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In an earlier publication, we showed that a slightly varying cosmological term is a nec-

essary ingredient to restore the true tensor nature of the gravitational field produced by

neutral matter. As a result, this term induces a background field filling the entire vac-

uum. The global energy-momentum tensor of matter and its gravity field is proved to

be intrinsically conserved like the Einstein tensor, once it has been identified with the

Rosenfeld-Belinfante symmetric tensor. Within the GR representation in the absence of

matter, the remnant field never vanishes and we showed that it represents the lower hori-

zon state of the Lorentzian space-time vacuum. In what follows, we work out a 4th rank

tensor theory of gravity which formally leads to have the background field superim-

posed onto the large scale structure of space-time classically described by the de Sitter

Universe with a cosmological constant. Our 4th rank tensor theory thus substantiates

the recent investigations which would adopt the de Sitter Space-time as a mathematical

frame more general that the Minkowski space.

Introduction

By introducing a space-time variable term Ξ that supersedes

the so-called cosmological constant Λ in Einstein’s field

equations, we formally showed that the gravity field of a (neu-

tral) massive source is no longer described by an ill-defined

pseudo-tensor, but it is represented by a true canonical ten-

sor [1]. As a result, the physical space should be always filled

with a homogeneous vacuum background field [2] which is

described by a tensor on the r.h.s. of the Einstein’s “source

free” equations. Inspection shows that the matter-gravity ten-

sor must be identified with the Rosenfeld-Belinfante symmet-

ric tensor [3, 4], thus complying with the intrinsic conserva-

tion property of the Einstein tensor as it should be. Regarding

the vacuum background field, it was shown to be a space-

time contraction unveiling a low horizon state, arising from

the geodesics incompleteness postulate [5]. Conversely, it is

desirable to analyze the background field nature in the larger

scale. To this effect, we suggest here a 4th rank tensor theory

based on the full Riemann curvature, and which suitably gen-

eralizes the Einstein-Ricci 2nd rank tensor formulation. Un-

like many attempts of the kind, our mathematical approach

does not trivially entail Einstein GR theory. In fact, due to

its peculiar formulation, it leads to view the usual Einstein

equations as merely initial conditions following the Cauchy

problem.

As will turn out, such a broader theory clearly grants the

background field a sound macroscopic meaning. When mat-

ter is absent, it closely follows the pattern of the constant cur-

vature space-time described by the de Sitter metric when the

term Ξ is reduced to the cosmological constant Λ.

In this way, the vacuum background field may be regarded

as an intrinsic property of the basic physical structure of our

Universe.

Notations

Space-time Greek indices run from α = β: 0, 1, 2, 3, while

spatial Latin indices run from a = b: 1, 2, 3. The space-time

signature is −2. In the present text, κ is Einstein’s constant

8πG/c4 = 8πG with c = 1.

1 The background field and the gravitational field ten-

sor (reminder)

In a pseudo-Riemannian manifold V4, let us first set the fol-

lowing tensor densities

gαβ =
√

−ggαβ , (1.1)

Gαβ =
√
−g Gαβ (Einstein tensor density), (1.2)

G
α
β =
√
−g Gα

β , (1.2bis)

Rαβ =
√
−g Rαβ (Ricci tensor density). (1.2ter)

In density notations, the usual field equations with a mas-

sive source then read

Gαβ = Rαβ − 1

2
gαβR − gαβΛ

√
−g = κTαβ, (1.3)

where

Tαβ =
√
−g Tαβ

while Λ is the so-called cosmological constant.

However, unlike the Einstein tensor Gαβ which is concep-

tually conserved, the conditions

∂αT
α
β = 0 (1.4)

are never satisfied in a general coordinates system [6]. To

cure this problem, we have demonstrated once more the con-

servation condition

∂α
[

(Tαβ )matter + (t
β
α)gravity

]

= 0 , (1.5)
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but where (t
β
α)gravity is no longer a pseudo-tensor density.

To achieve this, we introduced a space-time varying term

Ξ in place of the cosmological constant Λ, and whose scalar

density is denoted by

ζ = Ξ
√
−g . (1.6)

Its variation is given by

ζ =
√
−g ∇a κ

a = ∂a

(√
−g κa

)

(1.7)

and the term

ζ =
√
−g ∇a κ

a (1.8)

is related to the vacuum volume expansion scalar θ = ∇a θ
a

(see [7] for detail).

Such a form allows to maintain the original Einstein La-

grangian density as

LE =
√
−g gαβ

[{

ν
αβ

} {

λ
λν

}

−
{

λ
αν

} {

ν
βλ

}]

, (1.9)

the latter expression being used to derive the new canonical

gravity tensor attached to a mass:

(tαβ )gravity =
1

2κ

[{

α
γµ

}

∂β g
γµ −

−
{

γ
γµ

}

∂β g
µα − δαβ (LE − ζ)

]

, (1.10)

ζ can be regarded as a Lagrangian density characterizing a

specific vacuum background field which pre-exists in the ab-

sence of matter. Close inspection of equation (1.10) shows

that local gravitational field of matter is just a mere “excited

state” of the background field. Sufficiently far from the mas-

sive source, (tα
β
)gravity → (tα

β
)background.

2 Symmetrization of the gravity tensor

The tensor density (1.10) includes the Einstein-Dirac pseudo-

tensor density [8] which is not symmetric.

Symmetrizing the canonical tensor (Θα
β
)gravity extracted

from (tα
β
)gravity =

√−g (Θα
β
)gravity is equivalent to identifying

it with the Belinfante-Rosenfeld tensor:

(tγβ)gravity = (Θγβ)gravity + ∇αΥγβα (2.1)

with

Υγβα =
1

2

(

S γβα + S βγα − S αβγ
)

, (2.2)

where the antisymmetric tensor S αβγ is the contribution of the

intrinsic angular momentum. Now, we check that:

∇α (Θαβ )gravity = ∇α (tαβ )gravity = 0 . (2.3)

Far from matter (tαβ)gravity → (tαβ)background and Υαβγ = 0.

By essence, (tαβ)background is thus symmetric.

The field equations with a (neutral) massive source to-

gether with its gravity tensor can now be explicitly written

down

Gαβ = Rαβ −
1

2
gαβR = κ(Tαβ)global , (2.4)

where

(Tαβ)global = (Tαβ)matter + (tαβ)gravity (2.5)

with, for example (Tαβ)matter = ρuαuβ (here ρ is the homoge-

neous mass density).

3 The 4th rank theory of the gravitational field

3.1 The new field equations

We now state that the true gravitational field equations with

a source are the 4th rank tensor equations

G α
βγ µ = κT α

βγ µ , (3.1)

where

G α
βγ µ = R α

βγ µ −
1

2
R
(

δαγ gβµ − δαµ gβγ
)

(3.1bis)

and

T α
βγ µ = δ

α
γ(Tβµ)global − δαµ(Tβγ)global (3.2)

is the generalized energy-momentum tensor.

Our assumption can be legitimized by the following con-

siderations. From Bianchi’s second identities [9]

(s)αβγ∇αRβγλµ = 0 , (3.3)

where (s) denotes the cyclic sum, we easily infer [10]

∇αR α
βγ µ = ∇γRβµ − ∇µRβγ , (3.4)

hence

∇αG α
βγ µ = ∇γRβµ − ∇µRβγ −

1

2
∇αR

(

δαγgβµ − δαµ gβγ
)

(3.5)

i.e.

∇αG α
βγ µ = ∇γRβµ−∇µRβγ−

1

2
∇γRgβµ+

1

2
∇µRgβγ . (3.5bis)

The right hand side equation is obviously zero, therefore:

∇αG α
βγ µ = 0 . (3.6)

The tensor

G α
βγ µ = δ

α
γ Rβµ − δαµ Rβγ −

1

2
R
(

δαγ gβµ − δαµ gβγ
)

(3.6bis)

is thus intrinsically conserved as is the case for the Einstein-

Ricci tensor Gβµ, and we call it the Einstein 4th rank tensor.

In addition, we also have:

∇α T α
βγ µ = ∇α

[

δαγ(Tβµ)global − δαµ(Tβγ)global

]

= 0 . (3.7)

Proof:

δαγ(Tβµ)global = δ
ν
γ gβν(T

α
µ )global = gβγ(T

α
µ )global (3.8)

and since∇α (Tα
µ )global = 0 according to our initial demonstra-

tion, then ∇α
[

δαγ (Tβµ)global

]

= 0. The same reasoning holds

for δαµ(Tβγ)global

δαµ(Tβγ)global = δ
ν
µgβν(T

α
γ )global = gβµ(T

α
γ )global (3.8bis)
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which finally yields (3.7).

Equations (3.6) and (3.7) tell us that the conservation con-

ditions are fully satisfied by the system:

G α
βγ µ = κT α

βγ µ . (3.9)

Hence, T α
βγ µ

is confirmed to be the appropriate generalization

of the energy-momentum 2nd rank tensor (Tγµ)global.

How do the Einstein second rank tensor equations fit in

the theory?

3.2 Some hypothesis on the Cauchy problem

Let us consider again (3.1bis) and (3.2)

G α
βγ µ = δ

α
γ Rβµ − δαµ Rβγ −

1

2
R
(

δαγ gβµ − δαµ gβγ
)

,

T α
βγ µ = δ

α
γ(Tβµ)global − δαµ(Tβγ)global ,

and by subtraction we have:

δαγ

[

Gβµ − κ(Tβµ)global

]

− δαµ
[

Gβγ − κ(Tβγ)global

]

= 0 (3.10)

i.e.

Pβµ − Pβγ = 0 . (3.10bis)

where P = G − κT = 0 are the Einstein equations with a

source which read in mixed indices as:

Pα
β = 0 . (3.11)

Both relations (3.10bis) and (3.11) then strongly suggest

that the Einstein equations P = 0 can be regarded as mere

initial conditions on a spacelike hypersurface Σ defined on

V4. To see this, consider Σ on which is given Pα
β
= 0, we

must show that upon the above conditions, P = 0 also holds

beyond Σ [11].

For β = 0 and α reduced to spatial indices i, k = 1, 2, 3,

equation (3.10bis) can be expressed by

P0µ = P0γ (3.12)

and (3.11) becomes:

g00Pi0 = −2gi0P00 − gikPk0 (3.12bis)

Now, if the hypersurface Σ admits the local equation

x0 = 0, we have g00 , 0 which means that P = 0 would

also hold beyond Σ.

On the hypersurfaceΣ, the zero initial data require that the

system (3.12)–(3.12bis) admits nothing but the zero solution

leading to P = 0 as well. This is what we wanted to show.

In relation with (3.12), one may regard the equations

G α
β0 µ − κ

[

δα0 (Tβµ)global − δαµ(Tβ0)global

]

= 0 (3.13)

as constraint equations for the initial data at the time x0 = 0

which are usually set in the Cauchy problem. For a particular

example see [12].

3.3 Newton’s law

Let us consider the massive tensor classically expressed by

(Tαβ)global = ρuαuβ + (tαβ)gravity (3.14)

which becomes here

T α
βγ µ = δ

α
γ

[

ρuβuµ + (tβµ)gravity

]

−

− δαµ
[

ρuβuγ + (tβγ)gravity

]

. (3.15)

When the spatial 3-velocities are low and the gravitational

field is weak, the static case corresponds to the Newton’s law

for which u0 = 1 in an orthonormal basis. In the framework

of our theory, this translates to:

G i
0i 0 = κT i

0i 0 (3.16)

Explicitly: the left hand side is easily shown to reduce to:

G i
0i 0 = R00 −

1

2
Rg00 . (3.17)

In the same way, the right hand side of (3.16) reduces to:

T i
0i 0 = ( ρ + tgravity). (3.17bis)

As usual, we can re-write the field equations as

R0
0 = κ

[

( ρ + tgravity ) − 1

2
δ0

0( ρ + tgravity )

]

(3.18)

which eventually yields with the explicit value of the Ein-

stein’s constant

R0
0 = 4πG ( ρ + tgravity ) , (3.19)

where G is Newton’s constant.

We then retrieve the Poisson equation which is also ex-

pressed by:

∆ψ = 4πGρ′. (3.19bis)

We have set: ρ′ = ρ + tgravity because we consider a sta-

tionary gravity field (in a general case, the gravity field is

“dragged” along with the mass and ρ′ = ρ + tgravity no longer

holds). With the metric approximation:

g00 = 1 + 2ψ , (3.20)

where ψ is the Newton’s gravitational potential

ψ = −G

∫

ρ′

R
dV , (3.21)

while R is here the distance from the observer to the volume

element dV . Integration is performed over a volume V which

comprises both the bare mass and its (stationary) gravitational

field.
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4 The background field in our Universe

We now come to the persistent field appearing in the 2nd rank

tensor field equations when matter is absent. These are

Gβγ = Rβγ − 1

2
gβγR = κ(tβγ)background (4.1)

with

(tαβ)background =
Ξ

2κ
gαβ . (4.2)

Expressed in the framework of the 4th rank tensor theory, this

yields:

G α
βγ µ = R α

βγ µ −
1

2
R
(

δαγ gβµ − δαµ gβγ
)

=

=
Ξ

2

(

δαγ gβµ − δαµ gβγ
)

. (4.3)

In virtue of ∇αG α
βγ µ
= 0, the r.h.s. is conserved:

∇α
[

Ξ

2

(

δαγ gβµ − δαµ gβγ
)

]

= 0 . (4.3bis)

The latter equation is worthy of attention, for the term Ξ

never happens to be a constant as could be (ambiguously) the

case for ∇αGαβ = ∇α Ξ2 g
αβ.

This lends support to the fact that only a 4th rank ten-

sor theory can strictly describe a metric with a variable cos-

mological term. Therefore, after interchanging α with β, we

find:

Gαβγµ =
Ξ

2

(

gαγ gβµ − gαµ gβγ
)

. (4.4)

The latter equations constitute here the 4th rank tensor

background field equations which characterize the fundamen-

tal structure of physical space-time.

They adequately generalize the Einstein space endowed

with the cosmological constant Λ defined as:

Gβγ = Rβγ = Λ gβγ . (4.5)

For a specific value of Ξ, we retrieve the space-time of

constant curvature [13], which characterizes the de Sitter Uni-

verse when 3Λ = R [14]:

Rαβγµ =
R

12

(

gαγ gβµ − gαµgβγ
)

. (4.6)

Finally, let us emphasize a major point. In a Universe

devoid of matter described by equations (4.4), the Weyl con-

formal trace-free tensor Cαβγµ never vanishes, in contrast to

the de Sitter model equipped with curvature (4.6). However,

the Weyl tensor being that part of the curvature which is not

determined locally by the matter distribution, there is no rea-

son why it should disappear in an “empty” model of space-

time. Hence, our approach of a Universe with a pervasive

background field proves to be physically consistent for it pre-

serves the Weyl tensor, whatever its content.

So, as expected from our 2nd rank tensor field equations

(4.1), the case Gα
βγ µ
= 0 will never occur.

Conclusion

Our 4 th rank tensor gravitational field theory appears to be

the appropriate extension of the 2nd order Einstein-Ricci for-

mulation.

However, it should be noted that the presented theory does

not use the well-known Bel-Robinson tensor [15] which gave

birth to the very thorough paper of R. Debever on Super En-

ergy [16].

The presented remarkably simple theory is partly inspired

from a lecture given by A. Lichnérowicz in a Paris seminar

dedicated to linearized field quantization solutions prior to

their global formulation [17]. We have however substantially

modified this theory allowing for a clearer physical signifi-

cance of the vacuum background field on the very large scale

structure of space-time.

Indeed, when matter is absent, the intrinsic curvature of

space-time is modeled by the background field through its

variable term Ξ, just as de Sitter’s empty Universe does with

its cosmological constant Λ arbitrarily introduced.

Such a close similarity with the de Sitter curvature should

not come as a surprise. The de Sitter metric recently saw

some revived interest among several physicists [18–20]. They

conjectured that the laws of physics are invariant under the

symmetry group of de Sitter space (maximally symmetric

space-time), rather than the Poincaré group of special rela-

tivity. The full Poincare group is the semi-direct product of

translations T with the Lorentz group L = SO(3, 1): P =

L ⊗ T. The latter acts transitively on the Minkowski space M

which is homogeneous under P.

In the framework of a generalized group where transla-

tions mix up non trivially with rotations, the requirements

of homogeneity and isotropy lead ipso facto to the de Sitter

Universe with a uniform scalar curvature. More specifically,

the de Sitter space whose metric is induced from the pseudo-

Euclidean metric (+1,−1,−1,−1,−1) has a specific group of

motion which is the pseudo-orthogonal group SO(4, 1) [21].

Then, de Sitter group obviously involves an additional length

parameter l which is related to the (positive) cosmological

term by:

Λ =
3

l2
.

The Poincaré group “contracts” to the Galilean group for low

velocities.

Analogously the de Sitter group “contracts” to the Poin-

caré group for short distance kinematics, when the order of

magnitude of all translations are small compared to the de Sit-

ter radius. (See: Wigner and Inönü, for the group contraction

concept [22]). These distances are probed by high energies

meaning that quantum effects must be taken into account. In

that case, when we have Λ → ∞, this would correspond to

ΛP = 3/l2
P
, where lP is the Planck length. If Λ→ 0, however,

the underlying space-time would reduce to the Minkowski

space.
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From the fundamental vacuum field equations (4.4), the

variable term Ξ would represent a fluctuation between two

appropriate values of Λ wherein the de Sitter space-time can

be fully represented. In this view, the 4th rank tensor field

equations are to the de Sitter space-time, what the 2nd rank

tensor field equations are to the Minkowski space.
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