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This thesis reveals an extended world-picture of Riemannian geometry as a telemet-
ric multispace model of real space on the cosmological scale: certain new aspects of
General Relativity are presented in terms of a fundamental membrane-transition picture
of the deeper reality of time. We refer to this as “telemetric multispace formulation
of General Relativity”, a world-system with heavy emphasis on Riemannian geometry
“per se” (in light of a particular set of extensive, purely geometric techniques), without
all the usual historical-artificial restrictions imposed on it. This seminal model gives the
purely geometric realization of instantaneous long-range action in the whole space-time
of General Relativity whose sub-structure is extended to include an intrinsic, degener-
ate gravitational-rotational zero-space hosting zero-particles. The mathematical basis
of modern cosmology is the four-dimensional pseudo-Riemannian space which is the
curved space-time of General Relativity. The additional restrictions pre-imposed on
space-time due to so-called “physical reasons” are, regularly: the signature conditions,
the prohibition of super-luminal velocities, and the strictly uni-directional flow of time.
We here study the peculiar conditions by which the observable time 1) is stopped; 2)
flows from the future to the past. Our world and the world wherein time flows oppo-
sitely to us are considered as spaces such that they are “mirror images” of each other.
The space wherein time stops (the present) is the “mirror” reflecting the future and the
past. Then we consider the interaction between a sphere of incompressible liquid (the
Schwarzschild bubble) and the de Sitter bubble filled with physical vacuum: this is
an example of the interaction between the future and the past through the state of the
present.

1 Riemannian geometry as a mathematical model of the
real world

A brief historical background is at hand, followed by a critical
mathematical repraisal. As known, the mathematical basis of
modern cosmology is the four-dimensional pseudo-Riemann-
ian space — the curved space-time of General Relativity. It
belongs to the whole spectrum of Riemannian spaces ob-
tained by Bernhard Riemann as a generalization of Carl
Gauss’ work on curved surfaces. Riemannian spaces pos-
sess any number dimension n. The numerical value of n is
determined by a maximal number of independent basis vec-
tors (general basis, in the collective sense) of the Rieman-
nian space Vn [1]. The basis of the Vn is introduced at ev-
ery point of the flat space En which is tangent to the Vn at
this point. If the basis vectors are linearly dependent, the
dimension of the Vn is less than that of the space wherein
the basis vectors are independent of each other. There exist
two types of basis vectors possessing: 1) the positive square
of the length (a real vector); 2) the negative square of the
length (an imaginary vector). As familiar, if all the basis
vectors of the space are real or imaginary, it is known as
the Riemannian space. If some of the basis vectors are real
while other ones are imaginary, the space is known as the

pseudo-Riemannian space. Flat Riemannian spaces, where
all the basis vectors possess unit or imaginary unit lengths,
are known as the Euclidean spaces En. For example, the E3
is the ordinary flat three-dimensional space where the uni-
tary system of Cartesian coordinates can be introduced. Flat
Riemannian spaces where some basis vectors are real and
other ones are imaginary, are known as the pseudo-Euclidean
spaces. The four-dimensional pseudo-Euclidean space E4,
which possesses one imaginary basis vector along with three
real ones, is known as the Minkowski space (German Min-
kowski introduced time as the fourth coordinate x0 = ct,
where t is the coordinate time while c is the light velocity).
The pseudo-Euclidean space E4 is of course the basic space
(space-time) of Special Relativity. The pseudo-Riemannian
(curved) four-dimensional space V4 with the same set of the
basis vectors is the basic space (space-time) of General Rel-
ativity. The idea of applying the four-dimensional pseudo-
Riemannian space to the description of the real world was
suggested Marcel Grossman, a close mathematician friend of
Albert Einstein. Einstein agreed with him, because the metri-
cal properties of Riemannian spaces are simplest in compari-
son to the properties of other metric spaces. The point is that
Riemannian metrics are invariant relative to transformations
of coordinates. It implies that the square of the elementary

Larissa Borissova. A Telemetric Multispace Formulation of Riemannian Geometry 57



Volume 13 (2017) PROGRESS IN PHYSICS Issue 2 (April)

infinitesimal vector dxα conserves its length:

ds2 = gαβdxαdx β, α, β = 0, 1, 2, 3, (1)

where the contraction by indices α, β denotes the summation.
Metrics of Riemannian spaces are symmetric (gαβ = gβα)

and non-degenerate (g = det ∥gαβ∥ , 0), while the elementary
four-dimensional interval is invariant relative to any reference
system (ds2 = const). The invariance of the ds2 is a very
important argument on behalf of Riemannian geometry as the
mathematical basis of General Relativity.

The metric coefficients are of course the cosines of the
angles between the basis vectors in the locally flat tangent
space. This is because ds2 is the scalar product of dxα with
itself. The dimension of the flat tangent space and the cor-
relation between the imaginary and real basis vectors are the
same as in the corresponding Riemannian space. A system of
basis vectors eα can be introduced at any point of the locally
tangent space. The eα are tangent to the coordinate lines xα.
The fundamental metric tensor can be expressed through the
basis vectors eα as [2]:

gαβ = eαeβ cos
(
x̂α, xβ

)
, (2)

where eα is the length of the eα. Assume here the temporal
basis vector e0 to be real, while, correspondingly, the basis
spatial vectors ei (i = 1, 2, 3) are imaginary.

We recall that the interval ds2 can be positive, negative, or
null. The value ds is used as the parameter along trajectories
of particles (world-lines of particles). These lines can be: 1)
real by ds2 > 0, 2) imaginary by ds2 < 0, 3) zero by ds2 = 0.
The value ds is used as the global parameter along world-
lines. Real mass-bearing particles (the rest-mass m0 , 0,
the relativistic mass m = m0√

1−V2/c2
is real) move along the

non-isotropic lines (ds , 0) at sub-luminal velocities V <
c; imaginary mass-bearing particles or hypothetical tachyons
(the rest-mass m0 , 0, the relativistic mass m = im0√

1−V2/c2
is

imaginary) move along non-isotropic lines (ds , 0) at super-
luminal velocities V > c; massless particles (the rest-mass
m0 = 0, the relativistic mass m , 0) move along isotropic
lines (ds = 0) at light velocity V = c. Thus, for example,
photons are actual light-like particles.

The description of the world is to be linked with the real
reference frame of a real observer who actually defines both
geometrical and mechanical properties of the space of refer-
ence he inhabits. The reference frame is a reference body
where coordinate nets are spanned and clocks are installed at
the every point of the reference’s body. The profound prob-
lem of the introduction of physically observable quantities in
the whole inhomogeneous, anisotropic curved space of Gen-
eral Relativity is to determine which components of the ev-
ery four-dimensional quantity are the physically observable
quantities. This problem was solved decisively and compre-
hensively by A. Zelmanov [2]. He introduced chronomet-
ric invariants (chr.-inv.) as physically observable geometric

quantities in General Relativity. These fundamental quanti-
ties are linked to the reference body which can, in general,
gravitate, rotate, and deform. The three-dimensional observ-
able space (the reference space) can be both curved and flat.
The reference body is considered as a set of real coordinate
systems, to which the observer compares all results of his
measurements. Therefore the physically observable quanti-
ties are constructed as the result of fundamentally (in a uni-
fied, simultaneous geometrical-mechanical fashion) project-
ing four-dimensional quantities on the lines of time and on
the three-dimensional space.

The chr.-inv. form of the four-dimensional interval ds2

is [2]

ds2 = c2dτ2 − dσ2, dτ =
(
1 − w

c2

)
dt − vidxi

c2 ,

dσ2 = hikdxidxk, hik = −gik +
vivk

c2 , i, k = 1, 2, 3,
(3)

where dτ is the interval of the observable time, dσ2 is the
observable spatial interval, w = c2(1 − √g00) is the three-
dimensional gravitational potential, vi = − cg0i√

g00
is the linear

velocity of the space rotation, hik is the three-dimensional
fundamental metric tensor. The expression (3) may be rewrit-
ten in the form

ds2 = c2dτ2
(
1 − V2

c2

)
, V i =

dxi

dτ
, V2 = hikV iVk, (4)

where V i is the observable three-dimensional velocity.
It follows from (4) that ds is: 1) real if V < c, 2) imaginary

if V > c, 3) zero if V = c. The condition ds = 0 has the form

cdτ = ±dσ, (5)

which is of course the equation of the elementary light cone.
The term elementary means that this cone can be introduced
only at every point of the space-time, but not into the whole
space. The elements of the cone are trajectories of massless
particles moving along null geodesic lines.

As follows from (4, 5), photons are at rest within the
space-time (ds = 0) itself, but they move at light velocity
(V = c) along three-dimensional trajectories (cdτ = dσ)
within the three-dimensional observable space. The light
cone is known as the “light barrier” which “prohibits” mo-
tions at super-luminal velocities. Really, this restriction
means that mass-bearing particles, both real ones and
tachyons, cannot move at light velocity. The zero-particles
penetrating the light cone are considered in detail in [3].
These particles are essentially thinner structures than light,
because their relativistic masses m are zeroes. Zero-particles
possess non-zero gravitational-rotational masses
M = m

1−(w+viui)/c2 , where ui = dxi

dt . Zero-particles transfer
instantly (dτ = 0) along three-dimensional null trajectories
(dσ = 0). The light cone is therefore transparent for zero-
particles and non-transparent for mass-bearing real particles
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and tachyons. As such, we may call it a “membrane”. Thus
the apparatus of General Relativity allows the existence of
long-range action as truly instantaneous-transfer zero-
particles. Moreover, this fundamental transfer unifies the
worlds of both real particles and tachyons. As for the other
new aspects of General Relativity, we shall introduce them in
the next sections.

2 The past and the future as the mirror reflections each
other

Most contemporary scientists presuppose that time flows only
in a single direction — from the past to the future. The math-
ematical apparatus of General Relativity does not prohibit the
reverse flow of time, i.e. from the future to the past. Neverthe-
less, the reverse flow of time is not introduced in contempo-
rary physics and cosmology, partly because modern scientists
refer to Hans Reichenbach’s “arrow of time”, which is di-
rected always to the future. However, upon further analysis,
Reichenbach, speaking about a unidirectional flow of time,
implied a rather limited world-process of evolution (transfer
mechanism of energy). He wrote: “Super-time has not a di-
rection, but only an order. Super-time itself, however, con-
tains local sections, each of whom has a direction, while the
directions change from one section to another” [4]. Contem-
porary scientists consider the light cone of Minkowski space
as a mathematical illustration of the time arrow: the lower
half of the cone means the past, while the upper half — the fu-
ture. The past automatically turns into the future at the point
t = 0, meaning the present. But such an automatic transfer
is due to the fact that the Minkowski space of Special Rel-
ativity is de facto empty. Besides, it does not at all include
both gravitation and rotation (in addition to deformation and
the whole curvature), therefore the ideal, uniformly flowing
time of Special Relativity does not (and can not) depend on
gravitation and rotation. In other words, this transfer does not
require fundamental transformations of matter. In fact, in this
picture, photons flow continuously from the lower half of the
cone to the upper one. However the “real space” perceived
by us as the “present” is ultimately penetrated by gravitation.
Besides, the objects of the said space, ranging from electrons
to galaxies and their clusters, do rotate around their centers of
gravitational attraction. The problem is therefore to describe,
in the framework of General Relativity, the fundamental in-
teraction between the future and the past as a proper ener-
getic transfer through the present state. Such description of
the future-past transfer is a more exact approximation, than
in the self-limited Minkowski space, because the observable
time τ essentially depends on both gravitation and rotation:
see (3, 5). The expressions dτ = 0, dσ = 0 describe the
membrane, which is situated between the past and the future.
These expressions can be rewritten in the form [3]:

w + viui = c2, hikdxidxk = 0, ui =
dxi

dt
. (6)

As the metric form dσ2 is positively determined, the con-
dition dσ2 = 0 means that it is degenerated: h = det ||hik || = 0.
The determinants of the matrices g = det ||gαβ|| and h are
linked by the relation

√−g =
√
g00h [2], therefore the four-

dimensional matrix ||gαβ|| is degenerated: g = det ||gαβ|| = 0.
The condition of the membrane transition can be written in
the form [3]:

w + viui = c2, dµ2 = gikdxidxk =

(
1 − w

c2

)2
c2dt2, (7)

where the first expression characterizes the condition of the
stopped time, the second expression describes the geometry
of the hyper-surface, where events of the present are realized.

The conditions (7) describe the zero-space, where, from
a viewpoint of a real observer, zero-particles extend instantly
(dτ = 0) along three-dimensional null lines (dσ = 0) [3].
The instant transfer of zero-particles means the long-range-
action. We conclude that the future-past transfer is real-
ized instantaneously, i.e. it is the long-range-action. Note,
the coordinate length dµ =

(
1 − w

c2

)
cdt depends, in part, on

the gravitational potential w, wherein dµ = 0 by the collapse
condition: w = c2. Thus the metric on the hyper-surface
is, in general, not a Riemannian one, because its interval dµ
is not invariant (yet it is invariant by the collapse, as in this
case dµ2 = 0). The region of space-time, which is located
between the spaces of the past and the future, is percepti-
ble by a real observer as the present. It is the hyper-surface
where all events are realized at the same moment of observ-
able time τ0 = const, i. e. such events are synchronized. The
momentary interaction (the long-range-action) is transferred
by particles of a special kind — zero-particles. They pos-
sess zero rest-mass m0, zero relativistic mass m, and non-zero
gravitational-rotational mass M. This quantity is determined
in the generalized space-time where the condition g = 0 is sat-
isfied. The mass M in the generalized space has the form [3]

M =
mc2

c2 − (w + viui)
.

Thus the elements of the elementary curved light cone
(the so-called “light barrier”) are indeed penetrable for zero-
particles. As follows from (5), trajectories of photons belong
to both the space and time, because they extend along null
four-dimensional trajectories ds = 0. The three-dimensional
body of the real observer can thus move at pre-light veloc-
ity in the three-dimensional space, but it is always rigidly
attached to the moment of time, which is perceptible as the
present.

A brief philosophical digression: transfers both in the past
and in the future are possible, so far, only mentally. The typi-
cal human mind does remember the past (not always clearly)
and does predict the future (not always exactly). It is possible
to say that the past and the future are virtual, because only the
human consciousness moves in these virtual spaces, but the
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physical body is strictly in the present (“reality”). Studying
the past of the Earth and remembering our own past, we see a
recurrence of some events, both planetary and individual. We
know what happened with the Earth in the past due to mainly
the tales of our ancestors, if not historians. Events (three-
dimensional points, as well as threads extended in time) are
ordered in a determined sequence in time. Comparing simi-
lar events from different intervals of time, we can say that the
past and the future are similar, being mirror reflections of one
other. The object of the three-dimensional space and its mir-
ror reflection differ only by the notions of “left” and “right”
possessing the opposite sense for every one of them. The in-
tervals of both coordinate time and observable time are linked
by the formula [3]

dt
dτ
=

viV i

c2 ± 1
√
g00

. (8)

The expression (8) was studied in [3] by the condition√
g00 > 0. It means that we did not consider in [3] the reverse

of time while simultaneously taking into account the state of
collapse g00 = 0. As follows from (8), the coordinate time t:
1) is stopped (dt = 0) if viV i = ∓c2; 2) possesses direct flow
(dt > 0) if viV i > ∓c2; 3) possesses reverse flow (dt < 0) if
viV i < ∓c2. Thus the spaces with direct and the reverse flows
of coordinate time t are divided by a fundamental surface of
rotation, where the vectors vi and V i are linked by the relation,
see (2, 3):

viV i = ∓c2|vi||V i| cos
(
v̂i,V i

)
= ∓c2|ei||V i| cos

(
êiV i

)
,

where ei is the spatial basis vector in the tangent Minkowski
space. It is evident that this relation is realized for two cases:

1) the vectors vi and V i are co-directed, |vi| = |V i| = c;
2) the vectors vi and V i are anti-directed, |vi| = |V i| = c.
Since the vector vi means the linear velocity of space ro-

tation, we conclude that the very surface dividing the spaces
with direct and reverse flow of coordinate time rotates at light
velocity. The rotation is either left or right.

A real observer measures that the time τ coincides com-
pletely with the coordinate time t only in the case wherein the
reference space does not rotate (vi = 0) nor gravitate (w = 0):
see (3). If w , 0 or vi , 0, the τ, in contrast to t, depends
essentially on gravitation and rotation. Because we live in the
real world, where gravitation and rotation do exist, we will
further consider the observable time.

The observable Universe, which is a part of the Infinite
Whole, can belong to one of the aforementioned spaces (ei-
ther possessing positive or negative flow of coordinate time).
Let the flow of coordinate time in the region, where the ob-
server is situated, be positive: dt > 0. The observable time
is divided by the consciousness of a real observer into the
“past”, the “present” and the “future”: time flows from the
past to the future through the present. The problem stated in

the beginning of this paper is to study the future-past transfer
from the point of view of a real observer, who is located in
the world of positive flow of coordinate time dt > 0. This
problem is essentially simplified in the case where the refer-
ence space does not rotate. Then the expression (8) can be
rewritten in the form

dτ = ±√g00 dt = ±
(
1 − w

c2

)
dt. (9)

Taking into account the collapse condition
√
g00, we shall

study the direction of observable time flow in the gravitational
field. It follows from (9) that the observable time τ: 1) pos-
sesses positive direction if

√
g00 > 0, 2) possesses negative

direction if
√
g00 < 0, 3) stops if

√
g00 = 0. Because the

condition g00 = 0 is the collapse condition, the surface of the
collapsar is the mirror separating the spaces with both
positive and negative flow of the observable time. The ob-
servable time is perceptible by human consciousness as flow-
ing from the past to the future, therefore we call the space
of such direct flow of time the “space of the past”. Then the
space of reverse flow of observable time is necessarily the
“space of the future”. The present space is situated between
these spaces. The concrete spaces reflecting from the surface
of the collapsar, as from the mirror, will be studied in detail
in the next section.

3 The interaction between the Schwarzschild and de
Sitter bubbles as instantaneous transfer

All objects in the Universe consist of the same fluid sub-
stance being at different stages of cosmic evolution. Many
cosmic bodies (planets, stars, . . . ) are spheroids, namely spin-
ning, deforming spheres. Probably the physical body of the
Universe has the same form. The problem is to introduce
the space-time (gravitational field) created by a liquid incom-
pressible sphere. A similar model was introduced earlier by
the German astronomer Karl Schwarzschild [5]. He solved
the field equations (Einstein equations) for the sphere by the
assumption that the solution must be everywhere regular. In
other words, Schwarzschild ruled out the existence of sin-
gularities. Meanwhile the problem of singularities is very
actual for astrophysics and cosmology. The more general,
allowing singularities, solution of the Einstein equations for
the sphere filled by ideal incompressible liquid was obtained
in [6]. The substance filling the sphere is described by the
energy-impulse tensor

Tαβ =

(
ρ +

p
c2

)
bαbβ − p

c2 g
αβ, (10)

where ρ = const is the density of substance, p is the pres-
sure, bα = dxα

ds is the four-dimensional unit velocity vector:
gαβbαbβ = 1.

The solution allowing singulary states of the space-time
has the form [6]
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ds2 = 1
4

3
√

1 − κρa2

3
−

√
1 − κρr2

3

2

c2dt2

− dr2

1 − κρr2

3

− r2(dθ2 + sin2 θdφ2),
(11)

where κ = 8πG
c2 is the Einstein gravitational constant, G is the

Newton gravitational constant, a is its radius, r, θ, φ are the
spherical coordinates.

The gravitational field described by (11) has two singu-
larities [6]:

1) it collapses if

3

√
1 − κρa2

3
=

√
1 − κρr2

3
;

2) it breaks the space if

κρr2

3
= 1.

The radius of the collapsar rc and the radius of the break-
ing space rbr have the forms, respectively:

rc =

√
9a2 − 24

κρ
=

√
9a2 − 8rbr

2, (12)

where the breaking radius rbr =
√

3
κρ
= 4×1013

√
ρ

cm.
It follows from (12) that the incompressible liquid sphere

collapses if a >
√

8
9 rbr = 0.94 rbr. (Because by a =

√
8
9 rbr

the collapsing object transforms into the point rc = 0, we
do not consider this case non-sense in the physical mean-
ing). If ρ = 10−29 g/cm3 (the assumed value of the density
of matter in the observable Universe), then the sphere col-
lapses by a > 1.2×1028 cm and breaks the surrounding space
by a = 1.3 × 1028 cm. If the density of matter inside the
sphere is ρ = 1014 g/cm3 (as inside the atomic nucleus), then
a > 3.8 × 106 cm and rbr = 4 × 106 cm. The density of
matter inside a typical neutron star is regularly assumed to
be the same as the nuclear density, while its radius is about a
dozen kilometers. With these, larger-sized neutron stars may
be non-observable, because they are gravitational collapsars.
Estimate now the minimal value of the mass of the neutron
star by the assumption that it collapses. If a = 3.8 × 106 cm,
then the mass M = 4πa3ρ

3 = 23 × 1033 g = 11.5M⊙, where M⊙
is the mass of the Sun. Assuming ρ = 1 g/cm3 (the density of
hydrodynamical fluid), we find rbr = 4 × 1013 cm. It means,
such a fluid sphere collapses if its radius is a > 4 × 1013 cm.

A sphere of incompressible liquid with a constant volume
and a constant density, which is situated in the state of weight-
lessness, is a kind of condensed matter. The planets, rotating

around the Sun, as well as the stars, rotating around the cen-
ter of the Galaxy, are in the state of weightlessness [6]. As-
sume that stationary stars consist of condensed matter. For
example, consider the Sun as an actual sphere of condensed
matter. The density of the Sun is ρ⊙ = 1.4 g/cm3, and its
radius is a = 7 × 107 cm. We find rbr = 3.4 × 1013 cm. It
follows from (12) that the collapse of the Sun is impossible
in this state of matter, because rc has an imaginary value. It is
interesting to note that the surface of breaking of the Sun is at
the distance rbr=2.3 AU, where the Astronomical Unit (AU)
is the average distance between the the Sun and the Earth: 1
AU = 1.49×1013 cm. So we obtain that the surface of break-
ing (curvature discontinuity), created by the Sun, is actually
situated inside the asteroid strip region, very close to the orbit
of the maximal concentration of asteroids: 2.5 AU from the
Sun [6]. (As known, the asteroid strip’s distance from the Sun
is within the limit of 2.1 to 4.3 AU).

Let’s now study the simultaneous mechanical and geo-
metrical properties of the metric (11). As shown in [2], the
three-dimensional observable space (the reference space) is
characterized by the three mechanical characteristics and one
geometrical. The mechanical characteristics are: the vector
of the gravitational inertial force Fi, the tensor of the angular
velocity of rotation Aik, and the tensor of the rate of deforma-
tion Dik:

Fi =
c2

c2 − w

(
∂w
∂xi −

∂vi

∂t

)
, Dik =

1
2

∗∂hik

∂t
,

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂vk

)
+

1
c2 (Fivk − Fkvi),

where
∗∂
∂t =

1√
g00

∂
∂t is the chr.-inv. operator of differentiation

along the temporal coordinate.
We find that the reference space of the metric (11) does

not rotate (Aik = 0) and deform (Dik = 0), but it gravitates.
The gravitational inertial force Fi has the only non-zero com-
ponent [6]

F1 = −
κρc2

3
r(

3
√

1 − κρa2

3 −
√

1 − κρr2

3

) √
1 − κρr2

3

F1 < 0.

(13)

Thus the quantity Fi is the non-Newtonian force of attrac-
tion. Then F1 → ∞ both by the collapse and the breaking of
space [6].

The pressure of the ideal liquid p is determined from the
conservation law [6]. It has the form

p = ρc2

√
1 − κρr2

3
−

√
1 − κρa2

3

3

√
1 − κρa2

3
−

√
1 − κρr2

3

> 0. (14)

Larissa Borissova. A Telemetric Multispace Formulation of Riemannian Geometry 61



Volume 13 (2017) PROGRESS IN PHYSICS Issue 2 (April)

It follows from (14) that p→ ∞ by the collapse and p = − ρc2

3
at the surface of break.

The geometric characteristic of the reference space is the
chr.-inv. three-dimensional tensor of curvature Ci jkl [2] pos-
sessing all the algebraic properties of the Riemann-Christoffel
four-dimensional tensor of curvature Rαβγδ. The Ci jkl has the
form [2]:

Ci jkl =
1
4

(Hi jkl + Hl jki − H jilk + Hkil j), (15)

where Hi jkl is the chr.-inv. close analog of the Schouten tensor
in the theory of non-holonomic manifolds

H···li jk· =
∗∂∆l

ik

∂x j −
∗∂∆l

i j

∂xk + ∆
m
ik∆

l
jm − ∆m

i j∆
l
km, (16)

where

∆k
i j = hkm∆i j,m, ∆i j,m =

1
2

( ∗∂him

∂x j +
∗∂h jm

∂xi −
∗∂hi j

∂xm

)
(17)

are the chr.-inv. Christoffel symbols of the second and first
kind, respectively,

∗∂
∂xi =

∂
∂xi +

vi
c2

∗∂
∂t is the chr.-inv.operator of

differentiation along spatial coordinates [2].
The tensors Hi jkl and Cikl j are linked by the relation [2]

Hi jkl = Ci jkl +
1
c2

(
2A jkDli + AikD jl + Al jDik

+AilD jk + Al jDki

)
.

(18)

It is evident, therefore, that Clki j = Hlki j if Aik = 0 or
Dik = 0. Calculating the Christoffel symbols of the second
kind, we obtain for the non-zero components:

∆1
11 =

κρr
3

1

1 − κρr2

3

,

∆1
22 =

∆1
33

sin2 θ
= −r

(
1 − κρr2

3

)
,

∆2
12 = ∆

3
13 =

1
r
, ∆2

33 = − sin θ cos θ,

∆3
23 = cot θ.

(19)

Substituting (19) into (16) and lowering the upper indices,
we find the non-zero components Cikl j for the space-time de-
scribed by the metric (11)

C1212 =
C1313

sin2 θ
=
κρr2

3
1

1 − κρr2

3

,

C2323 =
κρr4

3
sin2 θ.

(20)

The components Cik = hmnCimkn and the three-dimen-
sional scalar C = hikCik have the form [7]

C11 =
2κρ

3
1

1 − κρr2

3

, C22 =
C33

sin2 θ
=

2κρr2

3
,

C = 2κρ > 0.

(21)

The three-dimensional reference space satisfies the con-
dition

Ci jkl = q(hikh jl − h jkhil), q =
κρ

3
= const, (22)

therefore it is the space of constant positive curvature, where
q is the Gaussian curvature of the three-dimensional reference
space. It follows from (12) that the radius of curvature is 1

q =

rbr =
√

3
κρ

. It is necessary to note that the Gaussian curvature
and, consequently, the radius of space breaking depend on the
density of incompressible liquid.

Thus we have found that the three-dimensional reference
space of the space-time (11) is the space of constant positive
curvature. Study now the geometric properties of the four-
dimensional space (11). As is well-known, the geometric
properties of every curved (Riemannian) space are described
by the Riemann tensor

Rαβγδ =
1
2

(∂βγgαδ + ∂αδgβγ − ∂αγgβδ − ∂βδgαγ)+

+gστ(Γαδ,σΓβγ,τ − Γβδ,σΓαγ,τ),
(23)

where Γαβ, σ are the Christoffel symbols of the first kind

Γαβ, σ =
1
2

(∂αgβσ + ∂βgασ − ∂σgαβ). (24)

Calculating the values Γαβ,σ for the metric (11) we obtain

Γ01, 0 = −Γ00, 1 =
κρr
12

3

√
1 − κρa2

3
−

√
1 − κρr2

3√
1 − κρr2

3

,

Γ11, 1 = −
κρr
3

1(
1 − κρr2

3

)2 ,

Γ22, 1 = −Γ12, 2 = r,
Γ33, 1 = −Γ13, 3 = r sin2 θ,
Γ33, 2 = −Γ23, 3 = r2 sin θ cos θ.

(25)

Calculating the components of Riemann tensor (23) for
the metric (11) we find

R0101 = −
1

4r2
br

3

√
1 − a2

r2
br

−
√

1 − r2

r2
br√

1 − r2

r2
br

,

R0202 = −
r2

4r2
br

3
√

1 − a2

r2
br

−
√

1 − r2

r2
br


√

1 − r2

r2
br

,

R1212 = −
r2

r2
br

1

1 − r2

r2
br

, R2323 = −
r4

r2
br

sin2 θ,

R0303 = R0202 sin2 θ, R1313 = R1212 sin2 θ,

(26)
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where r2
br =

1
q =

3
κρ

.
The space-time is therefore not a constant-curvature

space, because the components R0i0k of the Riemann tensor
do not satisfy the condition

Rαβγδ = K(gαγgβδ − gβγgαδ), K = const, (27)

which is a necessary and sufficient condition that the space-
time possesses constant curvature. Note that the spatial com-
ponents Ri jkl satisfy (27), while the mixed components Roi jk

are zeroes. It means, due the structure of the components
R0i0k, the space-time (11) does not possess constant curva-
ture.

So forth, study the geometric properties of the space-time
(11) in terms of Zelmanov’s theory of physically observable
quantities. Zelmanov selected three groups of all independent
curvature components Rαβγδ — the projections on time, the
projections on space, and the mixed projections [2]:

Xik = −c2 R·i·k0·0·
g00

, Y i jk = c
R·i jk

0···√
g00

, Zikl j = c2Rikl j.

Here we have only interest in the components Xik. Calcu-
lating these components, we obtain

X11 =
c2

r2
br

13
√

1 − a2

r2
br

−
√

1 − r2

r2
br


√

1 − r2

r2
br

> 0,

X22 =
X33

sin2 θ
=

c2r2

r2
br

√
1 − r2

r2
br

3

√
1 − a2

r2
br

−
√

1 − r2

r2
br

> 0.

(28)

All components Xik → ∞ in the state of collapse. Besides,
if the breaking of space takes place, the X11 → ∞ and X22 =

X33 are zeroes. Comparing (13) and (28), we find that the
gravitational inertial force F1 and the radial projection of the
Riemann tensor on time X11 are linked by the relation

F1 = −rX11. (29)

It means that the sign of the r-directed force is opposite to
the sign of the temporal projection of the Riemannian tensor
(the “curvature of the time”) in this direction: the negative
non-Newtonian force of attraction is due to the positive
curvature of time.

The partial case of the collapse of the incompressible liq-
uid sphere rc = rbr = a is studied in detail in [7]. As follows
from (12), in this case the surface of the sphere is simulta-
neously both the surface of the collapsar and the surface of
the breaking of the space. Remember that a = 1√

q is also the
radius of curvature of the sphere of condensed matter, where

q is the Gaussian curvature of the reference space. Assuming

a = rbr =
√

3
κρ

and substituting this expression in (11), we
obtain the de Sitter metric

ds2 =
1
4

(
1 − r2

a2

)
c2dt2 − dr2

1 − r2

a2

− r2(dθ2 + sin2 θdφ2). (30)

The space-time described by the metric (30) satisfies the
Einstein equations

Rαβ −
1
2
gαβR = λgαβ, (31)

where the cosmological constant λ = 3
a2 .

The term λgαβ can be expressed in the form [7]

λgαβ = κT̃αβ. (32)

Thus the λ-field generating the de Sitter space (30) is
equivalent to the substance described by the energy-impulse
tensor

T̃αβ =
λ

κ
gαβ. (33)

Calculating the physically observable components of the
energy-impulse tensor (33) [2], we find

ρ0 =
T̃00

g00
=
λ

κ
, Ji

0 =
cT̃ i

0√
g00
= 0,

U ik
0 = c2T̃ ik = −λc2

κ
,

(34)

where ρ0, Ji
0 and U ik

0 are the chr.-inv. density of matter, the
(vector) density of impulse, and the tensor of stress, respec-
tively.

As seen, the expression (10) transforms into (33) if the
condition is

p = −ρ0c2 = −λc2

κ
, (35)

i.e. it describes matter in the state of inflation.
Thus the energy-impulse tensor (33) describes substance

with positive constant density ρ0 =
λ
κ

and negative constant
pressure p0 = −ρ0c2. The flow of energy is given as q0 =

J0c2 = 0. This substance is called physical vacuum. We
conclude that the collapsing sphere of ideal incompressible
liquid transforms into a de Sitter vacuum bubble by the spe-
cial case of collapse, when the radius of the sphere a equals
the breaking radius rbr

a = rbr =

√
3
κρ
= rc, (36)

where the radius of the collapsar rc coincides with the radius
of the sphere and the breaking radius.
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The physical vacuum is an actual substance, possessing
positive density and negative pressure. Because the bubble
is stationary, the negative pressure, which inflates the bubble,
must be balanced by attraction, thereby compressing it. To
solve the problem of stability of inflation collapsar, it is nec-
essary to find this compressing factor. Study the physical and
geometrical characteristics of the de Sitter bubble and com-
pare them with the corresponding characteristics of the liquid
bubble. This comparison allows us to consider the process of
transformation of the gravitational collapsar (“black hole”)
into the inflational collapsar (“white hole”).

The physical and geometrical properties of the de Sitter
bubble, described by the metric (30), are studied in detail in
[7]. The local reference space does not rotate and deform.
The gravitational inertial force has the form

F1 =
c2r

a2 − r2 > 0, F1 =
c2r
a2 > 0, (37)

i.e. is the force of repulsion. As seen, the formula (13) trans-
forms into (37) by the condition (36). Thus the gravitational
inertial force of attraction (13), acting inside the liquid bub-
ble, transforms into a force of repulsion, acting inside the vac-
uum bubble. Using the collapse condition (36), rewrite (37)
in the form

F1 =
κρ0c2r

3
= −κpr

3
> 0. (38)

It is easy to see that both the positive density and the
negative pressure both inflate the vacuum bubble. As
known, the generally accepted viewpoint consists in that the
stability of the de Sitter vacuum bubble is due to the action
of two opposite factors: 1) compression due to the positive
density; 2) inflation due to the negative pressure. As follows
from (38), the positive density and negative pressure effects
are identical, consequently it is necessary to find the factor,
which causes the compression of the bubble.

Studying the physical and geometrical characteristics of
the Schwarzschild liquid bubble, we have found that the force
of attraction (13) is balanced by the value −rX11, which pos-
sesses the dimension of acceleration: see (29). The quantity
X11 > 0 is the observable projection of the Riemann tensor
component R0101 on time — the “curvature of time in the ra-
dial direction”. Thus the non-Newtonian force of attraction,
which is proportional to the radial distance r, is balanced by
the action of the “positive curvature of the time” (the term
rX11).

Consider the problem of the stability of the vacuum bub-
ble. Calculating the Riemann tensor (23) for the metric (30),
we find

R0101 =
1

4a2 , R0202 =
R0303

sin2 θ
=

r2(a2 − r2)
4a4 ,

R1212 =
R1313

sin2 θ
= − r2

a2 − r2 , R2323 = −
r4 sin2 θ

a2 .

(39)

It is easy to see that the components (26) transform into
(39) by the condition a = rbr. The components (39) satisfy
the condition (27), where the four-dimensional constant cur-
vature is negative: K = − 1

a2 .
The quantities Ci jkl, Cik and C (20–21) of the reference

space (30) then take the form

C1212 =
C1313

sin2 θ
=

r2

a2 − r2 , C2323 =
r4 sin2 θ

a2 ,

C11 =
2

a2 − r2 , C22 =
C33

sin2 θ
=

2r2

a2 ,

C =
6
a2 > 0.

(40)

The components Ci jkl (40) satisfy the condition (22),
where the three-dimensional Gaussian curvature is q = 1

a2 ,
consequently the reference space of the vacuum bubble is a
three-dimensional sphere of the real radius a = 1√

q . We have
shown above that the de Sitter space (30) possesses negative
four-dimensional Gaussian curvature K = − 1

a2 = −q, con-
sequently it is a four-dimensional sphere with the imaginary
radius R = iq.

Comparing the obtained results with the analogical ones
for the liquid sphere (11), we find that both reference spaces
possess positive constant curvature, but the four-dimensional
de Sitter space possesses constant negative curvature. Calcu-
lating the physically observable components of the Riemann-
Christoffel tensor Xik (28) for the de Sitter vacuum bubble,
we find

X11 = −
c2

a2 − r2 < 0, X22 =
X33

sin2 θ
= −c2r2

a2 < 0. (41)

We conclude therefore that the sign of curvature of the
de Sitter vacuum bubble coincides with the signs of the Rαβγδ

projections onto time (the “negative curvature of time”).
Comparing the component X11 (41) with the expression of

the gravitational inertial force (37), we find that these quanti-
ties satisfy the condition (29), i.e. the signs of the F1 and X11
are opposite. We conclude that the non-Newtonian force of
attraction inside the liquid sphere (11) is due to the pos-
itive curvature of time, the force of repulsion inside the
vacuum bubble (30) is due to the negative curvature of
time.

These results are connected with the geometric structure
of the physically observable curvature components Xik. Gen-
erally speaking, they depend on the deformation, rotation, and
gravitation of the reference space [2]. If locally the space does
not deform and rotate, the components Xik take the form

Xik =
1
2

(∗∇iFk +
∗ ∇kFi) −

1
c2 FiFk, (42)

where ∗∇i is the chr.-inv. operator of covariant differentiation
[2].
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We have thus shown that the collapsing liquid bubble (11)
transforms instantly into the vacuum bubble (30) by the spe-
cial case of collapse: a = rbr. The surface r = a in this case is
simultaneously: 1) the breaking surface; 2) the surface of the
inflation collapsar.

Calculating the elementary observable interval of time for
the metrics (11) and (30), we find, respectively:

1) the Schwarzschild liquid bubble

dτl = ±
1
2

3
√

1 − κρa2

3
−

√
1 − κρr2

3

 dt; (43)

2) the de Sitter vacuum bubble

dτv = ±
1
2


√

1 − r2

a2

 dt. (44)

Assuming in (43) a =
√

3
κρ
= rbr, we obtain

dτl = ∓
1
2


√

1 − r2

a2

 dt. (45)

We have obtained as a result that the observable time τ
inside these bubbles flows in the opposite direction. We con-
sider usually the observable time as flowing in the positive
direction — from the past to the future. In order to determine
one of the two signs in the formulaes (43–44), it is neces-
sary to ask, which of the two bubbles is more applicable as
the model of the observed Universe: the Schwarzschild liq-
uid bubble or the de Sitter vacuum bubble? This question
will be studied in detail in the next section.

4 The de Sitter bubble as a proposed cosmological model

Consider the Schwarzschild and de Sitter bubbles as the two
possible cosmological models. The choice of such a model
must be in accordance with astronomical data. The most im-
portant criterion for the choice is the observed red-shift. In
other words, the model, which allows the red-shift, can be
chosen as the cosmological model. The effect of the spectral
line displacement is calculated exactly for every gravitational
field configuration.

As known, the world-lines of light-like particles (null
geodesic lines) are described by the equations of the parallel
transfer of the isotropic (null) four-dimensional wave vector
Kα

dKα

dσ
+ ΓαµνK

µ dxα

dσ
= 0, Kα =

ω

c
dxα

dσ
= 0,

KαKα = 0,

(46)

whereω is the cyclic frequency, Γαµν is the Christoffel symbols
of the second kind, σ is the parameter of differentiation, dxα

dσ is
the isotropic (null) vector of the 4-velocity, which is tangent
to the world-lines (gαβ dxα

dσ
dxβ
dσ = 0).

These equations have the form in terms of the physically
observable quantities (viz. the theory of chronometric invari-
ants) [9]

1
ω

dω
dτ
+

1
c2 Dik

dxi

dτ
dxk

dτ
− 1

c2 Fi
dxi

dτ
= 0, (47)

d
dτ

(
ω

dxi

dτ

)
+ 2ω

(
Di

k+A·ik·
) dxk

dτ
−

−ωF i + ω∆i
nk

dxn

dτ
dxk

dτ
= 0 ,

(48)

hik
dxi

dτ
dxk

dτ
= c2. (49)

The system of equations (47–49) is the chr.-inv. form of
the parallel transfer equations of the four-dimensional wave
vector Kα = ω

c
dxα
dσ , where the equations (47–48) are linked

by the relation (49). Solving the system for every metric,
we find the frequency of the photon and the associted spatial
trajectory in the given space-time.

If the reference space does not rotate and deform, the
equations (47–48) take the form

1
ω

dω
dτ
− 1

c2 Fi
dxi

dτ
= 0, (50)

1
ω

d
dτ

(
ω

dxi

dτ

)
− F i + ∆i

nk
dxn

dτ
dxk

dτ
= 0. (51)

Substituting into (50) the expressions for gravitational in-
ertial force F1 (13) and (40), we obtain the equations describ-
ing the behaviour of the cyclic frequency inside both the con-
densed matter and physical vacuum bubbles, respectively:

1) the Schwarzschild bubble

1
ω

dω
dτ
=

−κρc2

3
r3

√
1−κρa2

3
−

√
1−κρr2

3


√

1−κρr2

3

dr
dτ

;
(52)

2) the de Sitter bubble

1
ω

dω
dτ
=

r
a2 − r2

dr
dτ
. (53)

Integrating (52–53), we obtain, respectively:
1) the Schwarzschild bubble

ω =
P

3

√
1 − κρa2

3
−

√
1 − κρr2

3

, P = const; (54)

2) the de Sitter bubble

ω =
Q√

1 − r2

a2

, Q = const, (55)
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where P and Q are integration constants.
Cosmologists have introduced the quantity z — the rela-

tive variation of the frequency

z =
ωem − ωobs

ωobs
, (56)

where ωem is the frequency, emitted by the source, located at
the radial distance rem relative to the observer, ωobs is the ob-
servable (observed, registered) frequency of this source at the
place, where the observer is located: robs. The condition z < 0
means that the observable frequency is more than the emitted,
consequently the observable light seems shifted more towards
the blue than the emitted one (the phenomenon of blue-shift).
The condition z > 0 implies a red-shift, because in this case
the observable frequency is less than the emitted one.

Calculating the value z for the expressions (54–55), we
obtain

1) the Schwarzschild bubble

z =

√
1 − κρr2

em

3
−

√
1 −
κρr2

obs

3

3

√
1 − κρa2

3
−

√
1 − κρr2

em

3

< 0; (57)

2) the de Sitter bubble

z =

√
a2 − r2

obs −
√

a2 − r2
em√

a2 − r2
em

> 0. (58)

It follows from (58) that the red-shift takes place inside
the de Sitter bubble, therefore namely this space-time can be
considered as a cosmological model.

Let us study more exactly the behavior of the frequency of
photons emitted by distant sources. Assume that the photons
from the source move to the observer in the radial r-direction.
Then (49) takes the form

a2

a2 − r2

(
dr
dτ

)2

= c2. (59)

Taking the root of (59), we obtain

dr
√

a2 − r2
= ± c

a
dτ = ±Hdτ, (60)

where H is the Hubble constant. Assuming H = 75 Mps/sec
= 2.3 × 10−18sec−1, we find a = 1.3 × 1028 cm.

Choose the sign + or −, respectively, if the distance be-
tween the observer and the source is taken into account: 1)
from the observer to the source; 2) from the source to the ob-
server. Integrating (60) from r (the distance from the source)
until r = 0 (the location of the observer), we find∫ 0

r

dr
√

a2 − r2
= − arcsin

r
a
= −Hτ, (61)

where τ is the observable time, in the course that the signal
from the source comes to the observer. It follows from (61)
the expression for r:

r = a sin Hτ, (62)

i.e. the photometric distance is harmonic (sinusoidal) oscil-
lation with the amplitude a and the period T = 2π

H . The am-
plitude a is the maximal distance from any observer — the
so called “event horizon”. It is easy to find that the three-
dimensional observable vector of the light velocity c1 = dr

dτ
has the form

c1 =
dr
dτ
= aH cos Hτ = c cos Hτ, (63)

where

h11c1c1 =
a2

a2 − r2

(
dr
dτ

)2

= c2.

This formula means that the radial component of the vec-
tor of the light velocity oscillates with a frequency H and an
amplitude c. This oscillation is shifted for π

2 with respect to
the oscillation of the radial distance r (62).

Substituting (63) into (55), we obtain

ω =
Q

cos Hτ
, 0 ≦ τ ≦

π

2H
. (64)

As seen, ω → ∞ if τ → π
2H , i.e. by r → a. It follows

from (58) that the value of z increases infinitely by r → a.
This effect takes place from the viewpoint of the real observer,
because the observable time depends on the photometric dis-
tance r from the event horizon:

dτ =
1
2


√

1 − r2

a2

 dt. (65)

Thus the tempo of the observable time decreases by r →
a, and the observable time is stopped at the event horizon.
Therefore the observable cyclic frequency of photons in-
creases infinitely by r → a.

It was shown above, the coordinate (photometric) dis-
tance r is the sinusoidal (harmonic) oscillation (wave) with
the amplitude a and the cyclic frequency H = 2π

T . The quan-
tity T = 2π

H is the full period of the oscillation, the max-
imal value a (amplitude) is the event horizon. Taking into
account only the positive values of r, we are restricted only
to the semi-period of the oscillation. The maximal value of
r = a takes place at τ = π

2H =
T
4 . Introducing the used-

in-contemporary cosmology value H = 2.3 × 10−18sec−1, we
find Ta =

π
2H = 21.6 × 109 years — the time of passing of

the light signal from the event horizon to the observer. Con-
temporary cosmologists calculate the time of the life of the
Universe as the interval of time after the Big Bang. They
obtained the age of the Universe approximately 13.75 × 109
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years. If we’ll introduce H as the ordinary (not the cyclic)
frequency H = Hc

2π =
1
T , we find T = 13.74 × 109 years.

As is well known, the mathematical basis of contempo-
rary relativistic cosmology is the theory of a non-stationary
(extending) universe. It is founded on Friedman’s cosmolog-
ical models, which belong to a particular class of solutions to
Einstein’s field equation, obtained by the imposing condition
that the space of the observable Universe is homogeneous and
isotropic. This class of solutions is described by the metric

ds2 = c2dt2−R2(t)
dx2 + dy2 + dz2[

1 + k
4 (x2 + y2 + z2)

]2 , k = 0, ±1, (66)

where R(t) is the scale factor: 1
R

dR
dt = H. In accordance with

the value k of the three-dimensional space: 1) is flat (k = 0);
2) has negative curvature (k = −1); 3) has positive curvature
(k = +1). Models with k = 0, −1 are called open, and models
with k = +1 are closed ones. Friedman’s spaces are both
empty (Tαβ = 0) and filled by ideal liquid described by (10).

The special reference space (68) does not rotate and grav-
itate, but it does deform. The tensor of the rate of deformation
is described by the formula Dik = R dR

dt . The observable time
flows uniformly: dτ = dt, in particular, it does not depend on
the photometric distance r in contrast to the interval of the ob-
servable time in the de Sitter bubble. Friedman’s models are:
1) extending; 2) compressing; 3) oscillating; 4) stationary [2].
The cosmological term λ can be: 1) positive, 2) negative, 3)
zero. Cosmologists explain the observable red-shift by the
Doppler effect which is due to the expansion of the space
of the Universe. The generally accepted model of the non-
stationary (extending) Universe is the Standard Cosmological
Model. The age of the Universe is determined by means of
extrapolation of the uniformly flowing time from the present
to the past — the beginning of the Universe caused by the
Big Bang. The age of the observable Universe, according to
Friedman’s theory, is determined approximately as 13 × 109

years — the interval of the time from the Big Bang of the ini-
tial singularity (the “point” consisting of super-compact ini-
tial substance).

Now we come to the essential question: What cosmologi-
cal model is more applicable for the description of the observ-
able Universe: the stationary de Sitter space or the extending
Friedman’s space? The criterium of the choice must be the
results of astronomical observations. It follows from the ob-
servations of spectra of galaxies that the observable red-shift
is linear for more near galaxies and it rapidly increases for the
most distant objects. Most cosmologists explain this result as
the accelerated expansion of space, while routinely avoiding
some principal weaknesses. The correct theoretical explana-
tion of this fact has not been obtained until now. Moreover,
contemporary cosmologists do not calculate variations of fre-
quencies as exact solutions to the general relativistic equation
of motion of null geodesic lines. The observable phenom-
ena of the red-shift is explained by the temporal variations

of the scale factor R(t). It is necessary to note that the ex-
act solution(s) to the equations (47–49) can be found only for
concrete metrics. In particular, the expression of the cyclic
frequency ω for Friedman’s metric can be obtained only if the
exact expression for R(t) is known and the value of k is cho-
sen. In other words, in order to study variations of frequen-
cies of cosmic objects, it is necessary before hand to assign
the function R(t), which determines the kind of deformation,
and the value of k, which determines the geometry of the ref-
erence space.

The exact value of the frequency (55) is obtained here as
the solution to equation of motion of null geodesic lines (47–
49). It follows from (55, 59) that the observable frequency ω
and the quantity z increase infinitely while approaching the
event horizon. If r ≪ a, the quantity z can be transformed as

z ≈
r2

em − r2
obs

2a2 . (67)

It means that the red-shift in the spectra of near-to-the
observer objects (r ≪ a) is subject to the parabolic law. In
other words, the linear red-shift cannot be explained in the
de Sitter space. The gravitational inertial force of repulsion
inside the de Sitter bubble causes the parabolic red-shift for
near sources and the infinite increase at the maximal distance
from the observer — the event horizon. Thus the red-shift
in the de Sitter bubble is due to the non-Newtonian force of
repulsion, which is proportional to the radial (photometric)
distance r.

We conclude: neither the Friedman expansion, which is
caused by the deformation of the reference space, nor the de
Sitter force of repulsion can explain simultaneously both the
linear red-shift for near sources and the sharp, non-linear in-
crease for most distant sources. Probably, this problem can
be solved in frames of a generalized metric which includes
both Friedman’s expansion and the de Sitter repulsion. It is
possible that the de Sitter space is applicable near the event
horizon (r ∽ a), while the Friedman extending space correctly
describes more near-to-the observer regions (r ≪ a).

5 The past, the present, and the future are three multi-
space aspects of the observable time

Now, let us consider in detail the collapse mechanism of the
liquid bubble into the vacuum bubble. We have obtained
above the key rôle in the very process the condition (36)
plays. If such a state is realized, then the interval of the
observable time interior to Schwarzschild’s liquid bubble dτl
transforms into the interval of the observable time inside de
Sitter’s vacuum bubble dτv; moreover, each of these intervals
possesses the opposite sign:

dτl = −dτv.

It means that the observable time inside the vacuum de
Sitter bubble flows in the opposite direction. We have as-
sumed in the previous section that once the de Sitter bubble is
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applicable as a cosmological model, the flow of the τ in this
space is positive: the observable time flows from the past to
the future. Then the observable time inside the Schwarzschild
liquid bubble flows from the future to the past, and its interval
has the form:

dτl = −
1
2

3
√

1 − a2

r2
br

−
√

1 − r2

r2
br

 dt < 0. (68)

If a = rbr, then (70) transforms into the expression

dτv =
1
2


√

1 − r2

a2

 dt > 0, (69)

which is the interval of the observable time inside the de Sitter
bubble.

Thus the surface a =
√

3
κρ
= rbr is the mirror dividing

two worlds — the space of the future and the space of the
past. It means, this surface is the space of the present. As
was shown above, the surface a is singular. It means, the
present is the instantaneous state between the future and the
past, where the future transforms into the past by means of
passing through the singulary state. The space of the future
is here the vacuum de Sitter liquid bubble, where the observ-
able time flows from the future to the present: that is, the
future “goes to us”. The future, after the passage through the
said singulary surface, becomes the past: the present “leaves
us”. Thus the singular surface is not only a mirror (a reflect-
ing surface). It is simultaneously a membrane: a telemet-
ric, multispace membrane connecting the worlds of the past
and the future. The future penetrates into the inflation collap-
sar namely through this “mirror-like membrane” — the inte-
rior layer between the past and the future. This situation can
be illustrated in terms of the well-known description of the
interaction between a light beam and some incident surface
(as the light beam falls upon the surface). This beam splits
into three beams: 1) the reflected; 2) the refracted; 3) the
absorbed. The light beam within the framework of General
Relativity is the trajectory of photons — the world-line of the
null four-dimensional length ds = 0, where here every indi-
vidual photon is said to be the event itself. The world-lines
with ds , 0 also consist of four-dimensional world-points.
It is possible to say therefore that the light beam of events,
falling onto the singular surface, splits into: 1) the reflected
light beam (returned into the space of the future); 2) the re-
fracted light beam (directed into the space of the past); 3) the
absorbed light beam, by the said singularity surface. The first
light beam describes those events, which cannot be realized
(materialized) in the present (for example, using analogy with
daily life, certain ideas or epochs which are far too advanced
for the time). The second light beam describes those events,
which could be realized in principle, but they can not actually
be realized (in part, these are not readily perceived by the bulk
human consciousness). Finally, those events in the likeness

of the absorbed light-beam represent the world of the present,
which is uniquely perceived by our consciousness (taking into
account varying internal degrees of consciousness) as “real-
ity”. The said non-realized (for a while) events can be called
virtual events.

An event in General Relativity is the four-dimensional
point of the space-time V4 — the three-dimensional point,
which is expanded into a “thread”. This thread is the four-
dimensional trajectory of the event — the world-line. These
lines can be: 1) non-null (trajectories of mass-bearing parti-
cles, both real and imaginary); 2) null (trajectories of light-
like particles; in particular, photons). Interlacing of these
threads creates the “material of the space”. Because we as-
sume here fundamental interactions between the past, the
present, and the future, we must introduce a “medium”, which
realizes these interactions. We will consider in this paper only
null world-lines, i.e. we will study events of the “life of pho-
tons”.

It is evident that those particles, which realize the transfer
of energies between the future into the past, must penetrate
the singularity surface. As known, regular photons cannot
pass through the singularity surface, but this surface is pen-
etrable for zero-particles, introduced in [3]. These particles
exist in the generalized space-time Ṽ4, which is determined as
an immediate generalization of the Riemannian space-time V4
of General Relativity (both at the differential-geometric man-
ifold and sub-manifold levels): Ṽ4 = V4 ∪ Z, where Z is the
zero-space. Zero-particles have zero rest-mass m0, zero rel-
ativistic mass m, and non-zero gravitational-rotational mass
M, which is described in the Ṽ4 as

M =
m

1 − w + viui

c2

, ui =
dxi

dt
. (70)

The four-dimensional metric of Ṽ4 satisfies the condition
g = det |gαβ| ⩽ 0, i.e. it allows the versatile degeneration of
the metric. The manifold Ṽ4 is the ordinary space-time V4 by
g < 0 and it is the zero-space Z by g = 0. Zero-particles
transfer instantaneously (dτ = 0), from the viewpoint of a
real observer, along three-dimensional lines of null observ-
able length (dσ = 0), i.e. they are mediums for the long-
range-action. Zero-particles can be considered as the more
tenuous and thinner structures than the photon. The condi-
tion (5) takes for zero-particles the form dσ = dτ = 0.

The four-dimensional null wave vector Kα of the Ṽ4 can
be expressed both in the corpuscular form and in the wave
form

Kα =
ω

c
dxα

dσ
, Kα =

∂ψ

∂xα
, (71)

where ψ is the phase of the wave (the eikonal).
The physically observable characteristics of Kα are [3]

K0√
g00
= ±ω =

∗∂ψ

∂t
, Ki =

ω

c2

dxi

dτ
= −hik

∗∂ψ

∂xk , (72)
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where
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
1
√
g00

∂

∂xi +
vi

c2

∗∂

∂t

are the chr.-inv. operators of differentiation along the tempo-
ral and spatial coordinates, respectively [2]. The signs (+) and
(−) are related to the spaces possessing the direct and reverse
flow of time, respectively.

The wave form of the condition KαKα = 0 is the well-
known eikonal equation

gαβ
∂ψ

∂xα
∂ψ

∂xβ
= 0. (73)

Expressing (73) in terms of physically observable values, we
obtain

1
c2

( ∗∂ψ
∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0. (74)

The cyclic frequency of zero-particles is ω = 0, con-
sequently the equation (74) takes the form of the standing
wave [3]

hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0, (75)

which can certainly be interpreted as a hologram, i.e., a stand-
ing wave of the extended space-time. Thus the present, in
the sense of geometric optics, is a holographic picture per-
ceived by our consciousness as the material (real) world.

We conclude therefore that zero-particles are the medi-
ums of the long-range-action in the space of the present
— the boundary between the spaces of the future and the
past. Zero-particles can be considered as a result of the funda-
mental interaction between the photons themselves, moving
in time in the two above-mentioned opposite directions and
possessing certain cyclic frequencies of the opposite signs.
In other words, the standing wave can be interpreted as a re-
sult of the summarization of the two waves ψ+ and ψ−, di-
rected from the past to the future and from the future to the
past, respectively. Let photons, moving in the space of the
past, possess positive frequencies ω+, and photons moving in
the space of the future, possess negative frequencies ω−, re-
spectively. The interaction between the ψ-waves, oppositely
oriented in time, generates information, which is transmitted
instantaneously by means of zero-particles. This informa-
tion creates a hologram (the unique “reality” of the present
moment), which exists during the infinitely small interval of
time as well as after it is substituted by the next hologram.
By analogy, the perception of the continuity (and solidity) of
the present is due to the fact that the successive frames of a
movie are substituted very quickly.

We do not consider here the whole unique process of the
chain of sequential materializations: zero-particles → pho-
tons → mass-bearing particles, because this problem is very
difficult and impractical to be considered in further detail. We
introduce here instead the problem of observation of cosmic

objects. Consider the information which comes to us from
stars and galaxies in the form of light beams. Because the
cosmic objects are distant from us, we register the photons
later than they were first emitted. It means, the observer, reg-
istering the electromagnetic radiation of the source, studies
the past state of this cosmic object. This state corresponds
to the moment of radiation of the electromagnetic signal. The
information about the present state of the object can be ob-
tained by means of registration of zero-particles, emitted by
the source at the moment of observation. But the observer
does not perceive it, because he does not use corresponding
intermediary instruments. Contemporary astronomers use in-
struments, which can register only different ranges of electro-
magnetic radiation transferring at the light velocity.

6 Newtonian and non-Newtonian forces in the Universe

We have studied until now only non-Newtonian forces:
1) the force of attraction (13), created by the homoge-

neous liquid sphere (11);
2) the force of repulsion (37), created by the vacuum bub-

ble (30);
3) the values of these forces are proportional to the radial

coordinate r;
4) both forces are connected to the observable compo-

nents of the Riemann tensor by the correlation (29).
The metrics (11) and (30) describe the gravitational fields

created by the continuous bodies (bubbles). It is necessary
to note that the force of attraction (13) transforms into the
force of repulsion (37) as a result of the collapse of the liq-
uid bubble, and both forces are non-Newtonian. The force of
attraction (13) is created by the liquid sphere, which was ini-
tially introduced by Schwarzschild for the description of the
Sun. On the other hand, the Sun as an attracting body is de-
scribed by the well-known Schwarzschild metric of a single
mass (mass-point) in emptiness (Rαβ = 0) [8]. This metric
has the form

ds2 =

(
1−

rg
r

)
c2dt2− dr2

1−
rg
r

−r2(dθ2+ sin2 θdφ2),

rg =
2GM

c2

(76)

where rg is the gravitational (Hilbert) radius and M is the
mass of the gravitating mass-point.

The space-time (76) collapses by the condition r = rg, and
the surface r = rg is called the Schwarzschild surface. Be-
sides this, the space experiences breakage by the same condi-
tion. Thus the mass-point stops the time and breaks the space
by r = rg = rbr.

The metric (76) is applied for the description of the grav-
itational field of the Sun and the motion of the planets of the
Solar System. It allows the post-Newtonian approximation,
consequently it must include Newtonian gravitation. Let us
study in detail the physical and geometrical characteristics
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of the gravitational field of the mass-point in order to com-
pare the obtained results with the analogous results for the
metric (11), which describes the continuous body — a liquid
sphere. This approach allows us to determine the problem of
the connection between the local geometry of space-time and
the character of attractive forces therein.

We have obtained for the metric (11) that the radial non-
Newtonian force of attraction (13) is linked to the radial pro-
jection of the “curvature of time” (28) by the correlation (29).
As follows from (29), the force of attraction is due to the
positive curvature of time. Let us study the connection be-
tween the observable components of the Riemann tensor and
the gravitational inertial force for the space-time (76).

The reference space described by (76) does not rotate and
deform, but it gravitates. Calculating the gravitational inertial
force Fi by the formula Fi =

c2

c2−w
∂w
∂xi , we obtain

F1 = −
c2rg
2r2

1

1 −
rg
r

, F1 = −
c2rg
2r2 . (77)

Substituting into the expression for F1 the value rg =
2GM

c2 , we rewrite (77) in the form

F1 = −
GM
r2

1

1 − 2GM
c2r

, F1 = −GM
r2 . (78)

We see that the component F1 is the ordinary Newtonian
force of attraction. Calculating the observable components of
the Riemann tensor X11 by the formula (42), we find

X11 = −
c2rg
r3

1

1 −
rg
r

< 0. (79)

It follows from (78–79) the relation between the force of
attraction and the “curvature of time” in the radial direction:

F1 =
r
2

X11. (80)

The signs of F1 and X11 coincide in contrast to the anal-
ogous relation (29), which is satisfied for both the de Sit-
ter and Schwarzschild bubbles. It means that the Newto-
nian force of attraction is due to the “negative curvature of
time”. The point is that the Non-Newtonian and Newtonian
gravitational forces of attraction are originated by different
sources. As shown earlier, the non-Newtonian force of attrac-
tion is connected to the continuous body (the liquid sphere).
The Newtonian force is connected usually to the mass, which
is concentrated inside a small volume, so called a “ mass-
point” [8]. Meanwhile, it is evident that continuous bodies
possess the said Newtonian force, because they attract bod-
ies with smaller masses. Therefore, it is necessary to state
correctly the criterium, which will determine what kind of

cosmic bodies must be described as “continuous bodies” and
what kind — as “mass-points”.

The gravitational field of the mass-point is described by
the Schwarzschild metric (76), which includes Newtonian
gravitation (as well as the post-Newtonian approximation).
The motion of cosmic bodies, which move around the attract-
ing center (mass-point), is usually studied in either the frame-
work of Newtonian gravitation or that of the post-Newtonian
theory of gravitation. In the second case, the motion of cos-
mic objects is calculated in the Schwarzschild mass-point
field by the condition rg ≪ r. This condition means that the
Hilbert radius is very small in comparison to the distance be-
tween the attracting center and the object moving around the
center. This approach is applicable both to the Sun and to the
planets, asteroids, etc. On the other hand, continuous bodies
also possess gravitational attraction. In part, the gravitational
inertial force of attraction in the reference space of the ho-
mogeneous liquid sphere is described by (13). The question
now arises: what are the conditions, by which the Newtonian
force of attraction is the partial case of the non-Newtonian
force (13)?

It follows from (77–78) that the gravitational inertial force
coincides with the Newtonian force of attraction if rg ≪ r.
Because the Newtonian theory of gravitation is constructed in
the flat three-dimensional (Eucledian) space, we can assume
that the homogeneous gravitating mass M has the form

M = ρV, V =
4πa3ρ

3
, (81)

where V is the volume of the mass, a is its radius, ρ = const
is the density of mass. This assumption is admissible also
for any homogeneous sphere. Using (81), we can rewrite the
expression (13) in the form

F1 = −
c2rg
a3

r3 √
1 −

rg
a
−

√
1 −

rgr2

a3


√

1 −
rgr2

a3

. (82)

Let rg ≪ r ≦ a. Expressing the value
√

1 − rgr2

a3 into se-
ries, neglecting the members of the second kind and assum-

ing
√

1 − rg
a ≈ 1 − rg

2a , we obtain, after transformations, the
expression for the F1 in the form

F1 ≈ −
c2rgr
2a3 = −

GMr
a3 . (83)

If r = a, then (83) transforms into the expression for the
Newtonian force of attraction, created by the sphere of radius
a

F1 = −
GM
a2 . (84)

The expression (84) coincides completely with (78) by
rg ≪ r = a. Thus the Newtonian gravitational force is the
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partial case of the non-Newtonian force of gravitation (82) by
the condition rg ≪ r = a. But this fact does not mean that
we must use the Newtonian theory of gravitation for the de-
scription of the gravitational field of the single body, whose
Hilbert radius is small in comparison with its radius. The
point is that the application of the relativistic mass-point met-
ric (76) allows us to calculate the well-known effects (e.g. the
perihelion motion of Mercury, the gravitational shift of light
beams, the gravitational shift of spectral lines). It is possible
that many other effects, unknown until now, will be explained
by means of this metric.

We have studied until now only the case rg ≪ r = a. This
condition corresponds to a single body, whose Hilbert radius
rg is negligible in comparison with its geometrical radius a.
Consider now the case rg ≪ r, where the radial coordinate

r can possess any values. Then the value κρr2

3 =
rgr2

a3 is not
infinitely small for r ≫ a. It follows from (11) that the condi-
tion κρr2

3 = 1 is the condition of space breaking, consequently

the quantity rbr =
√

3
κρ

is the breaking radius. Using the ex-
pressions for the rg and rbr, we can rewrite (13) in the form

F1 = −
2GM
c2a3

r3
√

1 − 2GM
c2a

−
√

1 − r2

r2
br


√

1 − r2

r2
br

. (85)

The formula (85) describes the gravitational inertial force
of the liquid sphere, whose Hilbert radius is small in compar-
ison with the radius of the sphere ( rg

a ≪ 1) and the sphere of
space breaking r = rbr is outside the liquid sphere (rbr > a).
It follows from (85) that the force F1 → ∞ by r → rbr. It
is evident that the force (85) is the non-Newtonian force of
attraction, manifesting a curvature dicontinuity in the envi-
ronment.

The condition of space breaking was initially studied in
[6]. The Sun was introduced as a liquid homogeneous sphere.
It was shown that the Sun would break the surrounding space,
with the breaking radius rbr = 3.43×1013 cm = 2.3 AU (1 AU
= 1.49×1013 cm), where 1 AU is the distance between the Sun
and the Earth. Thus the breaking (curvature discontinuity) of
the Sun’s space is located inside the asteroid strip, i.e. outside
the gravitating body (the Sun). The Hilbert radius of the Sun
is rg = 2.9 × 105 cm, the proper radius being a = 6.95 ×
1010 cm. It is easy to calculate rg

a = 4.2 × 10−6 ≪ 1, and
rbr
a = 4.9 × 102. It is possible that this non-Newtonian force

creates the additional effect on the motion of the bodies in the
Solar System. In partial, those bodies, which recede from the
Sun in the radial direction, must possess additional negative
(directed to the Sun) acceleration.

Analogous calculations were realized for all the planets
of the Solar System [6]. It is important to note that the break-
ing spheres of the Earth, Mars, and Jupiter intersect with the
asteroid strip near the hypothetical planet Phaeton, according
to the Titus-Bode law at r = 2.8 AU. It is possible that the

breaking of the Solar System space by the Sun and the men-
tioned planets plays an important rôle in the very formation
of the Solar System itself. It means that not only the Sun,
but also other planets of the Solar System exert an effect on
the motion of different objects, including artificial satellites,
moving in the orthogonal direction with respect to the orbits
of planets. The additional non-Newtonian force of attraction
is proportional to the radial distance r, and the Newtonian
force decreases as 1

r2 . It means that the more distant the body
moves away from the center of attraction, the more apprecia-
ble the effect of the non-Newtonian part of the force is. It is
possible that the Pioneer anomaly can be explained by the ex-
istence of non-Newtonian forces: this effect is registered near
the boundary of the Solar System, because Newtonian attrac-
tion here decreases (with radial distance), and non-Newtonian
attraction increases.

Thus the gravitational field of a single mass, whose
Hilbert radius is considerably smaller than its radius, can be
described by the Schwarzschild mass-point metric (76) by
way of performing calculations of the orbital motions of the
test bodies. The analogical field must be described by the
metric of a continuous body (such as the simplest metric of
the homogeneous liquid sphere), i.e. if we consider the radial
motion of the moving test body.

Consider now a cosmic body whose Hilbert radius is com-
parable with its proper radius: rg ∼ a. A model of the observ-
able Universe whose whole radius matches the Hilbert radius
was first suggested by Stanyukovich [10]. He studied some
geometric properties of the liquid body in the state of gravita-
tional collapse, but he did not introduce the concrete metric.
Stanyukovich assumed that the space of the Universe was a
collapsar, whose Hilbert radius rg was equal to the distance
up to horizon of events a. According to this concept, the mass
of the Universe could be calculated by the formula M = ac2

2G .
Assuming a = 1.3×1028 cm (the maximal observed distance),
we should find M = 8.78 × 1055 g. This value coincides ap-
proximately with estimates obtained by way of other sorts of
reasoning.

The average value of the density of the liquid substance is
ρ = M

V . Calculating the value of the density of the mass-point
collapsar M = ac2

2G by the assumption V = 4πa3

3 , we obtain

ρ =
3c2

8πGa2 =
3H2

8πG
= 9.5 × 10−30 g

cm3 , H =
c
a
. (86)

This value corresponds to the range of values obtained
from observational data. Moreover, it corresponds to the the-
oretical value of the critical density ρcr by the condition H =
2.3 × 10−18 sec−1.

It is necessary to note that the critical density is deter-
mined in standard cosmology as the density of the Friedman
model (66), whose three-dimensional space is flat: k = 0. It is
evident that this space-time is not a collapsar, because the ob-
servable time τ coincides with the coordinate time t: dτ = dt,
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consequently g00 = 1. (Recall that the collapse condition is√
g00 = 0). Calculating the volume of the gravitational col-

lapsar by the formula V = 4πa3

3 , we have assumed in fact that
the space inside the collapsar is flat. Let us study this problem
in detail below.

Recall once again that Stanyukovich considered the Uni-
verse as the result of the collapse of the space-time (76), cre-
ated in emptiness by the mass-point, because he actually used
the Hilbert radius rg [10]. We have introduced in this paper
the collapse of a specific continuous body — a homogeneous
liquid sphere (liquid bubble). It follows from (12) that the
radius of the liquid sphere (11) in the collapse condition rc

equals its proper radius a and the breaking radius rbr, if

rc = a = rbr =

√
3
κρ
. (87)

Substituting into (87) κ = 8πG
c2 and ρ = 3M

4πa3 , we find, after
elementary transformations,

rc = a = rbr = rg =
2GM

c2 , (88)

where M is the mass of both the liquid and vacuum bubbles,
because the liquid bubble in the state of collapse is precisely
the vacuum bubble.

We have interpreted above that the liquid and vacuum
bubbles are the spaces of the future and the past, respectively.
This is partly how we geometrize the reality of time in terms
of its flows (successive states) and in a cosmological frame-
work. Then the space of the present must: 1) belong to these
states simultaneously; 2) be situated between the future and
past spaces. Of special interest, the singular surface r = a
(the event horizon) satisfies both conditions. Firstly, the event
horizon belongs to the gravitational and inflation collapsars;
secondly, it is between the future and the past, since the ob-
servable time at the surface of the collapsar is stopped.

Since the event horizon is the characteristic surface of
both the gravitational and inflation collapsars, it is simultane-
ously the surface of both the “white” and “black” holes. The
collapsing liquid bubble transforms instantaneously into the
de Sitter vacuum bubble — the inflation collapsar. Besides,
the space inside the inflation collapsar (the “white hole”) is
simultaneously also the space inside the gravitational collap-
sar (the “black hole”). The white and black holes possess the
generic surface r = a, which is simultaneously: 1) the radius
of the liquid sphere and its breaking radius; 2) the event hori-
zon itself and the radius of curvature of the vacuum bubble; 3)
the Hilbert radius of the whole mass-point, which equals both
the masses of the liquid and vacuum bubbles. The transfor-
mation of the liquid into the vacuum is accompanied by the
inversion of the observable time: the flow of time changes
the direction by way of transformation. Let us consider
the causes of this transformation in detail. The question is:

where, in the reality of time, is the mass M? The answer is:
the liquid and vacuum bubbles are reflections of one other,
where the mirror is the singular surface, therefore the mass
is in the very present state of time, i.e. at the singular sur-
face. Thus the materialization of the present (“reality”) is the
transfer of time flows through the said singularity.

Let us return for a moment to the “black-and-white”
model of the Universe. This object is the result of some trans-
formations: 1) the liquid substance transforms instantly into
the physical vacuum in the state of inflation; 2) the “curva-
ture of time” changes its sign; 3) the Non-Newtonian force of
attraction transforms into the force of repulsion. In fact, the
liquid sphere overturns itself in time. This overturning is sim-
ilar to the transfer of a time flow from one side of the Möbius
strip onto the other side where the respective time on each of
these sides flows in the opposite direction (compared to the
other). We know that the Möbius strip is a two-dimensional
one-sided surface which can be included (embedded) in three-
dimensional Eucledian space E3 (otherwise, it is generally
non-orientable).

It is possible to say, therefore, that the observable time
has three dimensions: the past, the present, the future. Time
is perceived by human consciousness as one-dimensional and
directed from the past to the future. Meanwhile, similar
events are repeated for different epochs, demonstrating that
the past and the future are mirror images of one other, where
the mirror is the present. But these events are not identical.
It is possible to say that the spaces of the past and the fu-
ture are created from “different cosmic substances”, which
depends on the time of creation of each space. Thus the past,
present, and future are the three dimensions of the temporal
volume, and these dimensions are different in principle. The
past contains the consequence of holograms — physically re-
alized (materialized) events. Besides, it also contains non-
realized events. The future is virtual, because it contains only
non-materialized events. Some events will be physically re-
alized, others will be virtual. Such materialized events create
the hologram (standing-wave picture) of the events, which is
perceived by human consciousness as the (present) “reality”.

As such, our Universe transforms the space of the future
through the singular surface (the present) into the space of
the past, consequently the following materialization is none
other than time transfer through the pertinent singularity —
the event horizon. This singular surface is the place of inter-
action of two opposite forces — attraction and repulsion. The
energy of physical vacuum creates the force of attraction, ap-
pearing as the “scattering of galaxies”. It can be called “radi-
ant energy”. The energy of compression, which is due to the
force of attraction, can be called “dark energy”. These two
types of energy are divided and connected at the same time
by said singular surface, which transforms the future into the
past. When the course of the future reaches an end, the radi-
ant energy will not develop, and the observable Universe will
be compressed into the state of initial singularity. The cos-
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mos will exist the way it does at present until it transforms all
the virtual realities of the future time (as it flows from the fu-
ture to the past). When this mechanism is exhausted, the ob-
servable Universe will compress itself into a Schwarzschild
black hole, namely the initial singularity. It is possible that
the mass of the singularity itself is the hypothetical “hidden
mass”, which exerts a definite effect on the motion of stars
and galaxies.

Let us now calculate the values rbr and rg for the Earth, the
Galaxy, and the observable Universe: see Table 1. Besides,
let us include into Table 1 the relative values rbr/a and rg/a
for the mentioned objects. It follows from the Table that the
physical-geometric properties of the Universe differ in princi-
ple from the analogous properties of other objects (the Earth,
the Sun, the Milky Way). In reality, only the Universe is si-
multaneously both a white hole and a black hole, because its
Hilbert radius rg equals the radius of the inflation collapsar
a. These values coincide completely with the radius of space
breaking in the curvature of time. It is possible to say that
the forces of attraction and repulsion in the cosmos are in the
state of equilibrium. It is evident that the observable Universe
must be described as a stretched meta-body filled with matter
(physical vacuum in the given case).

The other objects (the Earth, the Sun, the Milky Way)
contain black holes, whose Hilbert radiuses rg are very small
in comparison to their radiuses a. In addition, these objects
break the surrounding space, and the respective spheres of
spatial discontinuities are located out of the bodies (sources),
far away from them. Since the Hilbert radius rg ≪ a depends
only on the mass of the body, we will consider these bodies
as mass-points, for example, by studying test bodies motion
in their gravitational fields. But if we want to study this case
in detail, we must consider the sources as stretched bodies
filled with matter. This approach applied in [6] to the Solar
System allows us to study the coupling between them. It is
easily obtained from the formula (12), that the Earth, the Sun,
and the Galaxy cannot be “white holes”, since the value rc is
imaginary. Therefore, these objects include Hilbert “black
holes” inside their spaces, but the resepctive space breakings
are outside of them.

7 Conclusion

The seminal process of time-transfer transformation of the
future into the past has been considered in this paper. The
future and past spaces are introduced geometrically as two
telemetric spheres (bubbles), filled with ideal substances —
liquid vacuum and physical vacuum respectively. These bub-
bles are mirror reflections of each other, where the mirror is
the singular surface. It means that the transfer of time from
the future to the past is realized through the singular state —
the very space of the present. The singular surface is simul-
taneously the surface of both the gravitational and inflation
collapsar, which can be called the dual “black-white hole”.

Thus, the present is the result of the collapse of the future
space, where the singular surface (the present) is the event
horizon. The collapsar is in the state of equilibrium, because
the two oppositely directed forces equalize each other. They
are 1) the gravitational force of attraction; 2) the force of re-
pulsion, which can be called the “force of anti-gravitation”.
The present is stable, until these forces neutralize one other.
If the force of attraction is greater than the force of repulsion,
the event horizon approaches the observer in space-time: the
space of the observable Universe “compresses”. If the force
repulsion is greater than the force of attraction, the event hori-
zon recedes from the observer: the space of the Universe ob-
servable “expands”.

We have obtained that observable time flows in the oppo-
site directions inside the liquid and vacuum bubbles. As was
shown in [3], spaces with the opposite directions of time are
mirror reflections of each other. In essence, the very term the
“mirror space” is linked immediately to the “arrow of time”.
The widely accepted opinion is that the “arrow of time” can
be directed only from the past to the future. The mathemat-
ical apparatus of General Relativity does not prohibit the re-
verse flow of time, i.e. from the future to the past. Never-
theless the reverse flow of time is not introduced in contem-
porary physics and cosmology, because modern scientists re-
fer to Hans Reichenbach’s “arrow of time”, which is directed
always to the future [4]. However, Reichenbach stipulating
unidirectional time also implied a world process of evolution
(transfer of energy). In particular, in the geometric frame-
work of General Relativity, time can be stopped (as light can
also be frozen) or be directed to the past or the future. Setting
free cosmology from the unidirectional time concept gives us
a definite advantage as to introduce the pontentially revolu-
tionary Mirror Universe into General Relativity.

It is therefore more correct to introduce time as an ul-
timate kind of energy, although formally time is one of the
coordinates of the four-dimensional Riemannian manifold —
the space-time of General Relativity. But the three spatial
coordinates are measured by lines, while time is measured
by clocks, consequently space and time are two aspects of
the indivisible manifold — the space-time. Clearly speaking,
space-time can be considered as material (space), which is
filled with time (time-energy). Time-filled spaces exists only
in pseudo-Riemannian spaces, because the principal differ-
ence between coordinates exists, namely in spaces where the
basis vectors possess both real and imaginary lengths.

It is necessary to mention “rulers” of a special kind, which
are used in contemporary astronomy and cosmology, namely
light rays. Because light transfers at the finite velocity c, ob-
servation of electromagnetic radiation ensuing from cosmic
objects allows us to study only the past states of these ob-
jects. It is evident that the present states of these cosmic ob-
jects could be studied by means of instruments, which could
register a long-range action. The unfortunate negation of a
long-range action allows us to consider only the past states
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of the Universe. In reality, our telescopes perceive only those
light rays from stars and galaxies, emitted in the past. But if
we’d only virtually reflect on the very boundaries of the ob-
servable Universe, that the present exists simultaneously in
the whole space of the Universe, we might be able to build
a space-time apparatus capable of registering the momentary
(present) action of cosmic objects. (For example, such appa-
ratuses have been constructed and tested by Nikolai Kozyrev).
It is well-known that the consensual opinion exists that Gen-
eral Relativity prohibits a long-range action due to the “light
barrier”. This opinion is fundamentally incorrect: only the
typical human consciousness produces this imaginary barrier.
In fact, the mathematical apparatus of General Relativity al-
lows the existence of zero-particles possessed of instantenous
transfer. The rejection of the notion of the “light barrier” al-
lows us to construct, in principle, instruments for the registra-
tion of zero-particles.

All the innovative techniques in this paper are substan-
tially based on Riemannian geometry only. The usual imag-
inary prohibitions (e.g., the speed of light barrier) by way of
consensus in the field of General Relativity retard the devel-
opment of General Relativity and science as a whole on the
furthest horizon, which is a way to negate General Relativ-
ity as a whole. Clearly, those typical conditions restricting
Special Relativity (as in the usual particle physics) do not ul-
timately exist in General Relativity as a whole by way of the
vastness and versatility of the underlying Riemannian geom-
etry (in our extensive case as shown in [3], the basic Rie-
mannian geometry of General Relativity is extended at the
sub-manifold level by the presence of degenerate, generally
rotating zero-spaces and zero-particles). Meanwhile, in prin-
ciple, the fundamental elements of Riemannian geometry al-
low for the existence of both the long-range action and the
reverse flow of time: the long-range action is realized by
null-particles, while the reverse flow of time is due to grav-
itation and rotation. It is necessary to note that these results
are obtained by the condition that gravitation and rotation are
rather strong. Meanwhile, most specialists in General Rela-
tivity consider gravitation and rotation as weak factors. For
example, the gravitational potential w and the linear velocity
of rotation vi from the expression of dτ (3) are taken into ac-
count by the usual problem of the synchronization of clocks
as merely small corrections. Moreover, contemporary cos-
mologists assume that the reality of time of the Universe is
the same in the whole space (being limited usually by the
Hubble volume), since the observable time in the Friedman
cosmological model flows uniformly: dτ = dt. But, as shown
here, even using very simple non-rotating model of the gravi-
tating Universe (the de Sitter bubble) as a start, we have seen
that gravitation causes the accelerated extension of the space
of the Universe near the event horizon.

All that has been said above is similar to the observa-
tion of a thunderstorm: we first see a lightning flash, only
then the thunderpeal is registered by our ears. This is be-

cause light and sound travel at different speeds. A blind ob-
server will, however, perceive only the thunderpeal. More-
over, having not a visual connection to the source of this
sound (which is the lightning flash), he will be unable to
determine the distance to the lightning. (A normal, sighted
observer merely multiplies the sound speed in the air by the
duration between the observed lightning and the heard thun-
derpeal, thus calculating the distance to the lightning.) Most
astronomers may now be compared to the previous blind re-
searcher of the thunderstorm: the instruments they use in their
astronomical observations register only electromagnetic ra-
diations of different sorts (visible light, radio-waves, x-rays,
etc.), while all these radiations travel at the speed of light (in
vacuum) or even slower than light (if travelling in a medium);
their current instruments are not able to register real cosmic
signals which are faster than light. In other words, those
astronomers merely focus on the registration of the “short-
range action” (transferred by photons, in particular). They
do not take the possibility of the “long-range action” (in-
stantaneous geometric interactions) into account. The key
role in this primitive approach is played by the psychologi-
cal wall erected against superluminal (and instantaneous) in-
teractions. There is an easily popular bias that this prohibi-
tion is due to Einstein, whose prior postulate of the Special
Theory of Relativity stipulated that signals travelling faster
than light was practically impossible. This is, however, not
true in the bigger picture. Einstein claimed this postulate
in his early “positivistic” publication prior to General Rel-
ativity, in the framework of his theory of observable phe-
nomena registered by means of signals of light: superlumi-
nal (and instant) signals were naturally out-of-access for such
an observer. However, the geometric (if not hypergeometric)
structure of the four-dimensional pseudo-Riemannian space
(which is the basic space-time of Einstein’s General Theory
of Relativity, being geometrically more complete, vast, and
versatile in comparison to the Special Theory of Relativity)
allows more diverse paths along which particles (signals) of
different kinds may travel. For instance, particles bearing
non-zero rest-mass/energy inhabit the sub-light speed region
of the space-time (located “inside” the light cone); mean-
while, particles bearing imaginary masses and energies in-
habit the superluminal space-time region (located “outside”
the light cone); subsequently, there exist light-like particles
bearing zero rest-mass (they are always in motion), while
their relativistic masses and energies (“kinetic” masses and
energies of motion) are non-zero, as they travel along space-
time trajectories located along the light cone. There are also
the so-called “zero-particles”: they are the ultimate case of
light-like particles, and travel along the fully degenerate light-
like trajectories which seem to have zero length and duration
to an external observer; as a result zero-particles seem to be
travelled instantaneously, thus transferring long-range action
such as that in the case of the geometric non-quantum tele-
portation as shown in [3].
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Object Mass, gram Proper radius, cm Density, g/cm3 Space breaking
radius, cm

Hilbert radius, cm rg/a rbr/a

Earth 5.97 × 1027 6.38 × 108 5.52 1.64 × 1013 0.88 1.4 × 10−9 2.6 × 104

Sun 1.98 × 1033 6.95 × 1010 1.41 3.43 × 1013 2.9 × 105 4.2 × 10−6 4.9 × 102

Milky Way 6.0 × 1045 4.5 × 1022 6.58 × 10−23 4.95 × 1025 8.9 × 1017 2.0 × 10−5 1.1 × 103

Universe 8.8 × 1055 1.3 × 1028 9.5 × 10−30 1.3 × 1028 1.3 × 1028 1.0 1.0

A real observing human whose body is made of regular
substance such as atoms and molecules cannot travel at the
speed of light. At the same time, he perceives light by his
physical organs and the other (artificial) instruments of obser-
vation: there is not a barrier dividing him and light. In anal-
ogy to this case, instruments registering zero-particles (which
seem to be travelling instantaneously) may be invented. All
that the innovative engineers need to do it is set themselves
free of the psychological prohibition and limitation in travel-
ing at the light speed, as to be professionally equipped with
the full extent of the General Theory of Relativity which has
already theoretically predicted zero-particles carrying the
long-range action (geometric non-quantum teleportation).

Again, there are unfortunately many popular biases about
Einstein’s General Theory of Relativity. Most of them
originated in the non-technically equipped reporters of pop-
science, or the pop-science authors themselves whose knowl-
edge in this field is limited with those “first-grade” rudimen-
tary textbooks on the the Theory of Relativity. Such books
present Einstein’s theory rather very shallowly, paying atten-
tion to mostly the native examples based on Einstein’s early
postulates revolving around his theory of exchanging light
signals. The greater true meaning of Einstein’s theory — the
deeper picture of space-time geometry as the basis of all the
physical world — is regularly out-of-scope in such books due
to the psychological threshold of the need to master Rieman-
nian geometry and tensor calculus at a certain great level of
mathematical and physical depth (which is not a trivial task
for a beginner and indeed most would-be specialists, with the
exception of very few gifted and versatile ones). As a re-
sult, we have such a popular bias (not based on geometry)
as the above-mentioned aforementioned myth about the in-
surpassable nature of the light speed limit, and also the myth
about the irreversibility of the arrow of time (which naturally
depends on the physical conditions of observation in differ-
ent space-time regions). There is also another myth saying
that the General Theory of Relativity can result in only small
corrections to Classical Mechanics and Electrodynamics (this
is not true on cosmological scales where the effects of Gen-
eral Relativity greatly rule), and many other biases concern-
ing Einstein’s theory.

Setting ourselves free from these popular, primitive, anti-
progressive biases, and following the deeper versatile trajec-
tory (geometry) of the theory of space-time-matter estab-
lished by Albert Einstein, no doubt certain researchers could

arrive at new instruments of observation based on the geo-
metric resurgence of the long-range action (in parallel with
certain gravitational and gauge field instantons of the Pleban-
ski type). These new developments, based on completely dif-
ferent principles than the usual electromagnetic interactions,
could lead to certain cosmic engines allowing for (geomet-
ric) non-quantum teleportation, as well as other new exotic
technologies in order to carry the human species to an un-
precedented Golden Age in the cosmos.
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