-off frequency to the spectrum of
zeropoint field is not imposed, the energy of the oscillator
would be divergent. Despite of its success in explaining sev-
eral quantum phenomena, the results obtained in the stochas-
tic electrodynamics have certain drawbacks [20]; it neglects
Lorentz force due to zeropoint magnetic field, it fails in the
case of nonlinear forces, explanation of sharp spectral lines is
not possible, diffraction of electrons cannot be explained and
further the Schrödinger equation can be derived in particular
cases only.

A charged point particle immersed in the fluctuating elec-
tromagnetic zeropoint field is considered as an oscillator. In
the stochastic electrodynamics approach, the equation of mo-
tion of the charged particle in the zeropoint field is known
as Brafford-Marshall equation [13] which is simply the Abra-
ham-Lorentz [22] equation of motion of a charged particle of
mass m and charge e and it is given by

mẍ − Γamv̈ + mω2
0x = eEz(x, t), (1)

where Γa = 2e2/3mc3, ω0 is the frequency of oscillations of
the particle, v is the velocity of the particle, c is the velocity
of light, Ez(x, t) is the external electric zeropoint field and an
over dot denotes differentiation with respect to time. In the
above equation, the force term contains three parts; the bind-
ing force mω2

0x, damping force Γamv̈ and external electric
zeropoint field force eEz(x, t). In the case of point particles,

the strength of these forces follows the relation

mω2
0x < Γamv̈ < eEz(x, t). (2)

The energy absorbed by the particle oscillator in the zero-
point field was given by several authors by introducing cer-
tain approximations. There are two main approaches found
in the literature; one is due to Boyer [6] and the other is
due to Rueda [19]. In addition to these main approaches, re-
cently Cavalleri et al., [20] introduced stochastic electrody-
namics with spin and explained several interesting phenom-
ena for example, stability of elliptical orbits in an atom, the
origin of special relativity and the explanation for diffraction
of electrons. It has been shown that the drawbacks of stochas-
tic electrodynamics can be removed with the introduction of
spin into the problem. The particle has a natural cut-off fre-
quency equal to the spin frequency which is the maximum
frequency radiated by the electron in the zitterbewegung in-
terpretation. This eliminates the problem of divergence in
stochastic electrodynamics. These recent advancements in
the field of stochastic electrodynamics fully support the as-
sumption that the stochastic electromagnetic field represents
the zeropoint field and renew the interest in studying the fun-
damental aspects of quantum systems and in particular the
charged particle oscillator in zeropoint fields.

In Boyer’s extensive studies, the harmonic oscillator was
developed under the dipole approximation and the charged
particle was considered as a point particle without any inter-
nal structure. The point particle limit is endowed with two
assumptions; i) when the particle size tends to zero, ωcτ � 1,
where ωc is the cut-off frequency and τ is the characteristic
time and ii) when the radiation damping term is very small
compared to the external force, Γaωc � 1. In Boyer’s process
of finding the zeropoint energy associated with the charged
particle, an integral under narrow line width approximation
was solved and finally the zeropoint energy per mode of the
oscillator was obtained [16]. This energy has been shown to
be equal to the zeropoint energy of the quantum oscillator.

In Rueda’s approach, the classical particle was consid-
ered as a homogeneously charged rigid sphere and to find the
energy absorbed by the particle, the radiation damping and
binding terms were neglected when compared to the force
term in the Lorentz Abraham equation of motion. The in-
tegration was performed over a range 0 to τ, where τ is the
characteristic time taken by the electromagnetic wave to tra-
verse a distance equal to the diameter of the particle. The
main difference from Boyer’s approach is that Rueda assumed
ωcτ � 1 and this condition means the cut-off wavelength is
much smaller than the particle size. Further, Rueda intro-
duced a convergence factor η(ω) in the zeropoint energy of
the particle oscillator. The average zeropint energy of the os-
cillator is given by [19]

〈E0〉 =
Γa~ω

2
c

π
η(ωc). (3)
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In the later studies, Haitch, Rueda and Puthoff [23] studied an
accelerated charged particle under the influence of zeropint
field and obtained a relation for inertial mass of a charged
particle which is similar to (3). Recently, Haitch et al. [9]
suggested that the radiation damping constant in the zeropoint
field as Γz which is not necessarily equal to the damping con-
stant Γa of Larmor formula for power radiated by an accel-
erated charged particle. If we set η(ω)Γzωc ∼ 1, the ground
state energy of the particle oscillator in the zeropoint field is
written as (~ωc)/π. In the case the cut-off frequency is simlar
to the resonant frequency of the particle oscillator in the elec-
tromagnetic zeropoint field, the ground state energy is equal
to the zitterbewegung energy of the Dirac electron. Here, the
frequency ωc is not generally equal to the frequency of oscil-
lation of the particle and it differs by a fraction of fine struc-
ture constant. However, the reason for assuming Γa as Γz is
obscure. It may be understood that the energy in (3) corre-
sponds only to a mass correction but not to the mass of the
charged particle.

In the stochastic electrodynamics with spin, the particle
is considered to possess an extended internal structure and
the particle spin is sensitive to the zeropoint frequency that
is equal to the frequency of gyration. The particle gyration
motion explains the spin properties and refers to a circular
motion at the speed of light [20]. The velocity of the parti-
cle is not the real velocity of gyrating particle, but centre of
mass point around which the particle revolves. The special
relativity is not present at the particle level and arises mainly
because of the helical motion of the particle when observed
from an arbitrary inertial frame of reference [24]. The cen-
tre of circular motion responds only to the force parallel to
the spin direction. The equation of motion of centre of mass
point can be expressed by (1) provided the external force is
parallel to the spin direction.

Clifford algebra or Geometric algebra has been consid-
ered to be a superior mathematical tool to express many of the
physical concepts and proved to provide simpler and straight-
forward description to the mathematical and physical prob-
lems. The geometric algebra was rediscovered by Hestenes
[25] in 1960’s and it is being used by a growing number of
physicists today. In Geometric algebra, a complex vector
is defined as a sum of a vector and a bivector. In the com-
plex vector algebra, the oscillations of a charged particle im-
mersed in zeropoint field have been studied recently by the
author [26]. The oscillations of the particle in the zeropoint
field may be considered as complex rotations in complex vec-
tor space. The local particle harmonic oscillator is analysed
in the complex vector formalism considering the algebra of
complex null vectors. It has been shown that the average ze-
ropoint energy of the particle is proportional to particle bivec-
tor spin and the mass of the particle may be interpreted as a
local spatial complex rotation in the rest frame.

In the electromagnetic world, the particle mass originates
from the electromagnetic field and it is purely electromag-

netic in nature [27]. In the classical Lorentz theory of
electron, the self-energy is closely connected to the electro-
magnetic mass of the electron. The self-energy problem in
classical theory or quantum theory is essentially connected
to the structure of electron and it may not be correct to as-
sign the structure to the electron as a form factor [28]. Fur-
ther the classical electromagnetic field may be only respon-
sible for the interaction and gives the particle mass as purely
electromagnetic in nature. In quantum field theories, the en-
ergy, momentum and charge of a particle appear as a con-
sequence of field quantisation and leads to natural classifi-
cation of particles depending on their spin values. In the
renormalization procedure of quantum field theory with finite
cut-off for the radiatively induced mass, it has been shown
that mass depends on particle spin in the limit when the bare
mass tends to zero [29]. However, in the quantum electro-
dynamics it is well known that the sum of bare mass and the
mass correction equals the electron mass and the mass cor-
rection is due to the interaction of the particle with vacuum
fluctuations [11]. Recently, Pollock interpreted particle mass
(fermion or boson) arising from the zeropoint vacuum oscil-
lations by introducing a matrix mass term in the Dirac equa-
tion [30]. The standard model deals with the fundamental
particles through interaction of bosons, and at a deeper level
one may consider the particles as field excitations. Though
the vacuum fluctuations have been treated in a different man-
ner in quantum theory and in quantum electrodynamics, the
particle oscillations considered either in the vacuum field or
in the classical stochastic electrodynamics with spin, are at-
tributed to the fluctuations of the zeropoint field. The idea
that the mass arises from the external electromagnetic inter-
action may lead to the conclusion that charge retains intrinsic
masslessness [31]. It has been argued that for there to be cor-
respondence with the particle mass, perhaps at pre-quantum
level, inertial mass must originate from external electromag-
netic interaction [32].

The aim of this article is to find the energy absorbed by
the particle due to its intrinsic motion in the presence of ze-
ropoint field and to discuss the possible origin of mass gen-
eration. In section 2, we have explained the modalities of the
extended structure of the charged particle in the complex vec-
tor algebra. In the present extended particle structure, since
we have considered the center of mass point and center of
charge separated by radius of rotation in the complex plane,
the equation of motion of the particle as a whole is considered
as a combination of equation of motion of center of charge
and the equation of motion of center of mass. These equa-
tions of motion of center of charge and center of mass are
derived in section 3. Considering the equation of motion of
center of charge in the zeropoint field, the energy absorbed by
an extended charged particle is obtained in section 4, and the
possible origin of mass generation is discussed in section 5.
Finally, conclusions are presented in section 6. Throughout
this article a charged particle implies a particle like electron.
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2 The complex structure of a charged particle

In the extended particle structure, the centre of mass and the
centre of charge positions are considered as separate. De-
noting the centre of local complex rotations by the position
vector x and the radius of rotation by the vector ξ , a complex
vector connected with both the motion of the centre of mass
point and internal complex rotation is expressed as [26]

X(t) = x(t) + i ξ(t). (4)

In the geometric algebra, a bivector represents an oriented
plane and i is a pseudoscalar which represents an oriented
volume [33]. Differentiating (4) with respect to time gives
the velocity complex vector.

U(t) = v(t) + i u(t). (5)

Here, the velocity of centre of mass point is v and the internal
particle velocity is u. A reversion operation on U gives Ū =

v − i u and the product

UŪ = v2 + u2. (6)

In the particle rest frame v = 0 and UŪ = u2. Since the par-
ticle internal velocity in the particle rest frame u = c the ve-
locity of light, |U | = u = c. However, when the particle is ob-
served from an arbitrary frame different from the rest frame of
the particle centre of mass, as the centre of mass moves with
velocity v, the particle motion contains both translational and
internal rotational motion of the particle. Then the particle
internal velocity can be seen as

u2 = c2 − v2 (7)

or
u = c(1 − β2)1/2 = cγ−1, (8)

where β= v/c and the factor γ is the usual Lorentz factor. The
angular frequency of rotation of the particle internal motion is
equal to the ratio between the velocity c and radius of rotation
ξ, ωs = c/ξ. When observed from an arbitrary frame, the
angular frequency ω would be equal to the ratio between u
and ξ

ω =
u
ξ

= ωsγ
−1. (9)

Thus the angular frequency of rotation decreases when ob-
served from an arbitrary frame and the decrease depends on
the velocity of the centre of mass. Considering the helical
motion of the particle, this method of calculation for time di-
lation was first shown in a simple manner by Cavelleri [24].
The above analysis shows that the basic reason for the rela-
tivistic effects that we observe is due to the internal rotation
which is a consequence of fluctuating zeropoint field and elu-
cidates a deeper understanding of relativity at particle level in
addition to the constancy of velocity of light postulate. The

difference between ω and ωs corresponds to the particle ve-
locity. In other words, when the particle moves with velocity
v, an important consequence is that the particle itself induces
certain modification in the field to take place at a lower fre-
quency ωB. Thus the motion of a free particle is conveniently
visualized as a superposition of frequencies ω0 and ωB such
that the particle motion as observed from an arbitrary frame
appears to be a modulated wave containing internal high fre-
quency ω0 and an envelope frequency ωB. The ratio between
the envelop frequency and the internal frequency is then ex-
pressed as

ωB

ω0
=
v

c
. (10)

This result is simply a consequence of superposition of inter-
nal complex rotations on translational motion of the particle.
The relativistic momentum of the center of mass point can be
expressed as p = γmv and in the complex vector formalism
momentum complex vector is given by [26]

P = p + i π, (11)

where π = mu. The total energy of the particle is now ex-
pressed as

E2 = PP̄c2 = (p + i π)(p − i π) = p2c2 + m2c4. (12)

However, in the presence of external electromagnetic field we
normally replace the momentum by p − eA/c in the minimal
coupling prescription. Now, using p → p − eA/c in (12)
and equating the scalar parts, the total energy of the particle
becomes

E2 = p2c2 − 2ecp.A + e2A2 + m2c4. (13)

Here, A represents the zeropoint electromagnetic field vec-
tor potential. In the rest frame of the particle, i.e., when the
velocity v = 0, the above expression reduces to

E0 ∼ mc2 +
e2A2

2mc2 , (14)

where the higher order terms are neglected. Thus, under the
influence of zeropoint field, the term e2A2/2mc2 in the above
equation gives a correction to mass. Expanding the vector
potential in terms of its creation and annihilation operators
and averaging in the standard form, it can be shown that the
correction term [23]

e2

2mc2 〈A
2〉 =

α

2π
(~ωc)2

mc2 , (15)

where ωc is the cut-off frequency and α is the fine struc-
ture constant. When the cut-off frequency is equal to the
frequency of oscillation of the particle, ωc = ω0 and using
Einstein-de Broglie formula ~ω0 = mc2, the mass correction
can be expressed in the following form

〈∆E0〉 = δmc2 =
α

2π
mc2. (16)
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Thus in the presence of zeropoint field, the vector potential
term in (15) gives the mass correction and it was obtained by
Schwinger in quantum electrodynamics. The particle mass
which arises due to local complex rotations in the zeropoint
field is regarded as the so called bare mass and when the par-
ticle is observed from an arbitrary frame, the particle mass
has some mass correction due to the presence of external ze-
ropoint field.

3 Equation of motion of the particle with complex struc-
ture

It should be noted that, (1) contains the so called runaway and
causal problems. In the Landau approximation, the damping
term is written as a derivative of external force. In this case,
the runaway and causal problems are eliminated and the exact
equation of motion of a charged particle was recently given
by Rohlrich [34] and Yaghjian [35]. In the equation of mo-
tion of the charged particle, centre of mass appears as if the
total charge is at that point. In other words, there is no dis-
tinction between centre of mass and centre of charge points.
In the case of extended particle structure, it has been clari-
fied in the previous sections that the external zeropoint field
must be responsible for the internal complex rotations and at
the same time for the deviations in the path of the particle
when it is moving with certain velocity. The external zero-
point field is then expressed as a function of complex vector
X, Ez = Ez(X, t) and expanding it gives

Ez(X, t) = Ez(x, t) + i ξ
∣∣∣∣∣∂Ez(x, t)

∂x

∣∣∣∣∣
x→0

+ O(ξ2). (17)

The second term on right hand side of the above equation is
independent of x and it is a function of ξ only. Neglecting
higher order terms in (17) and representing the second term
on right by i Ez(ξ, t), the external zeropoint field Ez(X, t) can
be decomposed into a vector and a bivector parts

Ez(X, t) = Ez(x, t) + i Ez(ξ, t). (18)

The random fluctuations produce kicks in all directions and
leads to random fluctuations of the centre of mass point and
at the same time random fluctuations also produce internal
complex oscillations or rotations. Thus the force acting on
the charged particle can be decomposed into two terms, the
force acting on the centre of mass and the force acting on the
centre of charge. For the field acting on the centre of mass,
the particle mass and charge appear as if they are at the centre
of mass point and we treat the equation of motion of the parti-
cle in the point particle limit. However, for the field acting on
the centre of charge, the effective mass seen by the zeropoint
field is the mass due to the potential Uz ∼ e2/2R ∼ mzc2 . The
magnitude of R is of the order of Compton wavelength. Then
the effective mass mz in the zeropoint field is approximately
equal to the electromagnetic mass which is proportional to
the electromagnetic potential due to charge e at the center of

mass position. Replacing the position vector x by the com-
plex vector X and Ez(x, t) by the complex field vector Ez(X, t)
in (1) and separating vector and bivector parts gives the equa-
tions of motion of the centre of mass and the centre of charge
respectively. The equation of motion of center of mass is the
Abraham-Lorentz equation of motion of a charged point par-
ticle in the external electromagnetic zeropoint field given by
(1) and the motion of the centre of mass of the particle is ob-
served from an arbitrary frame of reference. In the rest frame
of the particle, the equation of motion represents the equation
of motion of center of charge

mzξ̈ − Γzmzü + mzω
2
0ξ = eEz(ξ, t). (19)

The terms Γzmzü and mzω
2
0ξ are radiation damping and bind-

ing terms respectively. The damping constant in the above
equation is defined as Γz = (2e2)/(3mzc3).

4 Average zeropoint energy associated with the particle
in its rest frame

The zeropoint field and particle interaction takes place at res-
onance and the particle oscillates at resonant frequency ω0.
In other words, the particle oscillator absorbs energy from the
zeropoint field at a single frequency which is the characteris-
tic frequency of oscillation. Since, both radiation damping
and binding terms are much smaller than the force term in
(19) one can neglect these terms and integrating with respect
to time t gives the internal velocity of rotation of the particle

u(t) =
e

mz

∫ τ

0
Ez(ξ, t)dt. (20)

Here, the upper limit of integration is chosen as the charac-
teristic time τ required by the electromagnetic wave to tra-
verse a distance equal to the size of the particle. The electric
field vector Ez(ξ, t) is expressed in the same form as that of
Rueda [19],

Ez(ξ, t) =

2∑
λ=1

∫
d3kε(k, λ)

H(ω)
2
×[

aei(k.ξ−ωt) + a∗ei(k.ξ−ωt)
]
,

(21)

where a = exp (−iθ(k, λ)), a∗ = exp (iθ(k, λ)) and ε(k, λ) is
the polarization vector and the normalization constant is set
equal to unity. The phase angle θ(k, λ) is a set of random vari-
ables uniformly distributed between 0 and 2π and are mutu-
ally independent for each choice of wave vector k and λ. The
stochastic nature of the field lies in these phase angles and
a statistical average of these phase angles gives an effective
value of the field. For point particles, because the size is zero,
we find the spectral divergence of zeropoint field. However,
for particles with extended structure, one can discern a natural
cut-off wavelength associated with the particle size. The con-
vergence factor gives an upper bound to the energy available
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from the electromagnetic zeropoint field and it is associated
with the characteristic function H(ω) of the zeropoint field.
The function H(ω) is given by 2π2H2(ω) = η(ω)~ω. In (21),
integrating the electric field vector with respect to time gives

I =

2∑
λ=1

∫ ∞

0
d3k

H(ω)
2

[
ε(k, λ) aeik.ξ

(
e−iωτ − 1
−iω

)
+ε(k, λ) aeik.ξ

(
e−iωτ − 1
−iω

) ]
.

The charge current in the rest frame of the particle is the
charge times the internal velocity of the particle. The inter-
action energy of the charged particle with the zeropoint field
is expressed as the charge current times the vector potential
of the zeropoint field. However, one can express the vector
potential as the integral of the zeropoint electric field vector.
Then the average zeropoint energy acquired by the particle is
expressed as

〈E0〉 =
e2

m
〈II∗〉. (22)

The averages of random phase and the polarization vector are
expressed as follows

〈aa∗〉 = δ(λ − λ′) δ3(k − k′) ; 〈aa〉 = 0 ; 〈a∗a∗〉 = 0

〈ε(k, λ)ε∗(k, λ)〉 = δi j −
k1
k2∑2

λ=1

∫
d3k 〈ε(k, λ)ε∗(k, λ)〉 = 8π

3

∫
ω2 dω .

Using these stochastic averages, replacing the convergen-
ce factor by η(ω0) and setting the upperlimit of integration to
the frequency of oscillations in (22) gives

〈E0〉 =
4e2~

3πmzc3 η(ω0)
∫ ω0

0
ω(1 − cosωτ) dω. (23)

For an extended particle structure ω0τ = 2π and the above
equation after integration reduces to

〈E0〉 = η(ω0)
Γz~ω

2
0

π
. (24)

This result is similar to the result obtained by Reuda [19] and
Puthoff [36]. However, the difference is that the damping
constant is now replaced by Γz and cut-off frequency ωc is
replaced by the resonant internal frequency of oscillation of
the particle. In (24), both the values for mz and η(ω0) are not
known exactly and must be approximated. Instead, one can
approximate η(ω0)Γzω0 ∼ 1 for the particle with extended
structure. Then the average zeropoint energy acquired by the
particle in its rest frame is

〈E0〉 =
~ω0

π
. (25)

This energy is similar to the zitterbewegung energy of Dirac
electron in quantum mechanics.

5 Equation of motion of the particle with complex struc-
ture

In the above procedure, initially we have considered the char-
ged particle without any mass. Such particle interacting with
zeropoint field acquires mass due to particle resonant oscil-
lations and gains energy from the electromagnetic zeropoint
field. This average zeropoint energy of the particle appears
as the mass of the particle. In the complex vector formal-
ism of internal harmonic oscillator in zeropoint field, it has
been shown by the author that the average energy 〈E0〉 is re-
lated to the mass through particle spin and represents the mass
generated from the local complex rotations produced by the
interaction of zeropoint field with the particle. The relation
between average zeropoint energy and particle spin is given
by the expression [26]

〈E0〉 − ω0〈s〉 = 0. (26)

Let us denote ωs = 2ω0 and write the angular velocity bivec-
tor as Ωs = −iσsωs, where σs is a unit vector along the direc-
tion of spin. The average value of spin is obtained by taking
the average over a half cycle, 〈s〉 = 2

π
s. Substituting this aver-

age value of spin and 〈E0〉 from (25) in (26) gives the relation
between particle mass and spin

mc2 = σsΩs.S , (27)

where the relation ~ω0 = mc2 is used and the bivector spin
S = iσs~/2. The unit vector σs acting on an idempotent
J+ = (1 + σS )/2 gives an eigenvalue +1. This statement is
represented by an equation σsJ+ = +1J+ . When (27) is
multiplied from right by an idempotent J+ on both sides the
unit vector is absorbed by the idempotent and equating the
scalar parts gives

mc2 = Ωs.S . (28)

Thus the mass of the particle turns out to be the local internal
rotational energy given by the term Ωs.S . Since, the mag-
nitude of spin and velocity of light are constants, the value
of particle mass depends on the frequency of spin rotation
and the different particles may have different frequencies of
spin rotation. The above analysis shows that the internal com-
plex rotation is responsible for the existence of particle mass.
Then, one may initially consider a massless charged particle
and it may acquire mass from zeropoint field through a local
complex rotation.

When the particle is observed from an arbitrary frame of
reference, the center of mass point moves with velocity v.
The equation of motion of centre of mass point is given by (1)
and solving it by assuming the radiation damping and binding
terms as small when compared to the force term, one can ob-
tain the zeropoint energy absorbed by the point particle and
it is given by (3). The cut-off frequency ωc is the limiting
frequency in the integration. When we assume the cut-off
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frequency ωc = ω0 [37, 38] and after introducing the conver-
gence factor η(ω0) ∼ 3/4 in (3), the average energy represent-
ing the mass correction of the particle in the zeropoint field
can be expressed as

δm =
α

2π
mc2. (29)

This mass correction is too small and found to be similar to
the expression found in quantum electrodynamics to the first
order in the fine structure constant α.

6 Conclusions

In the stochastic electrodynamics with spin, it has been shown
that the average zeropoint energy absorbed by the particle due
to its internal motion gives the particle mass. When the parti-
cle center of mass point moves with certain velocity, we find
the average energy absorbed by the particle gives the mass
correction. In deriving both particle mass and mass correc-
tion, a convergence factor has been introduced for an ex-
tended particle. To understand the mechanism of mass gen-
eration of an elementary particle, one may initially assume a
massless charged particle with complex structure and such a
particle can be visualized as an oscillator in the fluctuating
zeropoint field. Then the average energy absorbed by the os-
cillator refers to the particle mass. Finally, we conceive the
idea that an elementary particle acquires mass from the inter-
action of ubiquitous zeropoint field.
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