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Type III Spacetime with Closed Timelike Curves
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We present a symmetric spacetime, admitting closed timelike curves (CTCs) which

appear after a certain instant of time, i.e., a time-machine spacetime. These closed

timelike curves evolve from an initial spacelike hypersurface on the planes z = constant

in a causally well-behaved manner. The spacetime discussed here is free from curvature

singularities and a 4D generalization of the Misner space in curved spacetime. The

matter field is of pure radiation with cosmological constant.

1 Introduction

One of the most intriguing aspects of Einstein’s theory of

gravitation is that solutions of field equations admit closed

timelike curves (CTC). Presence of CTC in a spacetime leads

to time-travel which violates the causality condition. The first

one being Gödel’s spacetime [1] which admits closed time-

like curves (CTC) everywhere and an eternal time-machine

spacetime. There are a considerable number of spacetimes

in literature that admitting closed timelike curves have been

constructed. A small sample would be [1–21]. One way of

classifying such causality violating spacetimes would be to

categorize the metrics as either eternal time-machine in which

CTC always exist (in this class would be [1, 2]), or as time-

machine spacetimes in which CTC appear after a certain in-

stant of time. In the latter category would be the ones dis-

cussed in [18–20]. Many of the models, however, suffer from

one or more severe drawbacks. For instance, in some of these

solutions, for example [13,14,20], the weak energy condition

(WEC) is violated indicating unrealistic matter-energy con-

tent and some other solutions have singularities.

Among the time-machine spacetimes, we mention two:

the first being Ori’s compact core [17] which is represented

by a vacuum metric locally isometric to pp waves and sec-

ond, which is more relevant to the present work, the Misner

space [22] in 2D. This is essentially a two dimensional metric

(hence flat) with peculiar identifications. The Misner space is

interesting in the context of CTC as it is a prime example of

a spacetime where CTC evolve from causally well-behaved

initial conditions.

The metric for the Misner space [22]

ds2
Misn = −2 dt dx − t dx2 (1)

where −∞ < t < ∞ but the co-ordinate x is periodic. The

metric (1) is regular everwhere as det g = −1 including at

t = 0. The curves t = t0, where t0 is a constant, are closed

since x is periodic. The curves t < 0 are spacelike, but t > 0

are timelike and the null curves t = t0 = 0 form the chronol-

ogy horizon. The second type of curves, namely, t = t0 > 0

are closed timelike curves (CTC). This metric has been the

subject of intense study and quite recently, Levanony and

Ori [23], have studied the motion of extended bodies in the

2D Misner space and its flat 4D generalizations. A non-

flat 4D spacetime, satisfying all the energy conditions, but

with causality violating properties of the Misner space, pri-

marily that CTC evolve smoothly from an initially causally

well-behaved stage, would be physically more acceptable as

a time-machine spacetime.

In this paper, we shall attempt to show that causality vio-

lating curves appear in non-vacuum spacetime with compar-

atively simple structure. In section 2, we analyze the space-

time; in section 3, the matter distribution and energy condi-

tion; in section 4, the spacetime is classified and its kinemat-

ical properties discussed; and concluding in section 5.

2 Analysis of the spacetime

Consider the following metric

ds2 = 4 r2 dr2 + e2α r2
(

dz2 − t dφ2 − 2 dt dφ
)

+

+ 4 β z r e−α r2

dr dφ

(2)

where φ coordinate is assumed periodic 0 6 φ 6 φ0, where

α is an integer and β > 0 is a real number. We have used

co-ordinates x1 = r, x2 = φ, x3 = z and x4 = t. The ranges

of the other co-ordinates are t, z ∈ (−∞,∞) and 0 6 r < ∞.

The metric has signature (+,+,+,−) and the determinant of

the corresponding metric tensor gµν, det g = −4 r2 e6α r2

. The

non-zero components of the Einstein tensor are

G
µ
µ = 3α2,

Gt
φ = −

1

2
e−6α r2

β2 .
(3)

Consider an azimuthal curve γ defined by r = r0, z = z0 and

t = t0, where r0, z0, t0 are constants, then we have from the

metric (2)

ds2 = − t e2α r2

dφ2. (4)

These curves are null for t = 0, spacelike throughout for t =

t0 < 0, but become timelike for t = t0 > 0, which indicates the

presence of closed timelike curves (CTC). Hence CTC form

at a definite instant of time satisfy t = t0 > 0.

It is crucial to have analysis that the above CTC evolve

from a spacelike t = constant hypersurface (and thus t is a
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time coordinate) [17]. This can be ascertained by calculating

the norm of the vector ∇µt (or by determining the sign of the

component gtt in the inverse metric tensor gµν [17]). We find

from (2) that

gtt = t e−2α r2

+ β2 z2 e−6α r2

. (5)

A hypersurface t = constant is spacelike provided gtt < 0 for

t = t0 < 0, but becomes timelike provided gtt > 0 for t = t0 >

0. Here we choose the z-planes defined by z = z0, (z0, a con-

stant equal to zero) such that the above condition is satisfied.

Thus the spacelike t = constant < 0 hypersurface can be cho-

sen as initial conditions over which the initial may be speci-

fied. There is a Cauchy horizon for t = t0 = 0 called Chronol-

ogy horizon which separates the causal and non-causal parts

of the spacetime. Hence the spacetime evolves from a par-

tial Cauchy hypersurface (initial spacelike hypersurface) in a

causally well-behaved manner, up to a moment, i.e., a null

hypersurface t = 0 and CTC form at a definite instant of time

on z = constant plane.

Consider the Killing vector η = ∂φ for metric (2) which

has the normal form

ηµ = (0, 1, 0, 0) . (6)

Its co-vector is

ηµ =
(

2 β z r e−α r2

, −t e2α r2

, 0, −e2α r2
)

. (7)

The (6) satisfies the Killing equation ηµ ; ν + ην ; µ = 0. For

cyclicly symmetric metric, the norm ηµ η
µ of the Killing vec-

tor is spacelike, closed orbits [24–28]. We note that

ηµ ηµ = −t e2α r2

(8)

which is spacelike for t < 0, closed orbits (φ co-ordinate be-

ing periodic).

An important note is that the Riemann tensor Rµνρσ can

be expressed in terms of the metric tensor gµν as

Rµνρσ = k
(

gµρ gνσ − gµσ gνρ
)

(9)

where k = −α2 for the spacetime (2).

Another important note is that if we take β = 0, then the

spacetime represented by (2) is maximally symmetric vac-

uum spacetime and locally isometric anti-de Sitter space in

four-dimension. One can easily show by a number of trans-

formations the standard form of locally isometric AdS 4 met-

ric [29]

ds2 =
3

(−Λ) x2

(

−dt2 + dx2 + dφ2 + dz2
)

(10)

where one of the co-ordinate φ being periodic.

3 Matter distribution of the spacetime and energy con-

dition

Einstein’s field equations taking into account the cosmologi-

cal constant

Gµν + Λ gµν = T µν , µ, ν = 1, 2, 3, 4 . (11)

Consider the energy-momentum tensor of pure radiation field

[30]

T µν = ρ nµ nν (12)

where nµ is the null vector defined by

nµ = (0, 0, 0, 1) . (13)

The non-zero component of the energy-momentum tensor

T t
φ = −ρ e2α r2

. (14)

Equating field equations (11) using (3) and (14), we get

Λ = −3α2,

ρ =
1

2
β2 e−8α r2

, 0 6 r < ∞ .
(15)

The energy-density of pure radiation or null dust decreases

exponentially with r and vanish at r → ±∞. The matter

field pure radiation satisfy the energy condition and the en-

ergy density ρ is always positive.

4 Classification and kinematical properties of the space-

time

For classification of the spacetime (2), we can construct the

following set of null tetrads (k, l,m, m̄) as

kµ = (0, 1, 0, 0) , (16)

lµ =

(

−2 β z r e−α r2

,
t

2
e2α r2

, 0, e2α r2
)

, (17)

mµ =
1
√

2
(2 r, 0, i eα r, 0) , (18)

m̄µ =
1
√

2

(

2 r, 0,−i eα r2

, 0
)

, (19)

where i =
√
−1. The set of null tetrads above are such that

the metric tensor for the line element (2) can be expressed as

gµν = −kµ lν − lµ kν + mµ m̄ν + m̄µmν . (20)

The vectors (16)–(19) are null vectors and are orthogonal ex-

cept for kµ lµ = −1 and mµ m̄µ = 1. Using this null tetrad

above, we have calculated the five Weyl scalars

Ψ3 = −
iα β e−2α r2

2
√

2
,

Ψ4 = −
1

4
β e−2α r2

(

i + 2α z eα r2
)

(21)

are non-vanishing, while Ψ0 = Ψ1 = Ψ3 = 0. The space-

time represented by (2) is of type III in the Petrov classifi-

cation scheme. Note that the non-zero Weyl scalars Ψ3 and

Ψ4 are finite at r → 0 and vanish as r → ±∞ indicating

asymptotic flatness of the spacetime (2). The metric (2) is free
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from curvature singularities. The curvature invariant known

as Kretchsmann scalar is given by

Rµνρσ Rµνρσ = 24α4 (22)

and the curvature scalar

R = −12α2 (23)

are constant being non-zero.

Using the null tetrad (16) we have calculated the Optical

scalars [30] the expansion, the twist and the shear and they

are

Θ =
1

2
k
µ
; µ = 0 ,

ω2 =
1

2
k[µ ; ν] kµ ; ν = 0 ,

σ σ̄ =
1

2
k(µ ; ν) kµ ; ν − Θ2 = 0

(24)

and the null vector (16) satisfy the geodesics equation

kµ ; ν kν = 0 . (25)

Thus the spacetime represented by (2) is non-diverging, has

shear-free null geodesics congruence. One can easily show

that for constant r and z, the metric (2) reduces to conformal

Misner space in 2D

ds2
con f o = Ω ds2

Misn (26)

where Ω = e2α r2

is a constant.

5 Conclusion

Our primary motivation in this paper is to write down a met-

ric for a spacetime that incorporates the Misner space and its

causality violating properties and to classify it. The solution

presented here is non-vacuum, cyclicly symmetric metric (2)

and serves as a model of time-machine spacetime in the sense

that CTC appear at a definite instant of time on the z-plane.

Most of the CTC spacetimes violate one or more energy con-

ditions or unrealistic matter source and are unphysical. The

model discussed here is free from all these problems and mat-

ter distribution is of pure radiation field with negative cosmo-

logical constant satisfying the energy condition.
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