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Several papers by Cahill, et al. assert that Michelson-Morley type experiments per-
formed in gas have small but non-null results which, when properly analyzed, show
that the absolute speed of the earth was detected. Here we show that Cahill made a
fundamental error in his assumptions and that the mathematical analysis upon which he
based his conclusions is invalid. We also include a report on an experiment that ver-
ifies these mathematical conclusions. The experiment uses water instead of air as the
wave medium. The much larger index of refraction of water (1.33 vs. 1.00029) greatly
amplifies the effect Cahill predicts and makes the null result of the new experiment
dramatically apparent. This confirms both theoretically and experimentally that abso-
lute velocity was not and cannot be detected in Michelson-Morley type experiments
regardless of the refractive medium in which they are performed.

1 Introduction

I was intrigued by several papers by Cahill [1–4] that purport
to re-evaluate the original Michelson-Morley (MM) and other
“gas-mode” interferometer experiments and prove that they
actually measured the absolute speed of the earth through
space. Cahill shows in these papers that the index of refrac-
tion of air caused results that although small were not com-
pletely null. He asserts that the absolute velocity of the earth
was measured and that absolute space was detected — but
was it?

I set out to test Cahill’s assertions by designing an exper-
iment capable of getting a larger non-null result. This ex-
periment uses water as the medium through which the light
propagates so that the “incomplete cancellation of the geo-
metrical effects” (according to Cahill) would be greatly am-
plified by the much larger index of refraction. This allows
easy detection of the interference-fringe shifts in a low-cost
Michelson-type interferometer.

The experiment had a resolution that was more than 103

times greater than the effect Cahill’s equations predicted. The
results of the experiment were unequivocally null. Based on
the null results, I set out to reexamine Cahill’s assumptions
and mathematical derivations. It was through this reexam-
ination that I derived the correct equations and proved that
the so-called “cancellation of the geometrical effects” is com-
plete and the results of any MM type experiment must be null
whether done in vacuum or in a refractive medium. We show
that both the herein derived equations and the results of the
present experiment are in complete agreement that absolute
space cannot be detected with these types of experiments.

Our derivations (and Cahill’s) are based on classical phy-
sics. By “classical physics” we mean merely that the equa-
tions of the special theory of relativity (SRT) will not be used
to transform values between inertial reference frames. All

measurements in the derivations are made in the rest frame
(or what Cahill calls the “quantum foam” frame) where light-
speed is constant and isotropic. But in SRT, light-speed is
constant and isotropic in all frames. Therefore our deriva-
tions will be in complete compliance with the formalism of
SRT, while at the same time satisfying Cahill and his follow-
ers that they are also valid in Cahill’s absolute frame.

The value measured in the experiment is the shift, mea-
sured in wavelengths, of the interference pattern of two light
beams. Because this measurement is a scalar value, indepen-
dent of the actual length of the wavelength, it is invariant in
all reference frames. This is what allows us to do the entire
analysis from the rest frame but make the actual measurement
in the laboratory frame — they must agree.

2 Correcting Cahill’s derivations

We will use Cahill’s equations as derived in [1] for this anal-
ysis.

Cahill begins his analysis by making the following (incor-
rect) assumption regarding the speed of light in the refractive
medium of air: “If the gas is moving with respect to the quan-
tum foam, as in an interferometer attached to the earth, then
the speed of light relative to the quantum foam is still V = c/n
up to corrections due to the Fresnel drag. But this dragging
is a very small effect and is not required in the present anal-
ysis”. [emphasis added]) He is correct that Fresnel drag is a
very small effect, but as will soon be evident, it is not small
compared to the effect he is trying to measure and it cannot
be ignored.

The laboratory frame is assumed to have an arbitrary ve-
locity v with respect to the rest frame. We also make the fol-
lowing two assumptions which Cahill made in his analysis
and which are entirely consistent with SRT: 1) clocks slow
down with velocity and 2) lengths contract with velocity. The
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factor by which they slow down is defined as

γ =
1√

1 − v2/c2
. (1)

For convenience, we also make the following definition:

β =
v

c
⇒ γ =

1√
1 − β2

. (2)

If both arms of the interferometer are of rest-length L and
one is aligned parallel to the velocity of the laboratory and the
other is aligned at right angles to this velocity, then the length
of the orthogonal arm in the rest frame is still L, but the length
of the parallel arm experiences a contraction if measured in
the rest frame,

L∥ = L
√

1 − β2 =
L
γ
. (3)

Cahill defines n to be the index of refraction of the gas
and uses the same value n in both frames. This seems per-
fectly reasonable, since n is a scalar and therefore invariant.
But just because it has the same value in both frames does
not mean that it affects the path of the waves in both frames
the same way. This will be demonstrated by observing from
within the rest frame how observers within the moving frame
measure and define n. It then becomes apparent that in the rest
frame the velocity of light in a moving refractive medium is
not simply c/n plus the traditional drag term.

Before observing how n is measured, we must first under-
stand how clocks are synchronized using Einstein’s method.
We will do this by observing from the rest frame as clocks
are synchronized in the laboratory frame. Let there be clocks
at each end of the arm aligned parallel to the velocity which
we designate as clock A and clock B. According to Eq. (3)
this distance between the two clocks is L/γ in the rest frame.
The procedure for synchronizing the two clocks in the mov-
ing frame is as follows:

1. A light wave leaves clock A at time 0 on clock A in the
moving frame and also at time 0 in the rest frame.

2. The light beam propagates towards clock B at velocity
c in both frames. In the rest frame clock B is moving at
velocity v in the same direction as the light beam.

3. The light arrives at B at time t1 in the rest frame.
4. The total distance the light travels in the rest frame on

the outbound path is c t1. This can be separated into two
distances: 1) the length of the contracted arm L/γ and
the distance clock B moved during the time t1 which is
v t1. Solving for t1, we get

t1 =
L

γ (c − v) . (4)

5. The light reflects from a mirror at B and returns to A at
time t2 in the rest frame. Since the clock at A was mov-
ing towards the light during this leg, the distance that

the light traveled before reaching A was L/γ−v (t2 − t1).
Using the same logic as above, the time t2 − t1 to make
the return trip as measured in the rest frame is

t2 − t1 =
L

γ (c + v)
. (5)

6. Solving for t2, the total time to make the round trip as
measured in the rest frame is

t2 =
L/γ
c + v

+
L/γ
c − v =

2 L/γ
c
(
1 − v2/c2) = 2 L

c
γ. (6)

7. The clocks in the moving frame run slower by a factor
of γ than the clocks in the rest frame. Therefore, the
time on clock A when the light returns is

tA =
t2
γ
=

2 L
c
. (7)

8. Using Einstein’s method of synchronization, clock B is
defined to be synchronized to clock A if at the moment
of reflection the time on clock B is set to tA/2.

tB =
L
c
. (8)

As expected, the observers in the laboratory frame mea-
sure the speed of light to be c in both directions. But notice
that at the moment of reflection of the light from clock B, the
time is t1 in the rest frame and tB on clock B in the moving
frame. But what is the time on clock A at that moment? Since
clock A was defined to be 0 at time 0 in the rest frame, and
since clock A runs slower by a factor of γ than clocks in the
rest frame, the time on clock A must be t1/γ. But that means
that to an observer in the rest frame, there is a bias between
clocks A and B,

tbias = tB −
t1
γ
=

L
c
− L
γ2 (c − v) = −

v L
c2 . (9)

Please note that this is in complete agreement with SRT.
Position-dependent clock biases are the source of relative si-
multaneity in SRT. Events are defined to be simultaneous in
the moving frame when the clocks at the sites of the two
events read the same value. But because of the permanent
bias between the clocks (when observed from the rest frame),
those same two events are never simultaneous within the rest
frame. From this exercise we see that there is nothing mys-
terious or magical about relative simultaneity — it is simply
a byproduct of defining the one-way time of flight of a light
wave to be 1/2 of the two-way time of flight.

The bias in Eq. (9) is the same position-dependent bias
that occurs in the transformation of time between frames us-
ing the Lorentz transformation of SRT. But we have deter-
mined its value not by performing this transformation but by
simply observing from the rest frame as clocks were synchro-
nized in the moving frame. We have used nothing more than
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this definition and classical physics to derive the same bias
between the clocks as defined in SRT.

Now that we understand how clocks in the moving frame
appear to observers in the rest frame, we are ready to see how
the index of refraction, when measured in the laboratory, ap-
pears to observers in the rest frame. To measure the index of
refraction in the laboratory, a light beam is sent from clock A
at time 0 through a refractive material and arrives at clock B
at time tBn, where the n in the subscript indicates time through
the refractive material. This is the time of flight of the light
beam as measured in the laboratory. The index of refraction
is then defined as

n =
c tBn

L
. (10)

This corresponds to a velocity of light in the refractive
medium of c/n as measured in the laboratory. Let us now look
at that same velocity as measured in the rest frame. Because
of the bias on clock B, although the time on clock A is 0
when the light is emitted, the observer in the rest frame sees
the light wave leave clock A when clock B reads −v L/c2. The
elapsed time on clock B for the time of flight is therefore

∆tBn = tBn +
v L
c2 . (11)

Using Eq. (10) to substitute for tBn, and remembering that
clocks in the moving frame run slower by a factor of γ, the
elapsed time in the rest frame for the time of flight is

∆t0 =
L (c n + v) γ

c2 . (12)

We defined the direction from A to B to be the same di-
rection as the velocity of the moving frame. Since lengths
contract with velocity, the total distance the light propagated
during this time, as measured in the rest frame, is

∆d0 =
L
γ
+ v∆t0 =

L
γ
+
v L (c n + v) γ

c2 . (13)

The velocity of the light beam in the refractive material
as measured in the rest frame is this distance divided by the
propagation time, which simplifies to

cn0+ =
∆d0

∆t0
=

c (c + n v)
c n + v

. (14)

Notice that this can be put in the following form:

cn0+ =
c/n + v

1 +
(c/n) v

c2

. (15)

In this form it is very obvious that we have derived the
velocity addition formula of SRT where the two velocities
are c/n and v. This shows that there is nothing mysterious
about the velocity addition formula of SRT. It is easily de-
rived using classical physics if one acknowledges that clocks

and lengths change with velocity. The only mystery is what
causes velocity-dependent lengths and clock-rates in the first
place. But that is a topic for a separate paper.

We can also write this equation in a different form,

cn0+ =
c
n
+

(
n2 − 1

n2

) (
n

n + β

)
v. (16)

In this form, we can clearly see that the Fresnel drag co-
efficient is simply a consequence of the velocity addition for-
mula. They are not separate phenomena. Prior to Lorentz and
Einstein, it was thought that the Fresnel drag term consisted

only of the
n2 − 1

n2 v term. The
n

n + β
term is so close to 1 that

except for extremely high velocities it was unobservable.
What we have shown in this derivation is that the Fresnel

drag term is automatically included in our derivation once we
acknowledge that lengths and times change with velocity. In
fact, Fresnel drag is proof that lengths and times really do
change with velocity.

When the light is sent in the opposite direction through
the refractive medium, the sign of the laboratory’s velocity v
in equation (14) is inverted resulting in a reverse speed of

cn0− =
c (c − n v)

c n − v . (17)

Summing the times of propagation for these out and back
velocities, we can calculate the total time for a round trip on
the parallel arm in the rest frame if the light is passing through
a moving refractive medium with an index of refraction n:

∆t∥0 =
L

γ (cn0+ − v)
+

L
γ (cn0− + v)

= 2
L

c/n
γ. (18)

Not surprisingly, this is the same value we would have
calculated if we had simply used the Lorentz transforms of
SRT to transform the time on clock A into the rest frame for a
round trip of length 2 L at velocity c/n. Be we have derived it
using nothing but classical physics and the two assumptions
regarding length contraction and the slowing of clocks with
velocity.

We will now look at the time for the round trip on the
orthogonal arm. In the laboratory frame, n has the same value
in all directions.∗ Therefore, as measured in the laboratory
frame, the round-trip time in the orthogonal direction is

∆t⊥ =
2 L
c/n
=

2 L n
c
. (19)

With the arm oriented orthogonal to the velocity, the light-
propagation times for the outbound and return trips are equal
in the rest frame so there is no bias between clocks A and B.
Since clocks in the moving frame run slower when observed

∗This is proven in Section 4.2 where the velocity of light in a moving
refractive medium is derived for any arbitrary direction.
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from the stationary frame, this same time in the stationary
frame is simply the elapsed time in the rest frame multiplied
by γ,

∆t⊥0 = 2
L

c/n
γ. (20)

We see that this is exactly the same as the time for the
parallel path given in equation (18) so the MM experiment is
doomed to give null results regardless of the index of refrac-
tion of the medium.

3 Comparing to Cahill’s results

We now compare these results to Cahill’s results (we use sub-
script C for Cahill’s times), which come from his equations
(7) and (10) in [1]:

∆t∥C =
2 L

γ
c
n

(
1 − v

2

c2 n2

) = 2 L γ
c/n

(
1

γ2 (
1 − n2 β2) )

∆t⊥C =
2L√

c2

n2 − v
2

=
2 L γ
(c/n)

 1

γ
√

1 − n2 β2




. (21)

The right-most terms in parenthesis are the error factors
Cahill introduced by ignoring the “drag” effect. Without these
terms, the times are identical. Notice that both of these error
terms are very close to 1. In fact for a velocity of 360 km/sec
and n = 1.00029 (which are the approximate values Cahill
used in his paper), the two terms in parenthesis are (1 + 8 ×
10−10) and (1 + 4 × 10−10), respectively. It is easy to see why
Cahill thought they could be ignored and simply set to 1.

The difference between equations (21) is Cahill’s mea-
sured time difference between the parallel and orthogonal ori-
entations. It can be shown that for v/c = β << 1 this differ-
ence can be approximated by

∆t∥C − ∆t⊥C =
L n
γ c


(
n2 − 1

)
β2

1 − n2β2

 . (22)

In the original MM experiment, L = 11 and n ≈ 1.00029.
The absolute velocity that Cahill calculated was on the order
of 360 km/sec, which results in β ≈ 0.0012. Substituting
these into equation (22) results in a measured time difference
of

∆t∥C − ∆t⊥C ≈ 3.1 × 10−17. (23)

This confirms Cahill’s estimate of a difference on the or-
der of 10−17 sec. The wavelength of light used in the original
experiment was approximately 600 nm which for a velocity
of c has a temporal period of about 2.0 × 10−15 sec. Since
there is one spatial period (wavelength) for each temporal pe-
riod, the fringe shift in wavelengths is the total time delay of
Eq. (23) divided by the temporal period of the light wave:

∆λ =
3.1 × 10−17

2.0 × 10−15 λ ≈ 0.016λ. (24)

This represents a predicted fringe shift of about 1.6% of
a wavelength in the original experiment. It is this value that
Cahill used to predict the non-null results.

We conclude that Cahill made a fatal mistake when he as-
sumed he could ignore the Fresnel drag effects. It is precisely
the ignoring of Fresnel drag that creates the 1.6% difference
in phase. Quoting Cahill, “Of course experimental evidence
is the final arbiter in this conflict of theories.” In that spirit,
we will present the design and results of an experiment that
proves that an index of refraction greater than 1 does not give
non-null results in Michelson-interferometer experiments as
Cahill asserts.

Cahill’s analysis of the raw data from the original MM ex-
periment shows a non-null result which is sidereal in nature
and which agrees, according to Cahill, with his above calcula-
tions. It is beyond the scope of this paper to address the source
of the non-null, sidereal effect found in the raw data. But one
paper that has addressed this issue shows that the very large
drift in the experiment combined with an improper statisti-
cal analysis is entirely responsible for the apparent non-null
result [5].

4 Design of the new experiment

The analysis of the experiment to test Cahill’s results is again
done as if we are an observer in a rest frame where light speed
is isotropic. Since we are constrained to make all of the ac-
tual measurements in the moving frame of our laboratory, we
define the results of the experiment in terms of an invariant
scalar value that will have the same value in all frames. This
is done by measuring the shift of an interference pattern in
units of wavelengths. This is a scalar value that must be the
same in all frames and allows us to make measurements in
the moving frame that are in full agreement with those same
measurements made in the hypothetical rest frame.

As mentioned above, the non-null result that Cahill pre-
dicted is less than 2% of a wavelength. This is much too small
to be measured in an inexpensive, home-built interferometer.
To increase the sensitivity of the experiment, the index of re-
fraction was increased from 1.00029 of air to 1.33 of water.
Of course, the experiment cannot be done completely sub-
merged in water, so a refractive block containing water was
introduced into one of the paths.

Figure 1 shows the physical layout of the experiment. A
laser emits a beam that is split into two separate beams. One
beam travels exclusively through air on its path to the de-
tector. The other beam travels the same distance, but part
of this path passes through a block of refractive material of
length L that slows the wave down. When it exits the refrac-
tive block (RB), it then continues at the normal speed of light
until it is recombined with its sister beam at the detector. Dis-
tilled water with an index of refraction of 1.33 is used for the
refractive block. Unfortunately, using a refractive block is
not the same as performing the entire experiment while im-
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Fig. 1: Layout of experiment.

mersed in a high-refractive medium. Specifically, it compli-
cates the mathematics by introducing refraction in the beam
as it passes through the boundary between the air and the
water. But the complication is worth it because it allows
a large enough fringe shift (according to Cahill’s equations)
that even our inexpensive interferometer is sensitive enough
to measure it.

The wavelength that is emitted from the laser after taking
into account the velocity-dependent slowing of the clocks and
the Doppler shift, is designated as the incident wavelength λi.
At the first beam splitter, one wave goes straight along an un-
refracted path. The other beam gets reflected downward (in
the figure) before reflecting off a second mirror that puts it on
a trajectory that is parallel to the first beam but which passes
through the refractive block. The two beams recombine at
the beam combiner and propagate together to the camera de-
tector. The phase and frequency shifts due to the reflection
of the mirrors and beam splitters are exactly the same for the
two paths and exactly cancel one another so they can be ig-
nored. The wavelength leaving the laser and arriving at the
phase detector is also the same for both paths.

It is the phase relationship between the two beams at the
detector that we are interested in. Since the entire path is
identical for both beams except for the length L of the RB,
we only need to calculate the phase shift that occurs through
the RB and compare it to the phase change that occurs over
this same distance in the other path to account for the entire
phase shift at the detector. All other effects will be identical
on both paths and cannot alter the phase difference caused
by the delay through the RB. By rotating the experiment 90
degrees we can measure the phase shift in each direction. Any
difference between the two directions is a measure of absolute
velocity through space — which Cahill predicts will be non-
zero.

4.1 Velocity and the path of the beam

In this analysis, we are only going to look at the two cases
where the velocity of the laboratory is orthogonal to the beam
and parallel to the beam, respectively. We will be discussing
multiple angles in this analysis. To keep these angles straight,
the following definitions will be used:

1. The symbol φ will be used for the angle between the
velocity vector of the refractive medium (laboratory)
and the light wave path within the medium. It will have
no subscript in the moving frame and a 0 subscript in
the rest frame.

2. The symbol θi will be used for the incident angle of the
wave path at the surface of the refractive block. It is
defined as the angle between the light wave path and
the normal to the refractive surface, which is the stan-
dard definition from geometric optics. It will have a
subscript 0 when measured in the rest frame and no ad-
ditional subscript in the moving frame.

3. The symbol θr will be used for the refracted angle of
the wave path within the refractive block. It is defined
as the angle between the light wave path in the RB and
the line that is normal to the refractive surface, which is
again the standard definition from geometric optics. It
will have a subscript 0 when measured in the rest frame
and no additional subscript in the moving frame.

4. In the case where the velocity is parallel to the line that
is normal to the refractive surface, the θ angles will
have an additional ∥ symbol in the subscript. If the ve-
locity is orthogonal to the normal a ⊥ symbol will be
used. Since the φ angles are by definition between the
light path and the velocity, no subscript is necessary to
indicate velocity direction.

Figure 2 shows a laser diode with a highly divergent beam
that is collimated using an aperture. In actual lasers, a colli-
mating lens is used instead of an aperture because a lens can
capture most of the light. Obviously the aperture loses all of
the light that doesn’t pass through it. But for our purposes
the math and visualization is easier with the aperture and the
principle is the same. The view in Figure 2 is for a laser that
is stationary with respect to the observer.

Figure 3 shows what happens to the path of the beam if
the laser is moving up (orthogonal to beam) in this figure at
velocity v. The laser and aperture position are shown at time
t for an emission that occurred at time 0. Notice that during
the time that a wave front in the beam travels a distance c t
(in vacuum), the aperture and laser move a distance v t. This
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Fig. 2: Laser collimation using an aperture.

Fig. 3: Path of a single wavelet/photon for orthogonal direction.

means that only waves that left the laser at an angle of θi0⊥ (in
the rest frame) make it through the aperture — hence we have
only shown one path in the figure. This angle assures that the
orthogonal component of the velocity of the wave is exactly v
and the parallel velocity of the wave is

√
c2 − v2.

Since every wave leaving the laser that makes it through
the aperture follows a similar path, the resulting beam, which
is made up of all of these individual wavelets, appears to re-
main perfectly aligned with the laser and with the aperture.
The solid red line in Figure 3 shows the path of an individual
wavelet from its emission at the laser surface to its exit from
the aperture. Although the wavelet moves at an angle , the
beam one would see at any instant in time is the collection of
all of the wavelets that have left the laser. A “snapshot” of the
positions of several of these wavelets, each on its own unique
path, is shown in Figure 4 . Notice that the three wavelets that
have been propagating for times t1, t2 and t3 each remain per-
fectly aligned with each other and with the center of the laser
because the aperature assures that their velocity component
in the orthogonal direction is exactly v. Any wavelets with
different orthogonal velocities are blocked by the aperture.

Fig. 4: Snapshot of laser beam for orthogonal direction.

We see that Mother Nature has conspired with light so
that an observer in any frame sees a straight, horizontal beam
going from the center of the laser through the center of the
aperture and arriving at a distant target still centered — just
as it appears when the system is stationary. This assures that
the path of the composite beam relative to the laboratory is
independent of the velocity of the laboratory even though the
individual wavelets are moving at a velocity-dependent angle.

Since the index of refraction of air is so close to 1 and
since the effect of the index of refraction of the refractive
block is so much larger, we are going to simplify the math
by treating the air as if the index of refraction were exactly 1.
From Figure 3, we can see that the sine and cosine of θi0⊥ are
given by

sin θi 0⊥ =
v

c
= β

cos θi 0⊥ =

√
1 − sin2 θi 0⊥ =

√
1 − β2 =

1
γ

 . (25)

4.2 Velocity of light in a moving medium at arbitrary
angle

In the orthogonal direction, we can see that the wavelets enter
the refractive block at an angle. This means that the wavelet
angle will be refracted upon passing through the surface of
the RB. The angle of refraction of a moving block cannot be
determined by Snell’s law alone – it is much more compli-
cated.

Before calculating exactly how a beam refracts in a mov-
ing medium, we will first derive the general term for the ve-
locity of light in a moving medium where the angle between
the wavelet path and the velocity of the medium is an arbi-
trary angle between 0 and π.

In the rest frame of the medium, the geometry is as shown
in Figure 5. The path AB is that of a laser beam propagating a
distance L in a medium with an index of refraction of n. The
source A and destination B are on opposite ends of an arm
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Fig. 5: Beam path at arbitrary angle in rest frame of medium.

of the experiment. The arm and the medium are both moving
in the direction shown at velocity v with respect to the rest
frame. The values given in the figure are for measurements
made by an observer within the moving frame. In this frame,
the time for a wavelet in the beam to travel from the source to
the destination is by definition of the index of refraction n,

∆t =
L n
c
. (26)

Figure 6 shows the path of the same wavelet if the beam
is observed from the rest frame. The dotted lines show the in-
stantaneous positions of the ensemble of wavelets that make
up the beam at two different times. And the angle φ′0 is the an-
gle that the visible composite beam makes with the velocity.
The bold solid line shows the path that an individual wavelet
takes.

In the moving frame, the clocks at A and B are assumed
to have been synchronized using Einstein’s method. As we
derived earlier, synchronizing the clocks in the moving frame
will create a bias between the clocks when observed from the
rest frame:

t0bias =
v L cosφ

c2 . (27)

Taking this into account and also accounting for the fact
that clocks run slower in the moving frame, the time for a
wavelet to propagate from A to B′ in the rest frame is

∆t0 = (∆t − t0bias) γ =
(L n

c
+
v L cosφ

c2

)
γ. (28)

Length contraction in the direction of the velocity causes
the angle φ in the moving frame to increase to φ′0 in the rest

Fig. 6: Wavelet path at arbitrary angle in absolute frame.

frame (beam and wavelet path are the same within the moving
frame). The length of the arm L will decrease in the rest frame
to L0:

L0 = L

√
cos2 φ

γ2 + sin2 φ. (29)

Since lengths do not contract in directions orthogonal to
the velocity,

L sinφ = L0 sinφ′0. (30)

From the right triangle with hypotenuse AB′ in Figure 6,
we get the following relationship for angle φ0:

sinφ0 =
L sinφ
cn0 ∆t0

. (31)

Pythagorean’s Theorem requires that

(cn0∆t0)2 =
(
v∆t0 + L0 sinφ′0

)2
+

(
L0 sinφ′0

)2
. (32)

Using equations (30), (31) and (32) we can solve for cn0
and sinφ0:

cn0 =

√√√√
L2

0

∆t2
0

+ v2 ±
2
√(

L2
0 − L2 sin2 φ

)
v2

∆t0
, (33)

sinφ0 =
L sinφ√√√√

L2
0

∆t2
0

+ v2 ±
2
√(

L2
0 − L2 sin2 φ

)
v2

∆t0

. (34)
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Substituting equations (28) and (29) into these equations,
results in solutions involving only the angle φ in the rest frame
of the medium:

cn0 = c

√
1 − n2 − 1
γ2 (n + β cosφ)2 , (35)

sinφ0 =
sinφ√

γ2 (n + β cosφ)2 − n2 + 1
. (36)

From which we can also calculate the cosine:

cosφ0 =

√
1 − sin2 φ

γ2 (n + β cosφ)2 − n2 + 1
. (37)

Equation (35) is the speed of an individual wavelet as
measured in the rest frame when the medium (i.e. labora-
tory) is moving at velocity v = c β. It demonstrates that there
is not a unique index of refraction n0 = c/cn0 for a moving
medium. The speed of light through the medium is a func-
tion of both the velocity of the medium and the angle which
the beam makes with that velocity. Cahill ignored the “drag”
component and assumed the velocity in the moving medium
was the same c/n as in the stationary medium. This is what
introduced his error.

The angle φ is the angle as measured in the moving frame
between the velocity of the frame and the direction of the
light waves. Equations (36) and (37) describe the angle φ0 at
which the light waves are moving in the rest frame in terms
of φ in the moving frame.

The velocity of the light wavelets can be separated into
two components, one parallel to the laboratory velocity and
one orthogonal to the laboratory velocity. In Figure 6, these
two components are

cn0⊥ = cn0 sinφ0,

cn0∥ = cn0 cosφ0

 . (38)

Substituting equations (35), (36) and (37) into these equa-
tions gives us the expressions for the parallel and orthogonal
components of wavelet velocity in the rest frame:

cn0⊥ =
c
n

 sinφ

γ
(
1 +
β

n
cosφ

)


cn0∥ =
c
n

 cosφ + β n

1 +
β

n
cosφ




. (39)

With the parallel and orthogonal components of the ve-
locity, we know everything about the velocity and direction of
the wavelets within the moving medium. We are now ready
to investigate how this affects the refraction of a beam that is
entering a moving medium as observed from the rest frame.

4.3 Refraction of light entering a moving refractive me-
dium

For our analysis of refraction, we will refer to Figure 7 where
we have added the incident and refracted angles. This figure
again shows a moving refractive medium with index of re-
fraction n as measured in the moving frame. A laser source
is attached to and moving along with the refractive medium.
Both the medium and the laser are moving at velocity v in the
rest frame in the direction shown, which is orthogonal to the
line which is normal to the refractive surface. The line normal
to the refractive surface will be referred to as the normal line.
The medium is shown at two different positions separated in
time. The laser source is shown at three different times.

The dotted lines leaving the laser again show the location
of the ensemble of wavelets that make up the composite visi-
ble laser beam at these times. This is the apparent path of the
laser beam. The bold line shows the path that is actually taken
by an individual wavelet or photon within the beam in prop-
agating from the source to A and then through the medium
to B′.

It is readily apparent that the relationship between the an-
gles is

θr0⊥ =
π

2
− φ0. (40)

This can be expressed as

sinφ0 = cos θr0⊥

cosφ0 = sin θr0⊥

 . (41)

These angles as measured in the moving frame will have
a similar relationship:

sinφ = cos θr⊥
cosφ = sin θr⊥

 . (42)

From Snell’s law, the incident and refracted angles in the
moving frame (i.e. in the rest frame of the RB) are related by

sin θi⊥ = n sin θr⊥. (43)

Substituting this into equations (42) results in

sinφ =

√
1 − sin2θi⊥

n2

cosφ =
sin θi⊥

n

 . (44)

Substituting these into equations (39) gives us the parallel
and orthogonal components of the wave velocity in the rest
frame as a function of the incident angle in the moving frame:

cn0 ∥ =
c
n

 sin θi⊥ + β n2

n + βn sin θi⊥

 (45)
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Fig. 7: Refraction of laser beam upon entering a moving medium.

cn0⊥ =
c
n


n

√
1 − sin2θi⊥

n2

γ
(
n +
β

n
sin θi⊥

)
 . (46)

A similar set of equations can be obtained when the ve-
locity is parallel to the normal line. Although the parallel case
is not shown in the figure, it is easy to see that in this case the
refracted angle is equal to φ0 so that

sinφ = sin θr ∥ =
sin θi∥

n

cosφ = cos θr ∥ =

√
1 − sin2θi∥

n2

 . (47)

Substituting these into equation (39) gives the orthogonal
and parallel components of the wave velocity for the parallel
orientation:

cn0 ∥ =
( c
n

)
n β +

√
1 − sin2θi ∥

n2


1 +
β

n

√
1 − sin2θi ∥

n2

, (48)

cn0⊥ =
( c
n

) sin θi∥

γ

n + β
√

1 − sin2θi∥

n2


. (49)

We now have a complete description of how an incident
wave is refracted when it enters a moving refractive medium.
Equations (45) and (46) govern the refraction if the medium
is moving orthogonal to the normal line. Equations (48) and
(49) govern when the medium is moving parallel to the nor-
mal line.

4.4 Refraction with θi = 0 and velocity orthogonal to
beam

With the general equations derived, we are now ready to an-
alyze the specific situation of this experiment. The incident
angle, as measured in the moving frame (i.e. rest frame of
the medium) is zero whether the direction is orthogonal or
parallel:

θi ∥ = θi⊥ = 0. (50)

Substituting these into the expressions for the wave veloc-
ity components when the velocity is orthogonal to the normal
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line (Equations (45) and (46)), we get

cn0 ∥ =
c
n

(
β n2

n

)
= v, (51)

cn0⊥ =
c
n

n
√

1
γ (n)

 = c
n γ
. (52)

And for the case when the velocity is parallel to the nor-
mal line (Equations (48) and (49)), we have

cn0 ∥ =
( c
n

) (n β + 1)

1 + βn
=

c + c n β
n + β

=
c (c + n v)

c n + v
, (53)

cn0⊥ = 0. (54)

We already derived this expression for the parallel case in
equation (14). We repeat it here to show that equations (48)
and (49) are consistent with the earlier derivation.

The angle of propagation in the parallel case is 0, but in
the orthogonal case it is defined by

sinφ0 =
cn0 ∥√

cn0 ∥2 + cn0⊥2
=

v√
v2 +

c2

n γ2

. (55)

Equations (51) and (52) are quite remarkable. Equation
(51) shows that the velocity component of the wave veloc-
ity that is parallel to the medium velocity v is always exactly
equal to v. It is completely independent of the index of refrac-
tion n. This is what guarantees that the path that a wave takes
through the medium will not change relative to the medium
no matter how fast the source and medium are moving or no
matter what the index of refraction is. This is why observers
in the medium cannot detect any change in the trajectory of
the waves when their velocity changes.

Equation (52) gives the component of wave speed that is
orthogonal to the velocity of the medium. This is the term
that guarantees that the time measured for the wave to pass
through the medium is always measured to be c/n in the mov-
ing frame (the rest frame of the medium). For example, if the
laboratory is at rest the velocity of a wave is c/n, and the time
to pass through a block that is of length L is L n/c. If the lab-
oratory is then accelerated to a velocity of v in the orthogonal
direction, the clocks in that frame slow so that the time L n/c
becomes L n γ/c. But from equation (52) we see that the or-
thongonal component of the wave speed slows down by the
same factor of γ so that the time measured in the laboratory
to traverse length L remains at L n/c.

5 Calculating time delays and phase shifts

Knowing the incident wavelengths, velocities and directions,
we can calculate the change in phase shift that occurs with
velocity. The only place that the phase can be different be-
tween the two paths is when the beam is passing through

the refractive block. The distance that the unrefracted beam
races ahead of the refracted wave while the refracted wave is
slowed down by the RB is proportional to the phase difference
between the two paths.

We will begin by analyzing the parallel direction where
the velocity of the medium and velocity of the light beam are
aligned.

5.1 Time delay and phase shift with light beam parallel
to velocity

In this case, the laboratory is moving at velocity v with the
light beam parallel to the velocity. The length of the RB will
contract to

L0 ∥ =
L
γ
. (56)

The velocity of the light within the refractive material,
with respect to the rest frame, is given by equations (53)
and (54):

cn0 ∥ =
c
n

1 + β n

1 +
β

n

 = c (c + n v)
c n + v

cn0⊥ = 0


. (57)

The refractive block itself is moving at velocity v, so the
effective velocity of the light with respect to the RB is

cn0 ∥ e = cn0 ∥ − v =
c (c + n v)

c n + v
− v = c

γ2

(
1

n + β

)
. (58)

At this relative velocity, the total time it takes a wave to
propagate through the RB is

∆t0 ∥ =
L0 ∥

cn0 ∥ e
=

L

γ
c
γ2

(
1

n + β

) = L (n + β) γ
c

. (59)

The total distance a wavelet propagates in the parallel di-
rection while inside the RB is measured in the rest frame to
be

∆x0 ∥ =
L
γ
+ v∆t0 ∥ =

L
γ
+ L β (n + β) γ = L γ (1 + nβ) . (60)

The total distance the unrefracted beam propagates in this
same time is

∆x0u ∥ = c∆t0 ∥ = L (n + β) γ. (61)

The difference between these two distances for the re-
fracted and unrefracted paths is the spatial phase shift that oc-
curred between the two waves as a result of the path through
the RB:

∆x∥ = ∆x0 ∥ − ∆x0u ∥ = L γ (n − 1) (1 − β) . (62)
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Dividing this difference by the wavelength of the incident
wave gives the phase shift in wavelengths in the parallel ori-
entation:

k∥ =
L
λi0 ∥
γ (n − 1) (1 − β) . (63)

This is a scalar value. Like the number of marbles in a
bowl, it is the same for all observers in all frames. It rep-
resents the phase difference between the refracted path and
the unrefracted path in the parallel direction as measured in
wavelengths.

Since it is an invariant, we should be able to verify that
it is the same value as measured in the moving frame. The
phase shift in that frame that would be expected is

k∥ =
(
c − c

n

)
∆t
λi
=

(
c − c

n

) ( L n
λi c

)
=

L
λi

(n − 1) . (64)

To show that equations (63) and (64) are, in fact, the
same scalar value, we note that the frequency of the laser
source will be reduced in the rest frame and there will also
be a Doppler shift of the wavelength in that frame. Thus, the
wavelength of the incident wave in the rest frame is

λi0 ∥ = λi γ (1 − β) = λi

√
(1 − β)2

(1 + β) (1 − β) = λi

√
1 − β
1 + β

. (65)

Substituting this into equation (63) gives the total phase
shift in wavelengths between the two paths in the parallel ori-
entation:

k∥ =
L
λi

√
1 + β
1 − β γ (n − 1) (1 − β) = L

λi
(n − 1) . (66)

This is, of course, the same scalar value measured in the
moving frame in equation (64). The interesting thing about
this number is that it is completely independent of the veloc-
ity of the medium. That is just another way of saying that
no matter what the velocity of the frame, all observers will
always measure exactly the same phase shift.

Notice that k is a very large number since L is measured
in meters and the wavelength is measured in hundreds of
nanometers. This number is not measurable by the interfer-
ometer. It is only able to measure differences in phase. Fortu-
nately it is the difference between the orthogonal and parallel
phase shifts that we are interested in. We will now repeat the
above procedure to determine the phase shift for the orthogo-
nal direction.

5.2 Time delay and phase with the light beam orthogo-
nal to velocity

When the light beam is orthogonal to the velocity of the labo-
ratory, no contraction occurs and the length of the RB remains
at its rest length of L. Since the individual wavelets are mov-
ing through the RB at an angle, the time that it takes for an

individual wavelet to travel through the block is determined
by the component of its velocity that is parallel to the normal
line.

This is obtained from equation (52):

cn0⊥ =
c

n γ
. (67)

Of course, it propagates a distance L in this direction at
this speed. Since the velocity of the laboratory is orthogonal
to the RB, this is also the velocity of a wave relative to the
RB. The total time for a wave to propagate through the RB is

∆t0⊥ =
L

cn0⊥
=

L n γ
c
. (68)

During this same time, the unrefracted beam is propagat-
ing at speed c but not exactly orthogonal. It’s velocity in the
orthogonal direction is also given by equation (52), but with
n = 1, since it is moving through vacuum:

cn0u⊥ =
c
γ
. (69)

The distance that the unrefracted beam travels in this time
is

∆x0u⊥ =
c
γ
∆t0⊥ =

c
γ

L n γ
c
= L n. (70)

The difference between the two distances is

∆x⊥ = ∆x0u⊥ − ∆x0⊥ = n L − L = L (n − 1) . (71)

We divide this by the wavelength in the orthogonal direc-
tion to get the total phase shift:

k⊥ =
L
λi 0⊥

(n − 1) . (72)

For calculating λi0⊥ we must again account for the longer
wavelength due to the slowing of the frequency source. While
there is no Doppler shift orthogonal to a moving source, we
must consider the change in wavelength due to the angle at
which it is propagating in the rest frame. So

λi 0⊥ = λi γ cos θi 0⊥. (73)

Since this wavelength is measured in vacuum while the
wave is moving at velocity c, from equation (69), we see that

cos θi 0⊥ =
c/γ
c
=

1
γ
. (74)

Thus, λ0⊥ = λi and the total phase shift in wavelengths
from equation (72) becomes

k⊥ =
L
λi

(n − 1) . (75)

Comparing this to the phase shift for the parallel case in
equation (66), we see that they are identical. We have now
proven mathematically that regardless of whether or not the
experiment is performed in vacuum or in a refractive medium
there is no difference in phase between the two orientations
— it will always be a null experiment.
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6 Numerical values of Cahill’s predictions

Cahill, on the other hand, predicted that there will be a mea-
surable phase difference. Cahill predicts in his equation (11)
in [1] that the time difference between the two paths will ap-
proximate to his equation (12). Again using a “C” in the sub-
scripts to indicate Cahill’s predictions, his time difference is

∆tC ≈ L n
(
n2 − 1

) (β2

c

)
. (76)

But this is for a two-way experiment. Our experiment is
a one-way measurement. Cahill’s one-way time in the paral-
lel direction through the refractive block is derived from his
equations (1) and (2):

∆t0 ∥C =
L n
c

(
1

γ (1 − n β)

)
. (77)

His time in the orthogonal direction is given in his equa-
tion (8) in [1]:

∆t0⊥C =
L n
c

 1√
1 − n2 β2

 . (78)

Both of these times are as measured in the rest reference
frame and represent the total time between a wavelet entering
the refractive block until it exits.

According to Cahill, the speed of light in the refractive
material is approximately c/n in both cases and Fresnel drag
is insignificant. In the orthogonal case, from his Figure 1 (b)
this requires that the direction of the wave is actually at an
angle that satisfies the equations

sin θr0⊥C =
v n
c

cos θr0⊥C =

√
1 −

(
v n
c

)2
=

√
1 − n2 β2

 . (79)

Therefore the distances traveled in the parallel and or-
thogonal directions during the times of equations (77) and
(78) are respectively

∆x0 ∥C =
c
n
∆t0 ∥ =

L
γ (1 − n β)

∆x0⊥C =
c
n
∆t0⊥ cos θr0⊥

= L

 1√
1 − n2β2

 √
1 − n2 β2 = L


. (80)

On the other hand, the distances traveled by the light in
the unrefracted paths in these times are

∆x0u ∥C = c∆t0 ∥ =
L n

γ (1 − n β)

∆x0u⊥C = c∆t0⊥ cos θi0⊥ =
L n
γ

 1√
1 − n2 β2


 . (81)

For each direction, respectively, the differences between
the refracted and unrefracted lengths are

∆x∥C = ∆x0u ∥C − ∆x0 ∥C =
L

γ (1 − n β)
(n − 1)

∆x⊥C = ∆x0u⊥C − ∆x0⊥C = L

 n

γ
√

1 − n2β2
− 1


 . (82)

Using equation (65) for the parallel incident wavelength
(orthogonal incident wavelength is unchanged), we can con-
vert these distances to wavelengths:

k∥C =
∆x∥C
λi0 ∥C

=
L

γ λi (1 − nβ)
(n − 1)

√
1 + β
1 − β

k⊥C =
∆x⊥C

λi0⊥C
=

L
λi

 n

γ
√

1 − n2β2
− 1




. (83)

The total phase shift predicted by Cahill’s equations is the
difference between these two values, which simplifies to

∆kC =
L

λi (1 − n β)

n − β − n
γ

√
1 − n β
1 + n β

 . (84)

In this experiment

L = 1 m n = 1.33 λi = 650 nm. (85)

Cahill claims that the original MM experiment measured
a velocity of about 360 km/sec. Thus,

v = 3.6 × 105 ⇒ β = 0.0012. (86)

Substituting all these values into equation (84) gives us
the phase shift that Cahill predicts for this experiment:

∆kC = 1421 wavelengths. (87)

This is an enormous phase difference which would easily
be detected by this experiment if it existed.

7 Results of experiment

The present experiment is capable of measuring phase differ-
ences with a resolution of about 0.1 wavelengths. The phase
shift was measured between a north-south orientation and an
east-west orientation each hour for 12 hours. Had there been
any significant velocity difference in any direction, one or
more of these measurements would have been able to de-
tect it.

The peak phase difference (after averaging) was measured
to be 0.1 wavelengths at 10 a.m. This is within the error toler-
ance of the experiment and is therefore not statistically differ-
ent from zero. After averaging the 10 measurements at each
time, the measured phase shifts in wavelengths are graphed
in Figure 8.
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Fig. 9: Overview of interferometer system.

Fig. 8: Measured phase shift.

The results of this experiment are the “final arbiter” and
clearly rule in favor of the derivation in this paper and against
Cahill’s derivation. The measured phase shifts are 4 orders
of magnitude less than those predicted by Cahill and they are
within the measurement tolerances of the null prediction of
this paper. We can conclude that the mathematical derivations
in this paper are correct and that it is impossible to detect
the absolute velocity of the earth using MM type experiments
regardless of the index of refraction of the medium used.

8 Description and procedures of experiment

Figures 9, 10 and 11 show actual annotated photographs of
the interferometer system used in the experiment. It is ar-
ranged according to the layout shown in Figure 1. Not shown
in these pictures are two polarizers — one at the output of the
laser and one at the input to the camera. These were rotated
relative to one another to attenuate the light to just the right
brightness so that the camera image was optimized for visu-
alization of the fringe pattern. Without them the image was
too bright and the camera’s CMOS detector bloomed to an
all-white image.

Fig. 10: Closeup of camera/detector end.

Fig. 11: Closeup of laser diode end.

8.1 Measurement considerations

The fringe shifts are measured by displaying the output of the
camera on a computer monitor. Figure 12 shows the cam-
era output plus two drafting triangles that were placed on the
monitor as references to assist in measuring fringe movement.

The entire system is mounted on a 4-foot (1.22 m) alu-
minum base that is painted black. The thermal expansion co-
efficient of aluminum causes it to expand about 29 µm per
degree C. That is 45 wavelengths of light per degree C or
about one half wavelength for each hundredth of a degree C.
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Fig. 12: Fringe pattern output from camera.

An even larger sensitivity occurs due to the fluctuations in
barometric pressure which change the index of refraction of
the air. Because of this extreme sensitivity to temperature and
pressure, there is a constant drifting of the fringe patterns that
must be taken out of the measurement.

To minimize the thermal drift, the following mitigating
techniques were employed:

1. The entire interferometer was placed inside a cardboard
tubular shipping container and sealed on both ends.

2. The system was allowed to warm up and reach a stable
temperature prior to making any measurements.

3. The measurements were taken inside a room with no
outside walls or windows.

4. The heating and air conditioning system was turned off
so that only slow, convection heating from outside the
building could affect the temperature inside the room.

5. A 4 foot wooden dowel was used to rotate the system
so that human body temperature was kept away from
the system.

6. The system was rotated very slowly (about 30 seconds
for a 90 degree rotation) to minimize the cooling and
pressure effects of the air flow.

By doing all of these things, the drift was reduced to signifi-
cantly less than 1 fringe per minute (probably mostly due to
barometric pressure drift), which was easy to remove from
the measurements.

Mechanical disturbances were minimized by placing the
system on pillows and attaching it to a rotatable platform
with a bungee cord pressing it into the pillows. The plat-
form is made from an aluminum trailer hitch-mounted cargo
carrier with the hitch attachment removed. The platform was
mounted to the base of a rotating office chair (after removing
the seat) so that it could be rotated very smoothly and with lit-
tle effort. The pillows prevented any residual vibrations of the
platform from propagating to the interferometer. The result is
that almost no vibrations affected the fringes so they were
very easy to follow as they drifted slowly across the screen.

Fig. 13: Complete system with vibrational and thermal mitigation.

Figure 13 shows the system after employing these temper-
ature and vibration mitigating techniques. The interferometer
is sealed inside the tubular cardboard shipping container with
the camera output coming through a small hole in the back of
the container into the monitor.

8.2 Measurement procedure

To improve accuracy and resolution, 10 measurements were
made at 1 hour intervals for 12 hours – which corresponds to
10 measurements every 15 degrees of earth’s rotation for 180
degrees total rotation. The measurements were performed in
Longmont, Colorado between 7 am and 6 pm on September
22 and 23, 2015. The following procedure was used:

1. Turn on the system and let it warm up for 2 hours.

2. At the top of each hour, position the system in a north-
south orientation.

3. Place the edge of a triangle in the middle of the fringe
nearest to the center of the screen.

4. Very slowly rotate the system clockwise 90 degrees un-
til it reaches an east-west orientation. (about 30 sec-
onds)

5. Estimate the movement of the fringe to the nearest 0.1
wavelength – including any drift that occurred. Record
this as phase 1.

6. Reposition the edge of the triangle in the middle of the
center fringe.

7. Very slowly rotate the system counterclockwise to re-
turn to the north-south orientation.

8. Estimate the movement of the fringe to the nearest 0.1
wavelength – including any drift that occurred. Record
this as phase 2.

9. Repeat steps 2 to 8 until 10 pairs of phase 1 and phase
2 measurements have been recorded.

10. Wait until the top of the next hour and repeat steps 2 to
9 until data for 12 hours have been recorded.
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After all data were recorded, the phase shift of each measure-
ment was calculated as

PhaseShift =
1
2

(Phase1 − Phase2) . (88)

This removes any drift from the measurement because
it will be constant in both phases.∗ For example, suppose
Phase1 includes a real shift of k and a drift of d. Then when
returning, Phase2 will measure a real shift of −k and the same
drift d. The phase shift recorded will be

PhaseShiftR =
(k + d) − (−k + d)

2
= k. (89)

This was done for each of the 10 measurements at each
hour. The 10 measurements for each hour were averaged.
This improves the resolution of the final answer and averages
out drift errors due to each “slow” rotation not being exactly
the same amount of time. These results are tabulated in Table
1 and were graphed earlier in Figure 8.

Time Average Phase Shift

7:00 0.01
8:00 0.06
9:00 −0.03

10:00 −0.10
11:00 −0.10
12:00 0.00
13:00 0.00
14:00 −0.01
15:00 0.02
16:00 0.02
17:00 0.04
18:00 −0.06

Table 1: Measured phase shifts.

9 Conclusions

We have now shown both mathematically and experimentally
that Michelson-Morely-type interferometer experiments can-
not detect the absolute speed of the earth through space re-
gardless of the medium through which the light is propagat-
ing. This experiment and the accompanying mathematical
analysis show that the conspiracy between Mother Nature and
light is complete. They have conspired to make it impossible
to detect our absolute speed using light signals.
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