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In this paper we study correlations present in experimental random series extracted
from a Quantum Optical Random Number generator conceived and implemented in our
lab. In particular we study the manifestations of inertia/memory effects. This study is
realized in the single photon regime.

1 Introduction

We learn from classical and quantum physics that the future
properties of a physical system are determined by its instan-
taneous, present state. This is reminiscent of the so-called
Markov property in statistics, according to which∗ “...the con-
ditional probability distribution of future states of the process,
given the present state and all past states, depends only upon
the present state and not on any past states...”

In previous papers (see [5] for a survey), one of us (T. D.)
studied the possibility that quantum correlations exhibit non-
Markovian features [4], in other words that quantum correla-
tions would be endowed with an intrinsic, non-standard mem-
ory effect. Actually, several experiments were realized in
the past, in different contexts, in order to test the possibility
of such memory effects [2–4, 7]. These experiments aimed
at testing hidden variable models (both local and non-local
models [5]) which predicted the appearance of non-standard
correlations between measurement outcomes collected at dif-
ferent times (different places in the case of non-local mod-
els [2]). We shall not enter in the detail of these experiments
and models here, but instead we shall focus on the results of
a statistical test that we developed in the past in order to char-
acterize quantum random number generators that were devel-
oped at the Université Libre de Bruxelles (U.L.B.) and Vrije
Universiteit Brussel (V.U.B.). We developed this test, from
now on denoted the Histogram Inertia Indicator (H.I.I.) test
in order to reveal whether histograms constituted from data
measured at different times were correlated to each other.

Besides the aforementioned hidden variable models, we
found inspiration in the idea of morphic resonance expressed
and developed by Rupert Sheldrake [17] according to which
the evolution of species and development of life in general
are characterized by memory effects having as a consequence
that new shapes/patterns tend to behave as attractors for other
shapes/patterns. In a previous paper we showed that mixing
Sheldrake’s ideas and hidden variable models led to the pre-
diction of observable non-standard memory effects (see [4]
section 3: Sheldrake and Smolin’s Models, and a Related Ex-
perimental Proposal).

∗Quoted from Wiktionary.

Fig. 1: SeQuR QRNG - Raw Data: A “near zone” effect is clearly
present in the SeQuR data (blue graph). Successive histograms, each
drawn from 1000 sequential random values, exhibit a manifest ten-
dency to resemble each other. The green graph represents the same
test on a Matlab pseudo-random series. The red lines represent the
boundaries that are assigned to “perfect” random series. The plotted
p-values confirm the results in graphical form. (quoted from [19])

Our main goal, when we developed the H.I.I. was to try
and reveal whether quantum histograms would exhibit mem-
ory effects. It can be seen as an attempt to extrapolate the
extent of validity of Sheldrake’s ideas to the quantum realm.

A last source of inspiration was provided by the evidence
for annual periodicity in decay data [9, 10] that has been re-
vealed a few years ago. It has been suspected that this peri-
odicity cannot be explained by environmental effects such as
temperature, humidity, pressure, etc [11], nor is there a corre-
lation with the Sun-Earth distance after re-analysation of the
data [13].

All these observations suggest that there could exist some
“regularity in randomness”, some “hidden” pattern, a non-
standard memory effect characterized by correlations betw-
een data collected at different times. This is a very upsetting
and at the same time challenging idea which deserves to be
considered seriously, from a foundational perspective [2–5,
7].

In particular we noticed the presence of an intriguing me-
mory effect already some years ago [19], at the level of a
random optical signal measured in the continuous counting
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regime (see section 2.3). The data were delivered to us by col-
leagues from the U.L.B. developing a prototype of ultra-fast
quantum optical random number generator [6]. Essentially,
this device amplified fluctuations of the intensity delivered
by a laser source. The results plotted at the level of Fig. 1 re-
veal for instance a clear deviation from the theoretical bound-
aries (in red) associated to a fully random process (without
memory effect). We also checked in the same work [19] that
Fourier filtering and/or Faraday filtering diminishes the effect,
but does not suppress it totally. Our interpretation of these ob-
servations is that these correlations could be partially due to
an external mechanism, and partially due to the internal mem-
ory of the device (here the light detector which is acting in the
continuous (many photons) regime).

It was not clear however, uniquely on the basis of the ob-
servations, to decide whether the external source of the corre-
lations had to be attributed solely to electromagnetic pollution
(GSM devices, FM radio channels and so on) or whether it
was necessary to resort to a universal memory effect in order
to explain our observations.

Therefore we decided to test experimentally similar mem-
ory effects in the low intensity (single photon) regime, which
was made possible by the development of quantum random
number generators (QRNG) active in the low intensity (dis-
crete counting) regime in situ in our labs and based on the ran-
dom character of time delays between clicks collected with a
single photon avalanche detector at the output of an attenu-
ated laser source. The corresponding generator, the so-called
Parity Quantum Optical Random Number (PQORN) gener-
ator has been described in a separate publication [6] and is
briefly described in section 3.1 (see also Fig. 2).

As we shall describe in the present paper, we applied the
H.I.I. test to the raw data generated with our PQORN gen-
erator. This program is triply challenging in our eyes be-

Fig. 2: Detailed setup for the near-zone experiment. It is composed
of a laser source, two neutral density filters and a single photon de-
tector. The same setup, supplemented with a nanosecond resolution
clock constitutes the Parity QORNG.

cause, as far as we know, nobody tested in the past the ex-
istence of memory effects by the same method, and a for-
tiori no such test has been achieved so far in the low intensity
regime. Last but not least, if the memory effect revealed by
the H.I.I. indicator is universal, its detection provides a cri-
terion for discriminating physical randomness from pseudo-
randomness which is a very challenging idea.

The paper is structured as follows. We describe in sec-
tion 2 a new statistical test, the H.I.I. test, introduced in [19]
aimed at measuring and/or revealing memory effects (section
2.1), as well as the corresponding p-value (section 2.2). Our
methods are also relevant in the framework of random number
generation because the H.I.I. test and the associated p-value
are thus useful tools in order to characterize randomness.

Before scrutinizing (making use of the tests described in
section 2) the existence of memory effects at the level of the
PQORN generator (section 4), we investigated more in depth
the correlations which appear in the high intensity regime at
the level of our single photon detectors (section 3.2). These
correlations are a priori not of quantum nature but they are
induced by the dead time of the detector. As we show in
section 4, in the high intensity regime, and only in this regime,
the H.I. memory effect is present.

We also studied whether similar memory effects still exist
beyond the near zone regime studied in section 4.1, and in
particular whether non-local in space (section 4.2) and time
(section 4.3) memory effects (previously denoted Spatial and
Temporal Long Range Memory effects) can be measured at
the level of our device. The last section is devoted to the
conclusions and to the interpretation of the collected results.

2 The near-zone H.I.I. test

2.1 Qualitative test

In order to derive a statistical test aimed at revealing mem-
ory effects, we approached the problem as follows [19]: Each
histogram of a given data sample – given it is not too large

Fig. 3: Fluctuations of a sample histogram - constructed from 1 000
gaussian distributed random data values - around the line of the aver-
age histogram computed from a data sample of 10 000 000 gaussian
distributed random values.
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Fig. 4: The difference H̃ of a sample histogram H with the average
histogram.

– fluctuates around the average histogram, which is obtained
from a very large data sample, cfr. Fig. 3. For each histogram
H we compute its difference with the mean histogram. This
leaves us with a new normalized histogram H̃ in which each
value can either have a positive of a negative value, depend-
ing whether that value is observed more or less often than in
average, as shown in Fig. 4. Thereafter, we introduce a quan-
titative “resemblance” value r as follows. Consider H̃i and H̃ j

two neighboring histograms.

ri =
∑
α

H̃iα H̃ jα (with j = i + 1) (1)

with α the corresponding value of the histogram at this entry.
Remark that we are working with histograms where values
can be both positive and negative. Consequently, the inprod-
uct r can be either positive or negative. The following inter-
pretation can now be given to r:

- r is large and negative: Both histograms seem to be
inverse of each other for most of the entries. The his-
tograms have no near zone effect. Instead this suggests
an anti- or complementary- “near-zone” effect.

- r is close to zero: Both histograms have approximately
as much resemblance as difference. Again no “near
zone” effect is observed.

- r is large and positive: Both histograms have the same
shape for most of their entries. A “near zone” effect is
then observed.

Considering that the random sequence of length n is divided
in M data samples of length N, this analysis leaves us with
b N

1000 c − 1 values of r for each of the M samples, since we
choose each histogram to be created from 1000 random val-
ues. Fig. 5 depicts graphical results after calculating all r-
values.

This is only the first part of the investigation since, as one
can deduce from Fig. 5, often, not much can visually be said
about a possible “near-zone” effect. Therefore, it is appropri-
ate to perform a statistical treatment of the data.

Fig. 5: Example graph of 9 999 inproducts between 10 000 succes-
sive histograms obtained from a data sample of N = 107 values.

Let us start by taking the average of all r inproducts:

r̄ =

∑ N
1000−1
i=1 ri
N

1000 − 1
. (2)

Since the analysis is performed on M data samples of length
N, each of the M samples now leaves us with one value of
r̄. These M average values r̄ provide us with a qualitative
indication of a “near zone” effect that we choose to express
through the ratio of positive averages of r̄, i.e.

#r̄pos

M
(3)

with #r̄pos the amount of r̄ ≥ 0. Note that the sign of r̄ can
be regarded as a Bernoulli process, or as a bit sequence with
for example a bit value of 1 corresponding to a positive value
and a bit value of 0 to a negative one. In a perfectly random
process the ratio between them should be close to 1/2 with a
deviation depending on M, the amount of data samples. In or-
der to determine the magnitude of this deviation we consider
the law of large numbers to derive the boundaries:

#r̄pos

M
∼

1
2
±
σbit
√

M
=

1
2

(
1 ±

1
√

M

)
(4)

with M the amount of data samples or the amount of values
r̄. For a data set of length n, M = b n

N c so that the boundaries
also depend on N.

It is expected for perfect random processes that the mag-
nitude of the ratio of positive averages r̄ will remain confined
within the boundaries plotted in Fig. 6. One expects that spo-
radically r̄ will be found outside the boundaries but in the
case that it will remain persistently outside the boundaries we
must suspect that the random sequence is biased. Considered
so, we now have at our disposal a qualitative test aimed at
testing the presence of the near zone effect. In the next sec-
tion, we shall also derive a quantitative criterion, in the form
of a p-value.

24 Carlos Belmonte et al. Probing quantum memory effects in the single photon regime



Issue 1 (January) PROGRESS IN PHYSICS Volume 13 (2017)

Fig. 6: Boundaries for the fluctuations of the ratio of positive aver-
ages r̄ depending on M, the amount of data samples tested. Since
a very large data sample is divided in M subsamples of length N,
M decreases as N increases and consequently, the fluctuations also
depend on the size N of the subsamples.

2.2 Derivation of a p-value for the near-zone H.I.I. test

The standard randomness tests (e.g. the NIST or Die Hard
tests [12,16]) deliver their results through a so-called p-value.
Typically, p ∈ [0, 1] is the probability of obtaining a test re-
sult at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true, i.e. the tested se-
quence is considered random. A p-value ≥ 0.01 indicates
that the tested series of bits is random with a confidence in-
terval of 99%. While the near-zone H.I.I. test described in
the previous section is of qualitative nature and delivers its
results in a graphical way, we shall now show how to connect
a p-value to the different values in the graph of this near-zone
H.I.I. test.

Recall that the value of r̄ from (2) can be regarded as a
Bernoulli process or conversely as a random walk if one con-
siders a positive value of r̄ as the value +1 and a negative
value of r̄ as −1. Consider the sequence X = X1, X2, . . . of
values ±1 in accordance to positive or negative values of r̄.
We define S M as the sum

S M = X1 + X2 + . . . + XM (5)

with M the amount of values of r̄ (see discussion at (2) and
(3)). Compute the test statistics

Z =
|S M |
√

2M
. (6)

Making use of the law of large numbers, the p-value can be
shown [19] to be equal to

p−value = erfc
(

Z
√

2

)
. (7)

2.3 Near zone memory effect in the continuous counting
regime

Some years ago [19], we investigated the existence of a mem-
ory effect at the level of an optical random number generator
the SeQuR QRNG, acting in the continuous regime. Essen-
tially, the device amplifies the fluctuations of the intensity de-
livered by a laser source [6]. We considered the decimal ran-
dom data delivered by the detector. The tested results show
clear similarities in the successive histograms from the data
samples. This can be observed in Fig. 1, quoted from [19].
This analysis clearly indicates the presence of an inertia or
memory effect in the signal. Let us now consider discrete
data collected with single photon detectors.

3 Randomness in the low photon number regime

3.1 Parity QORNG

The Parity QORNG exploits the random nature of the distri-
bution of clicks in a single photon detector. It is based on
the parity of the time (in nanoseconds) for which the events
(clicks) occur. If this time is even, the bit will be zero; if
this time is odd, the bit will be one. The set-up to carry out
this method consists of an attenuated laser source coupled to
a single-photon detector (Fig. 2). The detector is coupled to
a buffer via an acquisition card synchronized with a clock of
high resolution (1 nanosecond).

As has been shown in [6], the principal advantages with
this method are 1) that it requires to use only one photon-
detector to generate a random number and 2) that even in the
high intensity regime it delivers random series of very high
quality∗.

Before we characterize the H.I. effect, let us study the
physical correlations exhibited by the single photon detectors
of the parity QORNG.

3.2 Study of correlations due to dead-time of detectors

3.2.1 Successive clicks in one single-photon detector

In this section we will check the statistical properties of the
data acquired in single-photon detectors in various regimes.
These regimes are reached by modifying the attenuation of
our two tunable attenuators (Fig. 2), from almost no attenua-
tion at all to a high attenuation.

Before going further it is worth recalling that the single-
photon detector is characterized by a dead time (that is to say
the lapse of time during which the photon-detector will be off

after detecting a photon) in the range of 45 to 50 ns. The
resolution time of the acquisition card is 1 ns, therefore every
1 ns a datum will be acquired, while the maximum data that
the acquisition card can memorize is 750 000 ns, after which
the memory of the acquisition card is full.

∗For instance bit series obtained from the PQORNG successfully pass
[6] the NIST battery of standard randomness tests (frequency test, parity test,
spectral test, entropy test and so on).
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Fig. 7: Statistics of time arrival between photons in the high intensity
regime. Average time between photons estimated to be more or less
36 ns.

Taking into account the specifications above, we perform-
ed a study of the time arrival between two photons in different
regimes changing the attenuation. For instance, in the high in-
tensity regime (low attenuation regime) we observe a distri-
bution of delay times between clicks plotted in Fig. 7 which is
contaminated by the correlations induced by the dead-time of
the detector (as revealed by the presence of peaks separated
by 45 ns). From the tail of the semi-logarithmic plot, we can
infer the average time between two photons, which would be
exactly the slope of the straight line if the distribution was
Poissonian, which corresponds to a dead time equal to zero.

If in turn we work in a low intensity regime, for which
the average time between two clicks is quite larger than the
dead time of the detectors, we observe a nearly Poissonian
distribution, as can be seen from Fig. 8. The single noticeable
difference with a Poisson distribution is the null probability
to measure successive clicks in a time smaller than the dead
time (here 45 ns).

3.2.2 Simultaneous clicks in two single-photon detectors

In order to check the departure from the Poisson distribution,
we estimated another parameter which is the number of si-
multaneous counts in two detectors placed at the output of

Fig. 8: Statistics of time arrival between photons in the low intensity
regime. Average time between photons estimated to be more or less
294 ns.

a beamsplitter. When two photons arrive at the exact same
time to the beamsplitter, there exist four possible scenarios
(Fig. 9):

1. Both photons are detected by the photon-detector A.
2. Both photons are detected by the photon-detector B.
3. Photon A is detected by the photon-detector A and pho-

ton B is detected by the photon-detector B.
4. Photon A is detected by the photon-detector B and pho-

ton B is detected by the photon-detector A.

The probability of obtaining a single photon during a unit-
period of time is (in case of a perfectly Poissonian distribu-

Fig. 9: Possibilities that two photons are detected by two photon-
detectors.

26 Carlos Belmonte et al. Probing quantum memory effects in the single photon regime



Issue 1 (January) PROGRESS IN PHYSICS Volume 13 (2017)

tion):

P(single) =
1

average time between photons
(8)

The probability of obtaining two photons at the input of the
beamsplitter is then:

P(pair) =

(
1

average time between photons

)2 1
2!

(9)

Henceforth, the probability that two photons arrive during a
same temporal window unity in the two photon-detectors can
be calculated theoretically:

P(double count) =

(
1

(average time between photons)2 · 2!

)
1
2

The average number of double clicks obeys therefore

N(double counts) =

(
total number of photons

average time between photons · 2!

)
1
2

In the high intensity regime we found a significant depar-
ture from the Poisson distribution:

- Total number of photons ≈ 640 000.

- Average time between photons ≈ 21 ns.

- Simultaneous clicks in the 2 photon-detectors = 4 999.(
640 000
21 · 2!

)
1
2
≈ 7 619 (10)

In the low intensity regime we found a better agreement:

- Total number of photons ≈ 184 000.

- Average time between photons ≈ 141 ns.

- Simultaneous clicks in the two photon-detectors = 272.(
184 000
141 · 2!

)
1
2
≈ 326 (11)

This confirms that when the dead time is small compared
to the average time between two photons, the statistics of
counts is Poissonian in good approximation, which fits with
the standard quantum prediction for a coherently attenuated
laser source. From this point of view, the limit of low inten-
sities corresponds to the genuinely quantum regime, while in
the high intensity regime (for which the dead time is compa-
rable to the average time between two photons) quantumness
is spoiled by correlations induced by the dead time mecha-
nism of the detector.

Incidentally, our study also confirms that we nearly al-
ways operate in the single photon regime; the probability to
have two photons or more in the same interval of acquisition
(one nanosecond) being at most of the order of 10−2, even in
the “high” intensity regime.

Fig. 10: Autocorrelation for the low intensity regime.

4 Characterization of the PQORN generator using the
H.I.I. test

4.1 Near-zone temporal memory effect

The existence of a near-zone temporal memory effect would
be revealed through the fact that similar histograms are signif-
icantly more probable to appear in the nearby (neighbouring)
intervals of the time series of the results of measurements.

Using the setup in Fig. 2, we measured this effect in the
two different regimes, the low intensity regime and the high
intensity regime (they were defined in terms of the dead time
at the end of the previous section).

To determine whether the effect is present, we make use
of the H.I.I. test described in section 2, which delivers a p-
value and a graph for a fast visual appreciation. We applied
a level of significance of 0.01 for the p-value, hence if the
p-value delivered is lower than the level of significance, we
assumed that the presence of a significant memory effect gets
confirmed by experimental data. Similarly, if the curve pro-
vided by the test remains outside the boundary curves, we
assume that the existence of a memory effect is experimen-
tally confirmed. We also used a standard auto-correlation
test [6, 12, 16] to corroborate the results of the H.I.I. test.

4.1.1 Low intensity regime

We firstly measured the effect in the (highly attenuated) low
intensity regime. We observed no correlation in this regime,
as it is shown in Fig. 10. The H.I.I. test gives us the option to
choose arbitrarily the sample length, which optimally ought
to be of the order of the memory time of the H.I. effect. We
selected four different sample lengths of 100, 300, 500 and
1000; and for each choice of a sample length, we tested the
possible existence of a memory effect with the first, the sec-
ond, the fifth and the tenth neighbour. For instance selecting
100 as a sample length, the reference sample runs from 1 to
100, the first neighbour sample from 101 to 200, the second
neighbour one runs from 201 to 300, the fifth neighbour sam-
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Fig. 11: Memory effect for the low attenuation regime with sample
length of 100 for the first(a), the second (b), the fifth(c) and the tenth
neighbour (d).

ple runs from 501 to 600 and so on. As is clear from Fig. 11,
no memory effect is present in the low intensity regime. The
result is also confirmed by similar plots obtained for sample
lengths of 300, 500 and 1000 that we do not reproduce here in
order not to overload the presentation. The corresponding p-
values are gathered in Tab. 5. All the p-values are larger than

Fig. 12: Autocorrelation for the high intensity regime.

0.01, thus we can safely conclude that there is no memory
effect in the low intensity regime, confirming the information
provided by the graphics. These p-values are obtained by av-
eraging all p-values associated to one “graphical” test.

4.1.2 High intensity regime

We measured again the correlations in the high intensity (we-
akly attenuated) regime and Fig. 12 shows that in this regime
a strong auto-correlation prevails until the bit 600 approxi-
mately. We also measured the memory effect in the same
way as for the low intensity regime, i.e. for different sample
lengths (100, 300, 500 and 1000) and different neighbours
(1st, 2nd, 5th and 10th). From Figs. 13, 14, 15 and 16, it can be
seen that for a sample length of 100, the H.I. effect is present.
On the other hand, for a sample length of 1000, the experi-
mental curve stays inside the red boundaries most of the time.
Actually, when two samples separated by less than say 1000
bits are compared, the memory effect is present, otherwise
there is no H.I. effect. These results are corroborated by the
auto-correlation (Fig. 12) which is strong until the bit 600 ap-
proximately. They also fit with the average p-values shown
in Tab. 6.

4.2 Long range spatial H.I.-like correlations

In a previous paper [4], one of us (T. D.) predicted that simi-
lar histograms are highly probable to appear at different geo-
graphical points at the same time on the basis of a genuine
quantum hidden variable model incorporating the morphic
resonance concept of Sheldrake [17]. We conceived a new ex-
periment in order to study this prediction, based on the setup
of Fig. 17, which is composed of two sub-setups (sub-setup A
and sub-setup B). Each sub-setup consists of one source, one
neutral density filter and one photodetector and is equivalent
to the set-up described in the previous section that we used for
testing the near-zone effect. The two sources are launched at
the same time. In a first time we implemented the same H.I.I.
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Fig. 13: Memory effect for the high intensity regime with sample
length of 100 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

test as in section 4.1 separately for each detector in order to
check that each individual subset-up exhibits the near-zone
memory effect. This can be seen for instance at the level of
Tab. 1. The period of the near-zone memory effect is of the
order of 500 clicks, as is corroborated by the auto-correlation
tests in Figs. 18a and 18b.

Fig. 14: Memory effect for the high intensity regime with sample
length of 300 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

In a second time, we adapted the H.I.I. test in order to be
able to detect H.I.-like correlations between the two subset-
ups. We have thus to compare the random series of time de-
lays obtained in one photodetector (series A) with the random
series obtained in the other photodetector (series B). Compar-
ing both of them will determine whether the histograms are
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Fig. 15: Memory effect for the high intensity regime with sample
length of 500 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

similar or not. In order to do so, a fixed sample length is
selected (in our case, 100, 300, 500 and 1000) and we com-
pare the histogram built from samples of this length extracted
from series A with the corresponding histograms from series
B, i.e. sample 1-100 of series A with the sample 1-100 of se-
ries B. We also compared neighbour histograms, like we did

Fig. 16: Memory effect for the high intensity regime with sample
length of 1000 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

in section 4. This time we compare one histogram of series
A with the neighbours of series B, i.e. for the first neighbour,
sample 1-100 of series A with sample 101-200 of series B.
We extended this procedure for the second, third, fifth, tenth
and twentieth neighbour too. The results are encapsulated
in Tab. 7. The average p-values are always quite larger than
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Fig. 17: Double set-up for detecting long range spatial H.I.-like cor-
relations.

0.01, for all the cases, which shows that no observable spa-
tial H.I.-like effect is present at the level of our experimental
setup, even in the high intensity regime where individual se-
tups exhibit a near zone memory effect. We checked by sim-
ilar methods that in the low intensity regime no spatial H.I.-
like effect is present. In both regimes we also scrutinized the
graphical presentations of the test results (that we do not re-
produce here in order not to overload the presentation), which
confirmed the conclusions already drawn from the estimate of
the p-values.
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Fig. 18: Correlation for the data obtained in the two different pho-
tondetectors. Fig. (a) and Fig. (b) present a strong correlation.

Sample Length: 100 A B
1 neighbor 0.0036 0.0033
2 neighbor 0.0071 0.0036
3 neighbor 0.0367 0.0094
5 neighbor 0.4984 0.3224
10 neighbor 0.4746 0.3269
20 neighbor 0.3191 0.3168

Tab. 1: p-values for the two sub-setups with a sample length of
100 bits for different neighbours (first, second, third, fifth, tenth and
twentieth.

4.3 Long range temporal memory effects

The aforementioned periodic modulation of radio-active em-
ission with a period of about 365 days [9, 10], suggests that
the phenomenon has a cosmophysical origin. We therefore
investigated the possibility to generalize these observations
in the case of a quantum signal. We focused on the 24-hour
period experiment due to the large amount of time that we
would have spent in tracking yearly memory effects. The 24-
hour period would be an indication of the existence of an ex-
ternal agent that influences the object of study, most probably
the rotation of the Earth. Our aim was to probe the existence
of this effect at the level of the quantum signal obtained from
our QRNG. For our experiment we used the same setup as in
the near-zone experiment in section 4. It consists again of a
laser source, a collimating lens, two neutral density filters and
one avalanche photo-diode.

In February 2015, we realized a series of experiments, af-
ter having synchronized our computer clock with an atomic
clock from the nist.gov website∗ in such a way that all the
measurements were automatized. Then, the runs were per-
formed at exactly the same time every day for three consec-
utive days and we performed 20 different experimental runs
with an interval of 20 second between each of them†.

We estimated, based on the slope of the semi-logarithmic
plot of the histogram of delay times, the average time delay
and we found that the drift was small, with average times
comprised in the interval 45-52 ns. Thereafter we estimated
the individual H.I.I. p-values which measure the cross-corre-
lations between the samples of days 1 and 2, of days 2 and 3,
and of days 1 and 3. The results are encapsulated in Tab. 2.

∗The procedure for doing so is available on the website
http://www.nist.gov/pml/div688/grp40/its.cfm

† We learn from wikipedia that... “A synodic day is the period it takes
for a planet to rotate once in relation to the body it is orbiting. For Earth, the
synodic day is known as a solar day, and is about 24 hours long. The synodic
day is distinguished from the sidereal day, which is one complete rotation in
relation to distant stars. A synodic day may be ”sunrise to sunrise” whereas
a sidereal day can be from the rise of any star to the rise of the same star
on the next day. These two quantities are not equal because of the body’s
movement around its parent”... Henceforth we expect a difference between
the sidereal and synodic (solar) day to be of the order of 24x3600/365 second,
more or less 240 second. Our measurements cover 400 second, which allows
us to address at the same time the synodic and sidereal periods
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Total number of p-values: 3380
Day 1 Day 2

Number p-values < 0.01 = 272
Number p-values < 0.1 = 978

Day 2 Day 3
Number p-values < 0.01 = 284
Number p-values < 0.1 = 980

Day 1 Day 3
Number p-values < 0.01 = 221
Number p-values < 0.1 = 988

Tab. 2: Statistics of “pathological” p-values, from consecutive ran-
dom series separated by 24 or 48 hours.

Total number of p-values: 8000
Day 1 Day 2

Number p-values < 0.01 = 123
Number p-values < 0.1 = 1195

Day 2 – Day 3
Number p-values < 0.01 = 152
Number p-values < 0.1 = 1201

Day 1 – Day 3
Number p-values < 0.01 = 104
Number p-values < 0.1 = 1185

Tab. 3: Statistics of “pathological” p-values, from pseudo-random
series.

There were 13 runs each day and from each pair of runs we
extracted twenty p-values (each of these values is associated
to a point on a graph similar to, for instance, the plots in
Fig. 11). By doing so, for each pair of days, we were able to
estimate 13 times 13 times 20 = 3380 p-values from the cross-
correlations between samples extracted at different days.

In order to properly calibrate the statistical distribution of
p-values we did two things:

A) we generated sixty runs of Poisson distributed time
series characterized by an average time of the order of 50 ns.
The duration of each series was the same as the duration of
each experimental run. We arbitrarily assigned a day to each
of them, according to the rule 1-20 → day 1, 21-40 → day
2, 41-60 → day 3. Then we considered the 400 (20 times
20) cross-correlations between the data “extracted at different
days” and estimated the corresponding p-values, following
the same algorithm already used for establishing Tab. 2. The
results are encapsulated in Tab. 3.

B) We also estimated through the same method the H.I.
cross-correlation between samples that were measured in Ju-
ne 2014 and those measured in February 2015. Here again
there were three runs of 13 samples, measured at different
days, after a period of the order of 24 hours each time, and
also in the high intensity regime, but the timing of the data
collected in June 2014 was not automated. We estimated cor-

Total number of p-values: 3380
Day 1 in June 2014 Day 1 in February 2015

Number p-values < 0.01 = 112
Number p-values < 0.1 = 578

Day 2 in June 2014 Day 1 in February 2015
Number p-values < 0.01 = 82
Number p-values < 0.1 = 526

Day 1 in June 2014 Day 3 in February 2015
Number p-values < 0.01 = 91
Number p-values < 0.1 = 521

Tab. 4: Statistics of “pathological” p-values, from consecutive ran-
dom series measured in June 2014 and February 2015.

relations between data measured in days 1, 2 and 3 in June
2014 and those measured in days 1, 2 and 3 in 2015. The
results are summarized in Tab. 4.

For obvious reasons, we consider that the statistical dis-
tribution of “pathological” p-values which appears in Tabs. 3
and 4 is representative of uncorrelated data. Indeed, pseudo-
random series do not exhibit any memory effect, and we do
not expect that data measured in June 2014 and February
2015 are correlated. This is confirmed by a comparison of
those tables: if we consider the occurrence of p-values smal-
ler than 0.1, we find a probability of the order of 0.15 in each
case∗.

On the contrary, in Tab. 2 the occurrence of p-values sma-
ller than 0.1 is of the order of 0.29, twice more, which reveals
the existence of a systematic memory effect, persisting after
24 hours. We consider therefore that our observations confirm
the existence of long range temporal H.I.-like correlations of
periodicity of the order of 24 hours, which appears, at least in
our eyes, to be a very surprising result.

5 Conclusions and discussions

In this paper we studied the H.I. effect, which, roughly, would
manifest itself through a tendency of random series to present
analogous departures from their mean statistical behaviour.
This tendency would possibly characterize data collected in
the same temporal interval (what we denoted the near zone
memory effect) but could present non-local features (non-
local in time and/or space), what we denoted the long range
temporal (resp. spatial) memory effect.

Our main goal was to study experimentally whether or
not a memory effect of the H.I. type was present in the single
photon regime. We developed a new, self-cooked algorithm,
described in section 2 in order to realize this objective.

∗At first sight we ought to expect 0.1 instead of 0.15, but we must have
in mind that the p-value derived by us corresponds to a situation where the
sign of the parameter r defined at the level of (1) was negative in exactly
fifty percent of the cases and positive in fifty percent of the cases, which is
of course an assumption that is not always strictly verified. From this point
of view, the p-value defined by (7) ought not to be considered as an exact
p-value but still plays the role of a valuable indicator.
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Sample Length 1st Neighbor 2nd Neighbor 5th Neighbor 10th Neighbor
100 0.4762 0.6031 0.6048 0.3997
300 0.4515 0.5647 0.4537 0.5269
500 0.5323 0.3049 0.4101 0.4614

1000 0.4105 0.4745 0.5121 0.2665

Tab. 5: p-values extracted from the H.I. test for the low intensity regime for different sample lengths and different neighbours.

Sample Length 1st Neighbor 2nd Neighbor 5th Neighbor 10th Neighbor
100 0.0037 0.0043 0.0219 0.1005
300 0.0033 0.1100 0.1489 0.4066
500 0.0042 0.1098 0.6511 0.4410

1000 0.0304 0.4866 0.4876 0.3305

Tab. 6: Parity Method: Results of the file generated with the Split Method applying the NIST test battery.

Sample 0th 1st 2nd 3rd 5th 10th

length neighbour neighbour neighbour neighbour neighbour neighbour
100 0.4330 0.5725 0.4067 0.4844 0.4530 0.5348
300 0.4608 0.5303 0.2870 0.2363 0.3765 0.3965
500 0.4508 0.4930 0.5378 0.4623 0.3572 0.0361

1000 0.5029 0.4965 0.4373 0.3953 0.2483 0.1399

Tab. 7: p-values when series A and B are compared for different sample length (100, 300, 500 and 1000 bits) for different
neighbours (first, second, third, fifth, tenth and twentieth.

Our conclusions are the following:
A) The near-zone H.I. memory effect is well present in the

single photon regime, but only in the high intensity regime
(for which the dead time is comparable to the average time
between two photons). As we discussed in section 3.2, the
limit of low intensities (when the dead time is quite larger
than the average time between two photons) corresponds to
the genuinely quantum regime, and in this regime no mem-
ory effect is present. This goes in the sense of the conclu-
sion [19] drawn from the study of the SeQuR QORNG, for
which the H.I. effect could be explained in terms of external
electromagnetic pollution, combined with an internal mem-
ory time (inertia) of the photodetector. The persistence of
H.I.-like correlations after 24 hours (that we address below)
is however more difficult to explain. Anyhow, we can safely
conclude from our experiments and our analysis that “pure”
quantum random series, collected in the low intensity single
photon regime do not exhibit any kind of observable H.I.-like
correlation.

B) We were unable to observe manifestations of a long
range spatial memory effect but detected a systematic ten-
dency indicating the possible presence of the long range tem-
poral memory effect, even after 24 hours. Our preliminary
result ought to be of course confirmed by supplementary stud-
ies. The door remains thus open for what concerns the “daily”
effect. It is worth noting that, even if this effect gets defini-
tively confirmed, its interpretation is not straightforward. It

is well-known for instance that some noises in nature (and in
particular at the surface of our planet) exhibit a 24 hours pe-
riod. It could be that the daily memory effect merely reveals
this feature.

In any case, we hope that, beside contributing to a better
understanding of fundamental aspects of quantum random-
ness∗, our study also brings new tools aimed at characterizing
randomness in general. We actually consider that the H.I.I.
test provides a new statistical test, complementary to the stan-
dard NIST tests, and in particular to the auto-correlation test.

As we have shown (e.g. in section 4.1.2), at the level of
physical random number generators, when auto-correlation
is present, the H.I. effect is most often present too, which is
already remarkable in itself and suggests the existence of a
universal memory effect.

Moreover, as shown in section 4.3, the long range tempo-
ral H.I. effect provide an example where the H.I.I. test reveals
a systematic tendency, even in absence of auto-correlation
(we checked for instance that the auto-correlation between
data collected at different days (1,2,3) was uniformly flat).

We are still far away from one of our initial motivations,
which was to be able to discriminate between physical ran-
domness and pseudo-randomness thanks to the H.I.I. test†,

∗In particular the main motivation of one of us (T. D.) was to investigate
possible memory effects at the level of the quantum statistics, and finds its
place in a series of works centered around this question [2–5, 7]

†In certain cases, pseudo-randomness can be revealed by measuring the
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and the low intensity case provides a counterexample to the
mere possibility of doing so in general, but at least, our mea-
surements confirmed that the H.I. effect is present in nature in
various regimes. In particular it is weakened but still present
after a delay of 24 hours, which is very amazing. There-
fore we are intimately convinced that it is important to pur-
sue these investigations. For instance it would be interest-
ing in the future to compare results obtained with our algo-
rithm and those obtained by Shnoll and coworkers, making
use of a quite different algorithm [8,14,18], and applying it to
noise [15], not to quantum signal as we did, which addressed
relatively short series of data (of the order of 30 clicks only),
contrary to ours, where we systematically made use of the law
of large numbers in order to estimate p-values.

Last but not least, it would be interesting to study the
appearance of the H.I.-effect at various temporal and spatial
scales, the present work constituting only a first probe in this
direction.
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