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The present study is an investigation of stellar physics based on observables such as
mass, luminosity, radius, and photosphere temperature. We collected a dataset of these
characteristics for 360 stars, and diagramed the relationships between their characteris-
tics and their type (white dwarf, red dwarf, main sequence star, giant, supergiant, hyper-
giant, Wolf-Rayet, carbon star, etc.). For stars dominated by radiation pressure in the
photosphere which follow the Eddington luminosity, we computed the opacity and cross
section to photon flux per hydrogen nuclei in the photosphere. We considered the Sun
as an example of star dominated by gas pressure in the photosphere, and estimated the
density of the solar photosphere using limb darkening and assuming the adiabatic gradi-
ent of a monoatomic gas. We then estimated the cross section per hydrogen nuclei in the
plasma of the solar photosphere, which we found to be about 2.66 × 10−28 m2, whereas
the cross section of neutral hydrogen as given by the Bohr model is 8.82 × 10−21 m2.
This result suggests that the electrons and protons in the plasma are virtually detached.
Hence, a hydrogen plasma may be represented as a gas mixture of electrons and pro-
tons. If the stellar photosphere was made of large hydrogen atoms or ions such as the
ones we find in gases, its surface would evaporate due to the high temperatures.

1 Introduction

The present study is an investigation of stellar physics based
on characteristics such as mass, luminosity, radius, and pho-
tosphere temperature. We analysed a set of 360 stars for
which we collected available data from the literature. The set
included white dwarfs, red dwarfs, main sequence stars, gi-
ant stars, Wolf-Rayet stars, carbon stars, etc. Let us introduce
the basics to get a sense of how stars regulate fusion reactions
and the basic principles of stellar dynamics.

We can easily infer that stellar equilibrium is driven by
hydrostatic pressure. The internal pressure of a star is de-
termined by the radiation pressure and gas pressure, which
counterbalance the hydrostatatic pressure from gravitation
and prevent the star from collapsing. Radiation pressure and
gas pressure are temperature dependent. When a star cools, it
experiences a drop in internal pressure that causes the star to
contract. This contraction will cause an increase in the hydro-
static pressure within the star. The gravitational force exerted
by the inner mass of the star on a particule at a given radius
is Fg =

GMrmp

r2 , where r is the radius, Mr the interior mass of
the star up to radius r, mp the mass of the particule, and G the
gravitational constant. Therefore, the more the star contracts,
the higher the hydrostatic pressure. The increase in hydro-
static pressure increases the rate of fusion, which produces
excess heat. In return, this excess heat increases the gas and
radiation pressure in the star causing the star to expand. This
process repeats until the star reaches a certain equilibrium.

Nuclear fusion, therefore, is driven by the hydrostatic
pressure in stars. There are three possible mechanisms by
which hydrostatic pressure could affect the fusion power of
stars:

• Assuming that a minimum pressure or temperature is

required to sustain fusion, the volume of the fusing
core increases as hydrostatic pressure increases. Ac-
cording to the Arrhenius equation, reaction kinetics are
highly dependent on temperature. Note that the Ar-
rhenius equation assumes the Maxwell-Boltzmann dis-
tribution, and the relationship would be different for a
Fermi gas.

• The density in the core of the star increases as hydro-
static pressure increases. Hence, a larger quantity of
matter would be subject to fusion in the core of the star.

• The kinetic rate of fusion (i.e. the reaction rate or
speed) may increase as pressure increases.

These are the mechanisms we propose regulate a star. In
some instances the volume and luminosity of the star oscil-
lates. These are the so-called variable stars. A notable ex-
ample of variable stars are the Cepheid variables. They are
known for a method to measure distances based on the period
of their oscillation. As there is a relationship between the
period of the star’s oscillations and its luminosity, one can in-
fer the intrinsic luminosity and compute the distance. Several
different theories explain the oscillations of variable stars. We
enumerate some possible mechanisms below:

• The κ-mechanism or Eddington valve is the most popu-
lar theory explaining variable Cepheids [1]. According
to this theory, doubly ionized helium is more opaque
than single ionized helium. As helium in the star heats,
it becomes more ionized and less transparent so that
the heat is retained longer. As the star expands, it cools
and its helium becomes less ionized and hence more
transparent, allowing the heat to escape. Then the star
contracts again and the process repeats.
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• Another mechanism would be a change in the regime of
the fusion reactions for certain thresholds in the hydro-
static pressure of the star. For example, fusion of heav-
ier elements in the core of large stars could ignite at a
certain temperature threshold and produce large tem-
perature spikes causing the star to oscillate. This the-
ory would be applicable to massive stars where fusion
of heavy elements in the core occurs.

• The ageing model of the core could also explain vari-
able stars. Let us consider a star fusing hydrogen into
helium when the star has too low a mass to ignite he-
lium fusion. As the star ages, the helium core grows,
and the shell of fusing hydrogen around the core thins.
Let us say the hydrogen shell heats the core, making
it expand and push the hydrogen shell to the exterior;
the temperature of the shell would fall below the igni-
tion point, and switch off hydrogen fusion. Then the
core would cool, returning the hydrogen shell to the ig-
nition point and switching hydrogen fusion on again.
This pattern would repeat in cycles. This theory would
apply to stars with small cores and explain the type II
Cepheids, which have about half the mass of the Sun
and therefore are not massive enough to fuse helium.

• Temperature driven kinetics for fusion reactions may
also induce stellar oscillations. If the kinetic rate of
fusion increases as temperature increases, a small in-
crease in temperature at the core would cause large
temperature spikes. Then the star would expand over
a long period of time before cooling and contracting
again. Note that this process would cause stars to be
unstable. The fact that the Sun is stable with very low
oscillations of order 0.1 % of its luminosity would be
a counter example of temperature driven fusion kinet-
ics, unless the sensitivity of the fusion-kinetic rate with
respect to temperature is very small.

When a star has exhausted the nuclear supply at its core,
it will cool. This will eventually trigger a gravitational col-
lapse. When the star contracts, the depleted nuclear fusion at
its core would not be able to counterbalance the hydrostatic
pressure. As the radius of the star diminishes, the gravita-
tional force acting on the particles of the star increases pro-
portionally to 1

r2 . The gravitational collapse of the star can
lead to the formation of a black hole on one extreme or a su-
pernova at the other. The latter occurs if at a certain point
during the collapse the pressure is so high that it triggers fu-
sion reactions in series at a very fast rate, causing the star
to explode and leading to the formation of up to the heaviest
elements of the Mendeleev table such as uranium. A black
hole would form if fusion does not halt the gravitational col-
lapse. In some instances gravitational collapse stops before
the formation of a black hole, producing a neutron star or
white dwarf. These are intermediary stages before the forma-
tion of a black hole. White dwarfs are less dense than neutron

stars, at an earlier stage of matter compression than neutron
stars. Neutron stars are composed of neutronium, a compact
pack of neutrons, and have densities around 4 × 1017 kg/m3.
White dwarfs have densities around 107 to 1010 kg/m3. Elec-
tron degeneracy pressure is the mechanism which supposedly
prevents the further collapse of white dwarfs. Degeneracy of
matter from gravitational collapse starts at the core of the star.
Sometimes the core of the star collapses into a neutron star or
a black hole while the outer shell of the star explodes into a
supernova. Red giants of masses comparable to the Sun gen-
erally blow out their outer layer at the end of their life to form
planetary nebulae, leaving a white dwarf in the core.

We find that stellar photosphere dynamics are crucial in
the determination of the power of stars as measured by their
luminosity. We cannot miss the notable work of Arthur Ed-
dington on the dynamics of stars dominated by radiation pres-
sure in the photosphere, according to which, the luminosity of
such stars is proportional to their mass. Using data from stars
dominated by radiation pressure in their photosphere, we can
estimate the opacity parameter. We also discuss models and
factors which may affect opacity, as this is a preponderant pa-
rameter for radiative heat transfer, a key component of stellar
models. For stellar models we also need boundary condi-
tions such as the density of the photosphere. We show how
to estimate the density of the solar photosphere using limb
darkening. According to the standard solar model, there is a
layer at the surface of the Sun where radiative heat transfer
is not efficient enough and convection takes place. The pho-
tosphere can be viewed as a plasma surface; hence using a
model of the surface we can compute the cross section per
hydrogen nuclei in the photosphere. We computed the cross
section per hydrogen nuclei from radiation pressure and gas
pressure, and found that both values match closely. From the
cross section per hydrogen nuclei we obtained, we can infer
that in stellar plasma the electrons and nuclei are virually de-
tached. Therefore, stellar plasma may be represented as a gas
mixture of electrons and nuclei. We discuss the modelling
implications of this representation of stellar plasma.

2 Overview of stellar data

Stars form a very heterogeneous group having various lumi-
nosities, masses, temperatures, and densitities. In the below
diagrams we show the relationships between these character-
istics for the stars in our catalog. In section 2.1 we introduce
the classification of stars we used for the diagrams. Section
2.2 shows the stellar diagrams we obtained with a emphasise
on their interpretation.

2.1 Classification of stars

Stars can be classified according to their spectra, color, and
size. Stellar spectra provide precious information about their
atmospheric composition by analyzing their spectral lines,
and surface temperature from Planck’s law of black-body
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spectrum. We divided the stars in our catalog according to the
below groups:

• White dwarfs are degenerated stars which are very
dense and composed mostly of electron-degenerate
matter. They have masses comparable to that of the
Sun, volumes comparable to that of Earth, and are very
faint. Some white dwarfs are classified as helium stars
as they have very strong helium lines and weak hydro-
gen lines [2].

• Brown dwarfs have masses comprised in the range of
13 to 80 Jupiter masses. Their mass is below the thresh-
old needed to fuse hydrogen, but enough to fuse deu-
terium.

• Red dwarfs have masses in the range of 0.075 to 0.6 so-
lar masses, and surface temperatures below 4,000 K. A
count the stars nearest to earth, it was estimated that red
dwarfs comprise about 80% of the stars in the Milky
Way.

• Yellow dwarfs are main-sequence stars of comparable
mass to the Sun, with a surface temperature between
5,300 and 6,000 K. We created a broader group that we
called yellow main sequence stars to include all stars
with masses between 0.6 and 1.7 solar masses, and a
temperature between 4,200 and 7,200 K.

• A-type stars are main-sequence stars of spectral type A
of 1.4 to 2.1 solar masses, and a surface temperature
between 7,600 and 11,500 K. Their spectra have strong
hydrogen Balmer absorption lines.

• B-type stars are main-sequence stars of 2 to 16 solar
masses, and a surface temperature between 10,000 and
30,000 K. Their spectra have non-ionized helium lines.

• Subgiants are stars at an intermediary stage of evolu-
tion before becoming giants. These stars are brighter
than main-sequence stars but not as bright as giants.

• Red giants are evolved stars of 0.8 to 8 solar masses
which have exhausted the hydrogen supply in their core
and are fusing helium into carbon. They have high lu-
minosities compared to their main-sequence peers, and
inflated atmospheres making their radii large, resulting
in low surface temperatures between 3,200 and 4,000
K. Orange giants are distinguished from red giants by
their temperature, which ranges from 4,000 to 5,500 K.

• Carbon stars are red giants whose atmosphere contains
more carbon than oxygen.

• S-type stars are giant stars with approximately equal
quantities of carbon and oxygen. These are intermedi-
aries between giants and carbon stars.

• Blue giants are hot giant stars with masses in the range
of ten to hundreds of solar masses, and surface temper-
atures between 22,000 and 45,000 K.

• Supergiants are stars with luminosities between those
of the giants and hypergiants on the Hertzsprung-Rus-
sell diagram. They are divided into red supergiants,
orange supergiants, and blue supergiants according to
their surface temperatures. The red ones have surface
temperatures between 3,200 and 4,000 K, the orange
ones between 4,000 and 7,000 K, and the blue ones
between 7,000 and 50,000 K.

• Hypergiants are stars with tremendous luminosities on
the high end of the Hertzsprung-Russell diagram. They
are divided into red hypergiants, yellow hypergiants,
and blue hypergiants according to their surface temper-
atures. The temperature ranges are the same as for su-
pergiants with the yellow group replacing the orange
stars of the supergiant category.

• Wolf-Rayet stars are evolved massive stars which are
fusing helium or heavier elements in the core. They
have spectra showing broad emission lines of highly
ionized helium and nitrogen or carbon. Most Wolf-
Rayet stars have lost their outer hydrogen and have
an atmosphere predominantly made of helium. Their
surface temperature ranges between 30,000 and
200,000 K. A subgroup of Wolf-Rayet stars referred
to as WO stars have strong oxygen emission lines, in-
dicating the star is on the oxygen sequence.

2.2 Stellar diagrams

In the current section we display several diagrams showing
the relationship among the characteristics of stars along with
their classification. Figure 1 shows the relationship between
the luminosity and mass of stars, Figure 2 the relationship
between the volume and the luminosity of stars, and Figure
3 the relationship between the average density of stars and
temperature of the photosphere.

Figure 1 shows that red giants are much more luminous
than their main-sequence star counterparts for the same mass.
As red giants are evolved stars which fuse helium in the core,
we can infer that the fusion of helium into carbon is much
more exothermic than the fusion of hydrogen into helium.
Red giants are also less dense than their main-sequence coun-
terparts, meaning that helium fusion occurs in a domain at
lower pressure than hydrogen fusion and produces more heat.
In Figure 2, we see that main sequence stars expand when
shifting on the helium burning sequence to form red giants,
and contract when shifting from the main-sequence branch to
Wolf Rayet stars. For Wolf-Rayet stars which fuse helium
or heavier elements in the core, fusion occurs in a domain at
higher pressure than their counterparts. This is especially pro-
nounced for OW Wolf-Rayet stars on the oxygen sequence,
where the fusion pressure domain is clearly higher than for
helium fusion.

There are also mass threadshods for fusion to occur. For
example, red giants of mass less than 0.9 solar mass are never
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Fig. 1: Luminosity versus mass of stars. Mass and luminosity are in solar units.

observed. This limit is commonly attributed to the age of the
universe, because low mass main-sequence stars take longer
to fuse the hydrogen in their core, and therefore it is hypoth-
esized that stars below 0.9 solar masses did not have suffi-
cient time to become red giants. However, this limit could
also represent the minimum mass required to obtain the nec-
essary conditions for helium fusion. Similarly, Wolf-Rayet
stars have masses above the 8.0-9.0 solar mass limit. The-
fore, low mass stars do have the necessary conditions to fuse
elements heavier than helium in the core.

The red dwarfs in Figure 1, show a distribution in their lu-
minosities. This might be due to ageing, as red dwarfs haven’t
sufficient mass to fuse the helium accumulating in their core.
As a star exhausts its hydrogen supply and accumulates he-
lium in its core, the core cools and contracts. As the core
contracts, a new shell of fresh hydrogen fuel is formed at the
periphery of the core. Fusion of this hydrogen shell main-
tains the temperature of the core, preventing it from contract-
ing further. The fact that the atomic mass of helium is greater
than that of hydrogen also plays a role.
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Fig. 2: Volume versus luminosity of stars. Volume and luminosity are in solar units.

Helium nuclei are formed of four nucleons (two protons
and two neutrons). Therefore, there is four times more mass
in a helium gas than in a hydrogen gas at a given pressure,
provided they obey the ideal gas law. As the star gets older,
the core shrinks and grows ever denser by accumulating he-
lium. Therefore, as red dwarfs age, they should become
denser and less luminous. Common stellar age-dating meth-
ods, based on the main-sequence turnoff, are focused on
main-sequence stars that become red giants. Such age cal-
culation methods do not yield stellar ages older than about 15
billion years, perhaps because this is when a solar type main-
sequence star becomes a red giant. No methods have been de-

veloped so far to estimate the age of red dwarfs, which could
possibly be much older. Using stellar models would be an
approach for age-datating of red dwarfs.

3 Stars dominated by radiation pressure in the photo-
sphere

3.1 Eddington luminosity

Inside a star, the internal pressure acting against the hydro-
static pressure is the sum of the radiation pressure and gas
pressure, hence:
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Fig. 3: Average density versus temperature of the photosphere of stars. Density is given in g/cm3, and temperature in Kelvin.

P = ρnkT +
1
3

aT 4 , (1)

where ρn =
N
V , N is the number of molecules in the gas, V is

the volume, a = 4σ
c is the radiation constant, k is the Boltz-

mann constant, σ is the Stefan-Boltzmann constant, T is the
temperature, and c the speed of light.

When the radiation pressure is considerably higher than
the gas pressure, the gas pressure term can be neglected,
therefore we get:

∂Pr

∂T
=

4
3

aT 3 , (2)

The equation for radiative heat transfer is expressed as
follows:

∂T
∂r
= −3

4
1
ac
κρ

T 3

L
4πr2 , (3)

where κ is the opacity, L is the luminosity, T is the tempera-
ture, r is the radius, ρ is the density, c is the speed of light,
and a the radiation constant.

Rewriting (2), we get:

∂Pr

∂r
∂r
∂T
=

4
3

aT 3 , (4)

Combining (3) and (4) we get:
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∂Pr

∂r
= −κρ

c
L

4πr2 , (5)

From hydrostatic equilibrium:

∂P
∂r
= −GMrρ

r2 , (6)

where G is the gravitational constant, Mr is the interior mass
of the star at radius r, and ρ is the density.

By combining (5) and (6) we get:

L =
4πcG
κ

M , (7)

which is the Eddington luminosity. Stars dominated by ra-
diation pressure in their photosphere are fully determined by
the photosphere, meaning that their luminosities will adjust
to match the Eddington luminosity. For such stars luminosity
is proportional to mass as shown by the Eddington luminos-
ity equation. Should excess heat be generated, the star will
lose matter through its photosphere, which may explain why
many Wolf-Rayet stars have lost their outer hydrogen layer.

We can also express this equation in terms of temperature
using Stefan-Boltzmann as:

Flux =
L

4πr2 = σT 4 . (8)

Hence, combining (7) and (8), we get:

T =
(cG
κσ

)1/4 M1/4

R1/2 . (9)

3.2 Cross section of an hydrogen ion from photon flux

There are two different methods to calculate the cross section
of an ion exposed to photon flux in the photosphere; these are
known respectively as the optical and the radiation pressure
cross section approaches.

The optical cross section calculation considers the obscu-
ration of a radiative flux travelling in an isotropic medium.
Let us consider an isotropic gas with a radiative flux going
through a surface A in the x-direction orthogonal to the sur-
face. The flux at step x + dx is equal to the flux at step x
multiplied by one minus the proportion of the area that is ob-
scured by the cross section of the atoms in the volume Adx.
The number of atoms in the volume Adx is ρnAdx. We multi-
ply the number of atoms in the volume by the cross section of
the atom σp to give the total area obscured by the gas. Hence,
we get:

F(x + dx) = F(x)
(
1 − σpρndx

)
, (10)

where F(x) is the flux at step x, F(x + dx) is the flux at step
x + dx, ρn is the density in number of particles per volume,
and σp is the cross section per particle.

As dF = F(x + dx) − F(x), we get:

dF
F
= −σpρndx . (11)

We integrate (11) to obtain:

F(x) = F0 exp(−σpρnx) . (12)

The opacity is defined from the attenuation of radiation
intensity through a medium and is given by
I(x) = I0 exp(−κρx), where I is the intensity, therefore:

κ =
σp

mp
, (13)

where κ is the opacity, σp is the cross section of a particle,
and mp is the mass of a particle.

The radiation pressure cross section considers an ion
above the surface of a star. Let us assume that the ion is in
equilibrium, meaning that the gravitational force exerted by
the star on the atom is equal to the radiation pressure from
the radiation flux coming from the surface of the star times
the cross section of the ion. Therefore, we get:

GMmp

R2 = σp
1
3

aT 4 , (14)

where G is the gravitational constant, M the mass of the star,
R the radius of the star, mp the mass of an ion, σp the cross
section of an ion, T the temperature, and a the radiative con-
stant.

Note that the radiation pressure just above the surface is
the same as the radiation pressure below the surface. This can
be proven but is outside scope of our discussion.

Combining (9) and (14) we get:

κ =
4
3
σp

mp
. (15)

This equation differs slightly from (13) due to factors in-
troduced in the derivation of the radiative heat transfer equa-
tion (3). The factor 3/4 in equation (3) comes from the fact
that a collimated radiation flux was used to compute the ra-
diation pressure dependency on the flux [3]. The two cross
section calculation approaches provide a consistency check
across the different models. We see that the optical and ra-
diation pressure cross sections mean the same thing; it is the
cross section of an ion exposed to photon flux.

3.3 Opacity and cross-section calculations

Now let us confront the model for stars dominated by radia-
tion pressure in the photosphere with actual data. The stars
dominated by radiation pressure must be those with low aver-
age densities and high photosphere temperatures and include
the most massive stars. We included in this group blue giants,
carbon stars, all the supergiants and hyper giants (red to blue),
and all the Wolf-Rayets. Then we did a linear regression of
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photosphere temperature against M1/4R−1/2, where tempera-
ture is in Kelvin, mass M in kilograms, and radius R in me-
ters (see figure 4). We obtained a linear equation with slope
α = 35.87 [K kg−1/4 m1/2] and determination coefficient R2

standing at 93%. Using the formalism of equation (14), we
obtain the below cross section to particle mass ratio function
of the slope α:

σp

mp
=

3G
aα4 . (16)

The cross section σp expresses the surface of the ion ex-
posed to photon flux.

By considering a hydrogen ion having a mass mp = 1.67×
10−27 kg, we obtain a cross section σp = 2.67 × 10−28 m2.
This cross section is equal to four times the Thomson cross
section for the scattering of a free electron by radiation. The
Thomson cross section of free electron scattering is expressed
as follows:

σT =
8π
3

(
q2

4πϵ0mc2

)2

= 6.65 × 10−29 m2 , (17)

where q is the charge of the electron, ϵ0 is the permittivity of
free space , m is the mass of the electron, and c is the speed
of light.

For comparison purpose, the radius of a proton is about
8.8 × 10−16 m, which works out to a cross section of 2.43 ×
10−30 m2, which is about hundred times less than the cross
section we computed. The radius of a hydrogen atom from
the Bohr model is about 5.3 × 10−11 m, or a cross section
of 8.82 × 10−21 m2, which is about 33 million times larger
than the cross section we computed. In contrast, the cross
section of hydrogen ion exposed to photon flux we computed
is four times the Thomson cross section for the scattering of
free electrons.

The corresponding opacity κ is 0.160 m2 kg−1 given (13)
or 0.213 m2 kg−1 given (15). Opacity remains fairly consis-
tent across the range of photosphere temperatures (2,200 K
to 245,000 K), and photosphere compositions (different hy-
drogen to helium ratio) for the stars in our sample. Wolf-
Rayet stars generally exhibit strong helium lines in their at-
mosphere. For example, Wolf-Rayet star WR136 which is
among our sample set was determined to have an atmospheric
composition of 86.5% helium, 12% hydrogen and 1.5% nitro-
gen by mass based on analysis of its spectra [4]. The red hy-
pergiant star WOH G64 has a broad number of emission lines
in its spectrum including Hα ,Hβ, [O I], [N I], [S II], [N II],
and [O III] [5]. Despite the limited data available on helium
to hydrogen ratio estimates for these stars, the variability of
stellar spectra in our sample would suggest that opacity is not
sensitive to the composition of the photosphere, unless all of
these stars have lost their outer hydrogen layer. For example,
if the ratio σp

mp
is higher for hydrogen than for helium, ac-

cording to (14), stars dominated by radiation pressure in the

photosphere would preferentially lose hydrogen through their
surface while retaining their helium.

Ionisation supposedly depends on temperature. However,
the wide range of photosphere temperatures in the sample
would suggest that the degree of ionisation is not relevent.
This could be indicative of the process contributing to radia-
tive opacity in the photosphere. For bound-free transitions
which consist of the absorption of radiation by an electron
bound to an ion, and free-free transitions which consist of
the absorption of a photon by an unbound electron moving in
the field of an ion, the Rosseland opacity is a function of the
temperature and hydrogen fraction, and exhibits the depen-
dency with temperature κ ∝ ρT−7/2 as per Kramers’ law. This
is quite unexpected as the data do not show such a depen-
dency; otherwise, the regression in Figure 4 would not be lin-
ear. Instead, temperature would be proportional to the square
of M1/4R−1/2. As this is not the case, these opacity models do
not seem to adequately describe stellar photosphere plasma.

4 Stars dominated by gas pressure in the photosphere

4.1 Estimation of the density in the solar photosphere

The density of the photosphere is an important parameter re-
quired to solve the heat transfer equation for stars. A way
to probe the density of the photosphere of the Sun is by using
limb darkening. Limb darkening is the observation of the cen-
ter part of a star appearing brighter than the edge or limb of
the luminous disk. This effect is due to the thermal gradient
and transparency of the photosphere. The intensity of light
at the center of the disk corresponds to the black-body spec-
trum at an optical depth of 2/3 because of the transparency
of the photosphere. The intensity of light at the edge of the
disk corresponds to the black-body spectrum at the surface of
the photosphere, which is cooler than the temperature at an
optical depth of 2/3. The intensity of light travelling through
a semi-transparent medium is expressed as follows:

I(x) = I0 exp(−κρx) , (18)

where κ is the opacity, ρ the density, and x the depth of the
medium.

Therefore, the distance from the surface at an optical
depth of 2/3 corresponding to 1/3 of the intensity going
through is expressed as follows:

l = − ln(1/3)
κρ

. (19)

Let us say T0 is the temperature at the limb which is the
surface of the photosphere, and T2/3 is the temperature at the
center of the disk or an optical depth of 2/3. Hence, the tem-
perature gradient is expressed as follows:

dT
dr
=

T0 − T2/3

l
, (20)

where l is given by (19).
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Fig. 4: Photosphere’s temperature versus M1/4R−1/2 ratio for stars dominated by radiation pressure in the photosphere.

Within a star heat transfer is dominated by the process
having the lowest thermal gradient. We know that for the ex-
ternal layer of the Sun, the temperature is too low for radiative
heat transfer to be efficient, and convective heat transfer dom-
inates. The thermal gradient of convective heat transfer in a
gas is the adiabatic gradient. From limb darkening we get T0
and T2/3. Therefore, using (19) and (20), we can estimate the
density of the photosphere.

The ratio of the intensity at an angle θ to intensity at the
center of the star from limb darkening is expressed as follows
[6]:

I(θ)
I(0)
=

2
5
+

3
5

cos(θ) . (21)

The intensity at the limb is the intensity at an angle θ = π2 .

Therefore, the ratio of the intensity at the limb to the intensity
at the center of the star is 0.4. From Stefan-Boltzmann law,
we get the ratio of the temperature at the limb to the temper-
ature at the center:

T0

T2/3
= 0.41/4 . (22)

The average temperature of the solar photosphere is about
5,800 K. Let us say the temperature at the center of the disk
is T2/3 = 6,300 K. Hence, the temperature at the limb is T0=

5,010 K.
The adiabatic gradient is the temperature gradient obtai-

ned for a gas parcel as it rises, assuming an ideal gas. For
an ideal gas we have P = (R/µ)ρT , where R is the ideal gas
constant and µ the molar weight. As we move a gas parcel
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upwards an infinitesimal distance, the variation in pressure is
given by:

dP
dr
=

R
µ

(
ρ

dT
dr
+ T

dρ
dr

)
=

P
T

dT
dr
+

P
ρ

dρ
dr
. (23)

For an adiabatic gas, we also have P = Kργ, hence:

dP
dr
= Kγργ−1 dρ

dr
= γ

P
ρ

dρ
dr
. (24)

Combining (23) and (24) we get:

dT
dr
= (γ − 1)

T
P

P
ρ

dρ
dr
=

(
γ − 1
γ

)
T
P

dP
dr
. (25)

From hydrostatic pressure, we have:

dP
dr
= −GM

R2 ρ . (26)

Combining (25) and (26) with P = ρ
mp

kT we get:

dT
dr
= −

(
γ − 1
γ

)
GM
R2

mp

k
, (27)

which is the adiabatic gradient at the stellar surface, where
k is the Boltzmann constant, G the gravitational constant, M
the mass of the star, R the radius of the star, mp the mass of a
gas molecule.

For a monoatomic gas γ = 5
3 . Hence, the adiabatic gra-

dient at the surface of the sun is 0.013 K/m. In contrast, the
standard solar model uses an adiabatic gradient of 0.010 K/m.

Hence, the density of the photosphere of the Sun from
(19) and (20) is:

ρ = −1
κ

ln(1/3)(
T2/3 − T0

) dT
dr
, (28)

which yields a density of 6.92×10−5 kg/m3, whereas the stan-
dard solar model uses a photosphere density of about
10−6 kg/m3 [7]. For the calculation, we used the opacity ob-
tained in section 3.3.

4.2 Calculation of the cross section per hydrogen nuclei
from gas pressure

Let us consider an ion above the stellar surface. A condition
to have a stable surface is that the gravitational force exerted
by the star on the ion is offset by the repulsive force due to
gas pressure. Assuming an ideal gas, we get:

GMmp

R2 = σe f
ρ k T
mp
, (29)

whereσe f is the effective cross section, mp is the mass per hy-
drogen nuclei, M is the mass of the star, G is the gravitational
constant, R is the radius of the star, ρ is the mass density in
the photosphere, k is the Boltzmann comstant, and T is the
temperature.

Although the photosphere is about 500 km thick, mod-
elling the photosphere as a surface makes sense. As shown
in figure 5, we can see a clear surface of dense plasma at the
photosphere of the Sun. Note that in equation (29) we did not
consider the electromagnetic forces. Because free electrons
are lighter than the protons, they should tend to escape the
surface much easier. However, the plasma may have mecha-
nisms in place to keep its neutrality. For example, a positively
charged surface would retain the electrons while pushing out
the protons. Equation (29) provides a net cross section from
gravity alone and does not model such an effect.

The gas pressure due to molecular collisions is somehow
different than radiation pressure. When a photon collides with
a surface, the momentum vector is applied in the direction of
the trajectory of the photon. For molecular gas collisions,
it is like playing pool. Considering molecules of spherical
shape, the momentum vector is normal to the sphere, meaning
it is applied along the axis between the point of impact of the
collision and the center of the sphere. Therefore, we need
to introduce a shape coefficient to relate the effective cross
section to the geometrical cross section of the molecule.

Let us consider a force f exerted on a sphere of radius r.
The surface element is dS = r2 sin(θ) dθ dφ. The projection
of the force f on the z-axis is fz = f cos(θ), where θ is the
angle between the z-direction and and the vector f. The effec-
tive force is the average of fz over the half sphere. Hence, the
effective force is computed as follows:

fe f =
1

2πr2

∫ 2π

φ=0

∫ π/2

θ=0
f cos(θ)r2 sin(θ) dθ dφ . (30)

Because sin(θ) cos(θ) = sin(2θ)
2 , we get:

fe f =
f

4π

∫ 2π

φ=0

∫ π/2

θ=0
sin(2θ) dθ dφ . (31)

We get:

fe f =
f
2
. (32)

Therefore, the geometric cross section is twice the effec-
tive cross section from gas pressure: σg = 2σe f , where σg
is the geometric cross section and σe f the effective cross sec-
tion.

From (29) and the density we obtained in section 4.1, we
get an effective cross section of 1.33×10−28 m2 or a geometric
cross section of 2.66×10−28 m2. In section 3.3, we obtained a
cross section to photon flux of 2.67×10−28 m2. Hence, in the
plasma the cross section per hydrogen nuclei from gas pres-
sure is virtually the same as the cross section from radiation
pressure.

Neutral hydrogen atoms in the Bohr model are represen-
ted with the nucleus at the center and an electron in orbit
around the nucleus. The Bohr model yields a radius of
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Fig. 5: Image of the solar surface. Credit: NASA/GSFC (December 2000)

5.3 × 10−11 m for the hydrogen atom with a corresponding
cross section of 8.82 × 10−21 m2. Hydrogen cross sections
have been obtained from electron collisions yielding cross
sections on the order of 10−21 m2 for ionized hydrogen [8]. A
precise value was measured by [9], who obtained a cross sec-
tion of 3.86 × 10−21 m2 using photodetachment of negatively
charged hydrogen ions H−, that is in close agreement with
the Bohr model. The fact that we obtained a much smaller
cross section per hydrogen nuclei suggests that in a plasma,
the electrons are virtually detached from the nuclei. There-
fore, a hydrogen plasma may be represented as a gas mixture
of electrons and protons. Hence, the total pressure would be
equal to the sum of the partial pressure of the electrons and
protons.

Assuming that the electrons and protons are at the same
temperature, the adiabatic gradient we computed with
eq. (27) should be divided by two, and the density in the pho-
tosphere would be half the estimate we obtained, leaving the
cross section unchanged. For the proton and electron temper-
atures to equilibrate, the Coulomb collision rates would need
to dominate to allow energy transfer between the electrons
and protons. Most plasmas are considered weakly collisional,

which means that the Coulomb collision rates are negligible
compared to other processes that control the velocity distri-
butions. Therefore, if we assume that the temperature of the
electrons is much lower than the temperature of the protons,
we can neglect the electron pressure; and if it is the reverse,
then we can neglect the proton pressure, provided that both
particles are on the ideal gas domain.

Electrons and protons are fermions, meaning they are
modelled as a Fermi gas. Fermions are particles described by
the Fermi-Dirac distribution thus obeying the Pauli exclusion
principle. Whenever the average interparticular separation is
much larger than the average de Broglie wavelength of the
particules, the Fermi-Dirac distribution can be approximated
by the Maxwell-Boltzmann distribution, and the Fermi gas
behaves similarly to an ideal gas [10]:

R̄ ≫ h
√

3mkT
, (33)

where R̄ is the average interparticle separation, h the Planck’s
constant, m the mass of the particle, k the Boltzmann con-
stant, and T the temperature.

This condition is satisfied in the solar photosphere for
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both the electrons and protons, hence we can use the ideal
gas equation as an approximation in the photosphere.

Note that if the particles in the plasma of the solar photo-
sphere were made of large ions or atoms such as the ones we
find in gases, according to (29), the surface of the Sun would
evaporate due to the high temperatures.

5 Conclusion

In the present study we collected stellar data (mass, radius, lu-
minosity and surface temperature) for a set of 360 stars. From
stars dominated by radiation pressure in the photosphere, we
estimated the opacity, a key parameter for radiative heat trans-
fer. As radiative heat transfer is no longer efficient in the so-
lar convective zone where heat transfer occurs by convection,
we assumed the adiabatic gradient of a monoatomic gas for
the solar photosphere. We then estimated the density in the
photosphere of the Sun using limb darkening. Photosphere
density is a boundary parameter required for the solar model.
We also considered that the stellar photosphere can be mod-
elled as a surface. Hence, for an hydrogen ion in equilib-
rium in the photosphere, the force exerted by the gravitation
of the star on the ion should be offset by the radiation and
gas pressure. Therefore, we computed the cross section per
hydrogen nuclei from radiation pressure for stars dominated
by radiation pressure in the photosphere, and from gas pres-
sure for stars dominated by gas pressure in the photosphere.
We found that the cross section per hydrogen nuclei in stellar
plasma is about 2.66 × 10−28 m2 from both radiation and gas
pressure. The cross section of neutral hydrogen as given by
the Bohr model for an electron in orbit around the nucleus is
8.82 × 10−21 m2, which suggests that the electrons and pro-
tons in the plasma are virtually detached. Hence, a hydro-
gen plasma may be represented as a gas mixture of electrons

and protons. If the stellar photosphere was made of large
hydrogen atoms or ions such as the ones we find in gases,
the surface of the photosphere would evaporate due to the
high temperatures. This result could impact stellar models
as we would have to add together the partial pressures of the
electrons and the protons in the plasma.
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