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The responsibility of the electric field E in the modification of the nature of the space
is proved. We investigate the way the fundamental strings are related to super-gravity
background of D5-branes; i.e. once the endpoints of the D-strings are electrified the flat
space becomes curved. We study the electrified relative and overall transverse pertur-
bations of fuzzy funnel solutions of intersecting (N,N f )-strings and D5-branes in flat
and super-gravity backgrounds respectively. As a result the perturbations have a dis-
continuity which corresponds to a zero phase shift realizing Polchinski’s open string
Neumann boundary condition. And once the electric field E is turned on in flat space
these perturbations decrease and when E is close to the critical value 1/λ the perturba-
tions disappear forever and the string coupling becomes strong. At this stage the space is
considered curved and the electric field is responsible for this effect. This phenomenon
is also enhanced by the behavior of the potential V associated to the perturbations Φ
on the funnel solutions under the influence of the electric field. The potential goes too
fast to −∞ when E goes to the critical value 1/λ in flat space which looks like a kink
to increase the velocity for Φ to disappear. But in curved space and close to the inter-
secting point we do not find any perturbation for all E and there is no effect of E on V
and this is a sign to the absence of the perturbation effects in super-gravity background.
This clarifies the existence of a relation between the electric field and the super-gravity
background.

1 Introduction

The present work proves the fact that the flat space becomes
curved because of the presence of the electric field. We use
the non-Abelian Dirac-Born-Infeld (DBI) effective action for
this study. Many results using this action have dealt with
brane intersections and polarization [1–3, 5, 6, 18]. The study
of brane intersections has given a realization of non-commu-
tative geometry in the form of so-called fuzzy funnels [7–13].
In the context of time dependence in string theory from the
effective D-brane action, we expect that the hyperplanes can
fluctuate in shape and position as dynamical objects.

We deal with the branes intersection problem of (N,N f )-
strings with D5-branes in flat and curved spaces by treating
the relative and overall transverse perturbations. And it will
be devoted to extend the research begun in [9, 12, 13]. The
duality of intersecting D1-D3 branes in the low energy ef-
fective theory in the presence of electric field is found to be
broken in [11] but the duality of intersecting D1-D5 branes
discussed in [12] is unbroken in the same theory with the elec-
tric field switched on which allows us to be more interested
by the study of the intersecting D1-D5 branes.

We observe, in section 2, that the most lowest energy is
gotten as the electric field E is approximately its critical value
1/λ (λ = 2πℓ2

s and ℓs the string length) and also as E is going
to 1/λ the physical radius is going to the highest value and
then D5-brane is getting bulky.

The analysis we give in sections 3 and 4 proves that the
perturbations have a discontinuity which corresponds to zero

phase shift and then the string is Polchinski’s open string
obeying Neumann boundary condition. Hence the endpoints
lie on the hyperplane are still free to move in.

We also look for more effects of E on the perturbations
and the associated potentials. The behavior of the perturba-
tions in both backgrounds is as follows: in flat space (section
3), the perturbations are disappearing because of the presence
of E and when E ≈ 1/λ we end by no perturbation and our
system is stable; and in curved space (section 4) we did not
get any perturbation for all E which means the presence of
the super-gravity does not allow any perturbation to appear in
the same way that E does in flat space.

The effect of E on the potentials associated to the pertur-
bations in flat and curved spaces is the following: the poten-
tial is going down too fast to a very low amplitude minima
(−∞) in flat space as E is going to its maxima, this is inter-
preted as inducing an increase in the velocity of the perturba-
tion to disappear; and in curved space the effect of E on the
potential is absent.

The comparison of the flat and curved cases leads us to
say if E or super-gravity is present then the perturbations
should be absent. This looks like E affects the flat background
of D5-brane and transformed it to super-gravity background
where the objects are stable. Consequently, we can think of
E and super-gravity as dual.

It’s known that in curved space the string coupling gs is
strong. And from our study the electric field E is fixed in
terms of gs by the relation E = 1

λ
(1 + (N/N f gs)2)−1/2. Then
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if E ≈ 1/λ that means N f gs ≫ 1 and gs is strong. In this
case the system should be described by Quantum Field The-
ory (QFT) in curved space where no perturbations show up.
Hence our electric field is sending us to another theory such
that our space is not flat any more.

The effect of the electric field is clear in this work. E in-
creases the volume of D5-brane and decreases the low energy
of the system and changes the nature of the background from
flat to curved and tells us the system should now be studied
in QFT in curved space.

We start the study by introducing D1⊥D5 branes and dis-
cussing the influence of the electric field on the low energy
and the volume of D5-brane in section 2. We give the so-
lutions of the linearized equations of motion of the relative
transverse perturbations in flat space and we treat the effect
of the electric field on the perturbations and the associated
potentials in section 3. Then in section 4, we study the over-
all transverse perturbations and their associated potentials in
zero and non-zero modes propagating on a dyonic string in
the super-gravity background of the orthogonal D5-branes
and we look for the effect of the electric field in this case.
The discussion and conclusion are presented in section 5.

2 Intersecting D1 and D5 branes

Let’s briefly review the non-abelian viewpoint of the (N,N f )-
strings which grow into D5-branes by using non-commutative
coordinates [7, 15, 18]. The dual picture is the intersecting
D5 and D1 branes such that (N,N f )-strings can end on D5-
branes, but they must act as sources of second Chern class
or instanton number in the world volume theory of the D5-
branes. Hence D5 world volume description is complicated
because of the second chern term which is not vanishing. The
most important feature of the intersecting D1-D5 branes is
the fact that the duality of this system discussed in [12] in the
low energy effective theory with the electric field switched on
is unbroken.

In the present description, the fundamental N f strings are
introduced by adding a U(1) electric field denoted Fτσ = EIN ,
with IN the N × N identity matrix. In fact the electric field
turns the N D-strings into a (N,N f )-strings by dissolving the
fundamental string degrees of freedom into the world volume.

For a fixed E we consider the quantization condition on
the displacement D = N f

N such that

D ≡ 1
N
δS
δE
=

λ2T1E
√

1 − λ2E2
.

Then the electric field is expressed in terms of string coupling
gs and the number of fundamental strings N f ,

E =
1
λ

1 + (
N

N f gs

)2−1/2

. (1)

The electric field is turned on and the system dyonic is
described by the action

S = −T1

∫
d2σ×

× S Tr
[
−det

(
ηab + λFabλ∂aΦ

j − λ∂bΦ
iQi j

)] 1
2

(2)

with i, j = 1, ..., 5, a, b = τ, σ and using T = 1/λgs such that
λ = 2πl2s with ls is the string length, gs is the string coupling
and Qi j = δi j + iλ[Φi,Φ j]. The funnel solution is given by
suggesting the ansatz

Φi(σ) = ∓R̂(σ)Gi (3)

i = 1, ..., 5, where R̂(σ) is the (positive) radial profile and
Gi are the matrices constructed by Castelino, Lee and Taylor
in [14]. We note that Gi are given by the totally symmet-
ric n-fold tensor product of 4×4 Euclidean gamma matrices,
such that 1

2 [Gi,G j] are generators of SO(5) rotations, and that
the dimension of the matrices is related to the integer n by
N = (n + 1)(n + 2)(n + 3)/6. The funnel solution (3) has the
following physical radius

R(σ) =
√

cλR̂(σ) (4)

with c is the Casimir associated with the Gi matrices, given
by c = n(n + 4), and the funnel solution is

Φi(σ) = ±R(σ)
λ
√

c
Gi . (5)

We compute the determinant in (2) and we obtain

S = −NT1

∫
d2σ

√
1 − λ2E2 + (R′)2

(
1 + 4

R4

cλ2

)
. (6)

This result only captures the leading large N contribution at
each order in the expansion of the square root. Using the
action (6), we can derive the lowest energy ξmin as the electric
field is present and E ∈ ]0, 1/λ[, (the low energy in the case
of intersecting D1-D5 branes when the electric field is absent
was discussed in [15])

ξ = NT1

∫
dσ

[(√
1 − λ2E2 ∓ R′

(
8R4

cλ2 +
16R8

c2λ4

) 1
2
)2

+

+

(
R′ ±

√
1 − λ2E2

(
8R4

cλ2 +
16R8

c2λ4

) 1
2
)2] 1

2

and

ξmin = NT1

√
1 − λ2E2

∫ (
1 +

4R4

cλ2

)2

dσ. (7)

such that

R′ = ∓
√

1 − λ2E2

(
8R4

cλ2 +
16R8

c2λ4

) 1
2

. (8)
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The lowest energy (7) can be rewritten in the following ex-
pression

ξmin = N f gsT1
1 − λ2E2

λE

∫ ∞

0
dσ+

+
6N
c

T5

√
1 − λ2E2

∫ ∞

0
Ω4R4dR+

+NT1

√
1 − λ2E2

∫ ∞

0
dR − ∆ξ.

(9)

In this equation, T5 = T1/(2πls)4 and we can interpret the four
terms as follows; the first term is the energy of N f strings and
the second is the energy of 6N/c ≈ n (for large N) D5-branes
and the third is of N D-strings running out radially across D5-
brane world volume and the last term is a binding energy

∆ξ = 2NT1

√
1 − λ2E2 ×

×
∫ ∞

0
du u4

1 + 1
2u4 −

√
1 +

1
u4


≈ 1.0102 T1lsNc

1
4

√
1 − λ2E2.

(10)

This equation shows that the lowest energy is gotten more
lowest as the value of electric field is more important.

The equation (6) can be solved in the dyonic case by con-
sidering various limits. For small R, the physical radius of the
fuzzy funnel solution (5) is found to be

R(σ) ≈ λ
√

c

2
√

2
√

1 − λ2E2σ
(11)

and for large R the solution is

R(σ) ≈
(

λ2c
√

18
√

1 − λ2E2σ

) 1
3

(12)

with an upper bound on the electric field E < 1/λ for both
cases.

According to equations (11) and (12), we remark that as
the higher order terms in the BI action would effect a tran-
sition from the universal small R behavior to the “harmonic”
expansion at large R (σ goes to zero). The effect we get at
this stage when the electric field is turned on is that R is go-
ing up faster as σ goes to zero once E reaches approximately
1/2λ as shown in Fig. 1, and we are on D5-brane. It looks like
the electric field increases the velocity of the transition from
strings to D5-branes world volume. Also we remark that D5
brane got highest radius once E close to its critical value.

The equations (9) and (12) give us the impression that
the presence of the electric field is an important phenomena;
it decreases the low energy and makes the D5-brane more
voluminous.

In the following sections, we include a perturbation in the
D5-brane configuration by simply adding lower and higher
order symmetric polynomials in the Gi to the matrix configu-
ration. We study the spatial perturbations of the moving D1-
branes as the electric field is switched on.

Fig. 1: Large radius.

3 Flat space

In this section, we examine the propagation of the perturba-
tions on the fuzzy funnel by considering dyonic strings in flat
background. We discuss the relative transverse perturbations
which are transverse to the string, but parallel to the D5-brane
world volume (i.e. along X1,..,5). The overall transverse per-
turbations were studied in [13].

We give the relative transverse perturbations in the fol-
lowing form

δϕi(σ, t) = f i(σ, t)IN , (13)

as zero mode with i = 1, .., 5 and IN the identity matrix. By
inserting this perturbation into the full (N,N f )-string action
(2), together with the funnel (6) the action is found to be

S ≈ −NT1

∫
d2σ

[ (
1 − λ2E2

)
A−

− (1 − λE)
λ2

2

(
ḟ i
)2
+

(1 + λE)λ2

2A

(
∂σ f i

)2
+ ...

] (14)

with

A =
(
1 +

4R(σ)4

cλ2

)2

. (15)

Then, in large and fixed n the equations of motion are

1 − λE
1 + λE

{
1 +

n2λ2

16(1 − λ2E2)2σ4

}2

∂2
τ − ∂2

σ

 f i = 0 . (16)

Let’s suggest that

f i = Φ(σ)e−iwτδxi,
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in the direction of δxi with Φ is a function of σ and the equa-
tions of motion become−1 − λE

1 + λE

(
1 +

n2λ2

16(1 − λ2E2)2σ4

)2

w2 − ∂2
σ

Φ = 0 (17)

which can be rewritten as(
− 1 − λE

1 + λE

(
n2λ2

8(1 − λ2E2)2σ4+

+
n4λ4

162(1 − λ2E2)4σ8

)
w2 − ∂2

σ

)
Φ =

1 − λE
1 + λE

w2Φ .

(18)

Since the equation looks complicated, we simplify the calcu-
lations by dealing with asymptotic analysis; we start by the
system in small and then large σ limits.

3.1 Small σ region

In this region, we see that σ8 dominates and the equation of
motion is reduced to(

− ∂2
σ + V(σ)

)
Φ =

1 − λE
1 + λE

w2Φ (19)

for each direction δxi, with the potential

V(σ) = − w2n4λ4

162(1 + λE)5(1 − λE)3σ8 . (20)

The progress of this potential is shown in Fig. 2; when we
are close to the D5-brane the potential is close to zero and
once E is turned on it gets negative values until E is close
to its maxima, we see this potential goes down too fast to a
very low amplitude minima (−∞). This phenomenon should
have a physical meaning! This could be thought as a kink to
increase theΦ’s velocity to push the perturbation to disappear.

To solve (19), we consider the total differential on the per-
turbation. Let’s denote ∂σΦ ≡ Φ′. Since Φ depends only on
σ we find dΦ

dσ = ∂σΦ. We rewrite (19) in this form

1
Φ

dΦ′

dσ
= −w2

[
n4λ4

162(1 + λE)5(1 − λE)3σ8 + 1
]
. (21)

An integral formula can be written as follows

Φ′∫
0

dΦ′

Φ
= −

σ∫
0

w2
[

n4λ4

162(1 + λE)5(1 − λE)3σ8 + 1
]

dσ (22)

which gives

Φ′

Φ
= −w2

[
− n4λ4

162(1 + λE)5(1 − λE)3 × 7σ7 + σ

]
+ α . (23)

We integrate again the following

Φ∫
0

dΦ
Φ
= −

σ∫
0

dσ×

×
(
w2

[
− n4λ4

162 7(1 + λE)5(1 − λE)3σ7 + σ

]
+ α

)
.

(24)

Fig. 2: Potential associated to the relative transverse perturbations in
small region in flat space.

Fig. 3: Relative transverse perturbations in small region in flat space.

We get

lnΦ = −w2
[
− n4λ4

162 42(1 + λE)5(1 − λE)3σ6 +
σ2

2

]
+

+ ασ + β

(25)

and the perturbation in small σ region is found to be

Φ(σ) = β e
−w2

[
− n4λ4

162 42(1+λE)5(1−λE)3σ6 +
σ2
2

]
+ασ

(26)

with β and α are constants.
We plot the progress of the obtained perturbation. First

we consider the constants β = 1 = α, then the small spatial
coordinate in the interval [0, 10] with the unit of λ = 1, w = 1
and n ≈ 103 with the electric field in [0, 1[.

As shown in Fig. 3, close to D5-brane there is perturba-
tion. We remark that as E goes up, the perturbation goes
down. And when E ≈ 1/λwe observe no perturbation effects.
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Fig. 4: Potential of relative transverse perturbations in large region
in flat space.

At this stage, according to (1) the string coupling gets strong
N f gs ≫ 1 which means the system background is changed.
We know that with strong coupling the system should be in
super-gravity background where the perturbations are no
more. Consequently, the presence of E kills the perturbation
and moves the system from flat to super-gravity background.

3.2 Large σ region

By considering large σ limit the equation of motion (18) be-
comes (

− ∂2
σ + V(σ)

)
Φ =

1 − λE
1 + λE

w2Φ (27)

with the potential

V(σ) = − w2n2λ2

8(1 + λE)3(1 − λE)σ4 . (28)

By plotting the progress of this potential (Fig. 4) we remark
that when σ goes faraway from the D5-brane the potential
vanishes approximately for all values of the electric field.
And close to D5-brane the potential gets negative values. The
effect of E is very clear; as E goes up V slows down the de-
creasing until the medium of E, then V decreases too fast until
its minimum value for E going up to its critical value.

Consequently, the electric field has the same effect on V
in both regions of σ; as E goes to its maxima V goes to its
minima.

To solve (27) we rewrite it in the following form(
∂2
σ̃ +

κ2

σ̃4 + 1
)
Φ = 0, (29)

Fig. 5: Relative transverse perturbations in large region in flat space.

with

σ̃ =

√
1 − λE
1 + λE

wσ (30)

and

κ2 =
n2λ2

8w2(1 + λE)(1 − λE)3 . (31)

Eq. (29) is a Schrödinger equation for an attractive singu-
lar potential ∝ σ̃−4 and depends on the single coupling param-
eter κwith constant positive Schrödinger energy. The solution
is then known by making the following coordinate change

χ(σ̃) =

σ̃∫
√
κ

dy

√
1 +

κ2

y4 (32)

and

Φ =

(
1 +

κ2

σ̃4

)− 1
4

Φ̃. (33)

Thus, (29) becomes(
− ∂2

χ + V(χ)
)
Φ̃ = 0 (34)

with

V(χ) =
5κ2(

σ̃2 +
κ2

σ̃2

)3 . (35)

Then, the perturbation is found to be

Φ =

(
1 +

κ2

σ̃4

)− 1
4

e±iχ(σ̃) (36)
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which has the following limit; since we are in large σ re-
gion Φ ∼ e±iχ(σ̃). This is the asymptotic wave function in
the region χ → +∞, while around χ ∼ 0, i.e. σ̃ ∼

√
κ and

σ ∼ nλ/2
√

2w2(1 − λE)2, Φ ∼ 2−
1
4 .

Owing to the plotting of the progress of this perturbation
(Fig. 5), by considering the real part of the function, the per-
turbation solution is totally different from the one gotten in
the small σ limit (26). Hence the perturbations have a dis-
continuity and the system is divided into two regions which
implies Neumann boundary conditions and the end of an open
string can move freely on the brane in the dyonic case, which
means the end of a string on D5-brane can be seen as an elec-
trically charged particle.

Fig. 5 shows that the perturbation is slowing down as E
is turned on then starts to disappear once E reaches the value
1/2λ. The perturbation disappears when E is too close to 1/λ
for all values of σ. The effect of E is very surprising! The
presence of E stops the perturbations.

No electric field means the intersecting point is in high
perturbation. Then as E is turned on the perturbations de-
crease. When E is close to its critical value the perturbations
are no more. They are killed by E. This phenomena matches
very well with the fact that gs becomes strong (N f gs ≫ 1)
at this point according to the relation (5) such that E ≈ 1/λ.
Consequently, we can suggest that the presence of the electric
field changes the background of D-branes from flat to super-
gravity background (where the string coupling is strong).

4 Curved space

We extend the investigation of the intersecting D1-D5 branes
to curved space. We consider again the presence of electric
field and the resulting configuration is a bound state of fun-
damental strings and D-strings. Under these conditions the
bosonic part of the effective action is the non-abelian BI ac-
tion

S = −T1

∫
d2σe−ϕS Tr

[
− det

(
P

(
Gab+

+Gai (Q−1 − δ)i jG jb + λFab
))

detQi j
] 1

2
(37)

with T1 the D1-brane tension, G the bulk metric, (for sim-
plicity we set the Kalb-Ramond two form B to be zero), ϕ
the dilaton and F the field strength, a, b = τ, σ and i, j =
1, 2, 3, 4, 5. Furthermore, P denotes the pullback of the bulk
space time tensors to each of the brane world volume. The
matrix Q is given by Qi

j = δ
i
j + iλ

[
ϕi, ϕk

]
Gk j, with ϕi are the

transverse coordinates to the D1-branes.
We consider the super-gravity background and the metric

of n D5-branes

ds2 =
1
√

h
ηµνdxµdxν +

√
h

(
dσ2 + σ2dΩ2

3

)
e−ϕ =

√
h

h = 1 +
L2

σ2

(38)

with µ, ν = τ, σ and L = nl2sgs.

4.1 Zero mode

In our work we treat E as a variable to discuss its influence
on the perturbations. We investigate the perturbations in the
super-gravity background of an orthogonal 5-brane in the
context of dyonic strings growing into D5-branes. The study
is focused on overall transverse perturbations in the zero
mode; δϕi = f i(τ, σ)I, i = 6, 7, 8, 9 and I is N × N identity
matrix.

The action describing the perturbed intersecting D1-D5
branes in the super-gravity background is

S ≡ −NT1e−ϕ
∫

d2σ

[
GττGσσ(1 + λE)−

λ2

2

(
1 − λ2E2

)
GσσGii( ḟ i)2+

+
λ2

2
(1 + λE) GττGii( f i)′2 + ...

]
≡ −NT1

∫
d2σ
√

h
[
1 + λE−

− λ
2αi

2h
(1 − λ2E2)( ḟ i)2+

+
λ2
√

hαi

2
(1 + λE)( f i)′2 + ...

]

(39)

where h(σ) = e−2ϕ = 1 + L2/σ2, ḟ i = ∂τ f i, ( f i)′ = ∂σ f i,
Gττ = h−1/2Gσσ =

√
he−ϕ and Gii = αi with αi some real

numbers.
The equations of motion of the perturbations are found to

be (
1 − λE

h3/2 ∂2
τ − ∂2

σ +
L2

hσ3 ∂σ

)
f i = 0 . (40)

If we consider σ̃2 = σ2 + L2 the equations of motion become(
1 − λE
√

h
∂2
τ − ∂2

σ̃

)
f i(σ̃, t) = 0 . (41)

We define the perturbations as

f i(σ̃, t) = Ψ(σ̃) e−iwτδxi (42)

with δxi (i = 6, 7, 8, 9) the direction of the perturbation and
(41) becomes(
−w2(1 − λE)

σ̃
√
σ̃2 − L2

− ∂2
σ̃

)
Ψ = w2(1 − λE)Ψ (43)
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Fig. 6: Potential in curved space for zero mode.

with the potential

V = −w2(1 − λE)
σ̃

√
σ̃2 − L2

= −w2(1 − λE)

√
σ2 + L2

σ
.

Fig. 6 shows the variation of the potential V in terms of σ.
We remark approximately the absence of the potential for all
large values of σ and V goes to zero as E goes to 1/λ. When
σ is too close to zero, in this case V is negative and goes
down too quick for all E and the potential is not that low. In
addition, in the curved space the effect of E is approximately
absent.

Let’s solve the differential equation (43). As we see this
is Heun’s equation and the solution is the perturbation

Ψ =
(
−σ̃2 + L2

)
×

×
[
ηHeunC

(
0,
−1
2
, 1,

1
4
w2(1 − λE)L2,

1
2
+

+
1
4

(−L2 + L2)w2(1 − λE), σ̃2/L2
)
+

+ βHeunC
(
0,

1
2
, 1,

1
4
w2(1 − λE)L2,

1
2
+

+
1
4

(−L2 + L2)w2(1 − λE), σ̃2/L2
)]
σ̃

(44)

with η and β are constants.
We tried to plot the perturbation (44) for small region of

σ (the radius of funnel solution is too large) and there is no
perturbation in this region. The intersecting point is stable in
super-gravity background even if the electric field is present.

Fig. 7 shows the variation of the perturbation in terms of
the electric field E and the coordinate σ̃ in large region such
that the radius of funnel solution is too small. We set λ = 1,
w = 1 and n = 102. The perturbation is showing up as a peak

Fig. 7: Overall transverse perturbations in curved space for zero
mode.

for a while and for low electric field. In general we observe
approximately no perturbation effects for all E in this case.

The important remark we obtain by comparing the influ-
ence of E on the perturbation in flat and curved spaces is that
E kills the perturbation in flat space (Fig. 3, Fig. 5) and turns
the string coupling to be strong and then the flat space in this
case becomes curved when E reaches its critical value, but
when the space is already curved the influence of E is absent.
This observation leads us to think that E is strongly related in
some way to the super-gravity background.

4.2 Non-zero modes

Let’s now consider the non-zero modes, the perturbations can
be written in the form

δϕm(σ, t) =
N−1∑
ℓ=1

ψm
i1...iℓG

i1 ...Giℓ

and ψm
i1...iℓ

are completely symmetric and traceless in the lower
indices. We get two terms added to the action (39) to describe
the present system [ϕi, δϕm]2 and [∂σϕi, ∂tδϕ

m]2. Then in the
equation of motion (40) these two terms [ϕi, [ϕi, δϕm]] and
[∂σϕi, [∂σϕi, ∂2

t δϕ
m]] appeared. We have ϕi = RGi and by

straightforward calculations we have

[Gi, [Gi, δϕm], ] =
N−1∑
ℓ<N

ψm
i1...iℓ [G

i, [Gi,Gi1 ...Giℓ ]]

=

N−1∑
ℓ<N

ψm
i1...iℓϵ

i1...iℓGi1 ...Giℓ ,

=

N−1∑
ℓ<N

4ℓ(ℓ + β) δϕm
ℓ

(45)
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with ϵ i1...iℓ antisymmetric tensor and β a real number. To ob-
tain a specific spherical harmonic on 4-sphere, we have

[ϕi, [ϕi, δϕm
ℓ ]] =

ℓ(ℓ + β)λ2c
2(1 − λ2E2)σ2 δϕ

m
ℓ ,

[∂σϕi, [∂σϕi, ∂2
t δϕ

m]] =
ℓ(ℓ + β)λ2c

2(1 − λ2E2)σ4 ∂
2
t δϕ

m
ℓ .

(46)

Then for each mode we set δϕm
ℓ = f m

ℓ (σ̃)e−iωτδxm with f m
ℓ

some function for each mode. Then the equations of motion
will be in this form

(−∂2
σ̃ + V(σ̃)) f m

ℓ (σ̃) = −w2(1 − λE) f m
ℓ (σ̃) (47)

with V(σ̃) = V1 + V2 + V3 and

V1 = −w2(1−λE)
σ̃

√
σ̃2 − L2

= −w2(1−λE)

√
σ2 + L2

σ
(48)

V2 =
ℓ(ℓ + β)λ2c
2(σ̃2 − L2)

=
ℓ(ℓ + β)λ2c

2σ2 (49)

V3 =
ℓ(ℓ + β)λ6cw2αiαm

24(1 − λ2E2)(σ̃2 − L2)2 =
ℓ(ℓ + β)λ6cw2αiαm

24(1 − λ2E2)σ4 . (50)

These expressions can be treated by taking into account the
limits of σ such as σ goes to zero and the infinity.

For small σ, V3 dominates and in large σ, V1 + V2 will
dominate. From now on, it is clear that the system in the
present background will get different potentials and perturba-
tions from region to other which support the idea of Neumann
boundary condition in super-gravity background.

We start by small σ region, and the plot of V3 (Fig. 8)
shows that if σ goes to zero then the potential goes to +∞.
Physically this behavior should mean something! This could
be a sign to the absence of the perturbation effects and the
influence of E is absent.

We remark that the electric field does not have any influ-
ence on the perturbations in non-zero mode at the presence of
the super-gravity background.

Then the perturbation for each mode ℓ is gotten (see (51)
at the top of the next page) with b1 and b2 are constants and
d = ℓ(ℓ + β)λ6n(n + 1)αiαmw2. We tried to plot this function
but noway we could not get any perturbation for the values
λ = 1, w = 1 and for all E, ℓ > 4 and n > 1 in the region
σ ∈ [0, 10].

Also the potential shows up with little values by compar-
ison to the case of small region and for all E which means E
does not change anything in the case of curved space.

Let’s move to the large σ. As σ goes to infinity we see
the potential goes to zero (Fig. 9) but when σ approaches the
small σ region the potential goes up too quick and reaches the
maximum value, approximately for all E. Then the electric
field does not have influence on the behavior of the potential
in curved space.

Fig. 8: Potential in curved space for non-zero mode for different
values of E in small region.

The perturbation for each mode is (see (52)) with a1 and
a2 are real constants. We tried to plot this function for all E,
ℓ = 10 and n = 102, and no perturbations appear which is
consistent with the nature of space. Since the system is in
super-gravity background, there is no perturbations then no
influence of electric field.

5 Discussion and conclusion

In the low energy effective theory with the electric field E is
switched on, we proved in [11] that the duality of intersecting
D1-D3 branes is broken and in [12] the duality of intersecting
D1-D5 branes is unbroken. Hence, it is interesting to know
more about the effect of the electric field, and the intersecting
D1-D5 branes looks more important as a system.

We consider the non-abelian Born-Infeld (BI) dynamics
of the dyonic string such that the electric field E has a lim-
ited value. If we suppose there is no excitation on transverse
directions then the action of D1-branes is

S = −NT1

∫
d2σ
√

1 − λ2E2.

The limit of E attains a maximum value Emax = 1/λ just as
there is an upper limit for the velocity in special relativity.
In fact, if E is constant, after T-duality along the direction
of E the speed of the brane is precisely λE so that the upper
limit on the electric field follows from the upper limit on the
velocity. Hence if this critical value arises such as Emax >
1/λ the action ceases to make physical sense and the system
becomes unstable. Since the string effectively carries electric
charges of equal sign at each of its endpoints, as E increases
the charges start to repel each other and stretch the string. For
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f m
ℓ = b1 HeunT

−3 21/3d
(
−1 + λ2E2

)
(−1 + λE)

λ2
(
−d

(
−1 + λ2E2

))4/3 , 0,
1
2 dλ2L2

(
−1 + λ2E2

)
22/3(

−d
(
−1 + λ2E2

))2/3 ,
121/3

(
−6d

(
−1 + λ2E2

))1/6
λσ̃

6


exp

−
1
24λ

3σ̃
(

2
3

√
−6d

(−1 + λ2E2)σ̃2
(
−d

(
−1 + λ2E2

))2/3
+dL222/3121/3

(
−6

(
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))1/6 (
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−d
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+b2 HeunT
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)
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(
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1
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Fig. 9: Potential in curved space for non-zero modes in large region.

E larger than the critical value, the string tension T1 can no
longer hold the strings together.

In this context, we have treated in this project in partic-
ular the perturbations of a set of (N,N f )-strings ending on a
collection of n orthogonal D5-branes in lowest energy world
volume theory. The fundamental strings ending on an orthog-
onal D5-branes act as an electric point sources in the world
volume theory of D5-brane and the perturbations in both flat
and curved spaces were studied from this point of view.

We showed in section 2 that the semi-infinite fuzzy fun-
nel is a minimum energy configuration by imposing singular
boundary conditions that have interesting physical interpreta-
tion in terms of D-brane geometries. And to consider the low-
est energy effective theory the electric field should be present.

We found the lowest energy

ξmin = N f gsT1
1 − λ2E2

λE

∫ ∞

0
dσ+

+
6N
c

T5

√
1 − λ2E2

∫ ∞

0
Ω4R4dR+

+NT1

√
1 − λ2E2

∫ ∞

0
dR−

−1.0102 T1lsNc
1
4

√
1 − λ2E2

by considering E switched on in the low energy effective the-
ory. The energy of intersecting D1-D5 branes is found to be
a sum of four parts depending on the electric field E and all
these energies are decreasing as E goes to 1/λ. The first is
for N f fundamental strings extending orthogonally away from
the D5-branes and the second for the n D5-branes and the
third for the N D-strings extending out radially in D5-branes
and the fourth is the binding energy.

In this theory, the transition between the universal behav-
ior at small radius of the funnel solution and the harmonic
behavior at large one in terms of electric field is mentioned
too. When the electric field is turned on the physical radius
of the fuzzy funnel solution R(σ) ≈ (λ2c/

√
18
√

1 − λ2E2σ)
1
3

is going up faster as σ goes to zero (the intersecting point)
and E reaches approximately 1/2λ which looks like the elec-
tric field increases the velocity of the transition from strings
to D5-branes world volume. Then D5-branes get highest ra-
dius once E is close to 1/λ which interprets the increasing of
the volume of the D5-branes under the effect of the electric
field (Fig. 1).

In section 3, we have investigated the relative transverse
perturbations of the funnel solutions of the intersecting D1-
D5 branes in flat space and the associated potentials in terms
of the electric field E ∈]0, 1/λ[ and the spatial coordinate σ.
We find that too close to the intersecting point the potential is
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f m
ℓ = a1 HeunC

0, √
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L
,−2,

w2L2(λE − 1)
8

,
5
4
− w

2L2(λE − 1)
8

,

2σ̃2 − 2σ̃
√
σ̃2 − L2 − L2

L2

 (√σ̃2 − L2 + σ̃
)L −

√
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L

+a2 HeunC

0,− √
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L
,−2,

w2L2(λE − 1)
8

,
5
4
− w

2L2(λE − 1)
8

,

2σ̃2 − 2σ̃
√
σ̃2 − L2 − L2

L2

 (√σ̃2 − L2 + σ̃
)L +

√
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L
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close to zero and once E is turned on it gets negative values
until E is close to its maxima, we see this potential goes down
too fast to a very low amplitude minima −∞ (Figs. 2,4) and
away from the intersecting point there is approximately no
potential for all E. This is interpreted as inducing an increase
in the velocity of the perturbation to disappear at the inter-
secting point toward the D5-brane world volume. Figs. 3,5
show that when E goes to its maxima there is no perturbation
effects. Hence the presence of E kills in general the perturba-
tions. At this stage, according to (1) the string coupling starts
to get strong which means the system background is chang-
ing.

In curved space, we have studied the same system by
looking for the effect of electric field on the perturbations
and the associated potentials in zero (Figs. 6,7) and non zero-
modes (Figs. 8,9) of the overall transverse perturbations in
section 4. It was surprisingly that too close to the intersecting
point; i.e. at large physical radius of D5-brane, we could not
find any perturbation and also there is approximately no influ-
ence of E on potentials. The effect of E appears only when we
are too far away from the intersecting point where the radius
is too small and still E makes the perturbations to disappear
on the strings. In general we do not see the influence of E in
curved space.

The main and very important feature we got from this in-
vestigation is the following; the presence of electric field flux
on the strings changes the background of the system. We
proved explicitly that when the coupling is going to be strong
which means E goes to its critical value we should move to
QFT to describe the system where no perturbations exist. In
curved space the influence of the electric field appears for too
small radius of funnel solution which means for large spatial
coordinate σ of strings and this phenomena decreases from
zero mode to non-zero modes but when the radius is impor-
tant as σ goes to zero there is no effect of E. By contrast in
the case of flat space that was very clear when E is turned on
the perturbations change their behavior in general. E forces

them to disappear as it is close to the critical value and in
meantime the string coupling is getting strong.

The string coupling is strong means N f gs ≫ 1 and gs ≈
N/N f since E ≈ 1/λwhich is the critical value and if the elec-
tric field exceeds this value the system will be non-physical
phenomena as discussed above and to be out of this problem
we should choose another theory to describe our system.

In the case of weak coupling N f gs ≪ 1 the electric field
will be approximately E ≈ N f gs/λN and the condition match-
es our perturbative phenomena E ∈ [0, 1/λ[. We mention
here that if E goes to zero then N f gs does too which means
the number of fundamental strings decreases and simply the
endpoints of the strings loose their electric charges and vice-
versa.

In curved space, we can say the electric field E has no
effect on the intersecting point. We can connect then the phe-
nomena to the electric field E and the string coupling gs such
as E and gs are connected by the relation (5). We see that
once E is turned on and goes up gs is getting stronger. At the
critical point, E reaches its maxima and gs is strong then the
space should become curved. Hence we can remark at this
stage that the effect of E looks like it transforms the flat space
to curved one. In this context we can say there is a one-to-one
map between the super-gravity background and the electric
field that we should look for!
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