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The Smaller Alignment Index (SALI) is a new mathematical tool for chaos detection
in the phase space of Hamiltonian Dynamical Systems. With temporal behavior very
specific to movements ordered or chaotic, the SALI method is very efficient in dis-
tinguishing between chaotic and regular movements. In this work, this method will
be applied in the study of stellar orbits immersed in a gravitational potential of barred
galaxies, once the motion of a test particle, in a rotating barred galaxy model is given by
a Hamiltonian function. Using an analytical potential representative of a galaxy with bar
(two degrees of freedom), we integrate some orbits and apply SALI in order to verify
their stabilities. In this paper, we will discuss a few cases illustrating the trajectories of
chaotic and regular orbits accompanied by the graph containing the behavior of SALI.
All calculations and integrations were performed with the LP-VIcode program.

1 Introduction
One of the schemes more used to classify galaxies according
to their morphology was proposed by Edwin Powell Hubble.
Basically, the Hubble fork separates galaxies in two types:
regular spirals (S) and barred spirals (SB). The galaxy bar,
spiral arms and even galactic rings are structures that can be
interpreted as disturbance to axisymmetric potential of the
galactic disk.

In this work, we study the nature of some orbits immersed
in analytical potentials with two degrees of freedom repre-
senting barred galaxies. In order to do this, we applied the
Smaller Alignment Index (SALI) [9–13], which is a mathe-
matical tool for distinguishing regular and chaotic motions in
the phase space of Hamiltonian Dynamical Systems in analyt-
ical gravitational potentials. It is possible because the motion
of a test particle in a rotating barred galaxy model is given by
a Hamiltonian function.

The orbits integration and the SALI calculation were per-
formed using the LP-VIcode program [2]. The LP-VIcode
is a fully operational code in Fortran 77 that calculates effi-
ciently 10 chaos indicators for dynamic systems, regardless
of the number of dimensions, where SALI is one of them.
To construct our barred galaxies models, two different sets
of parameters were extracted from the paper of Manos and
Athanassoula [5].

The main purpose of this paper is to show some regu-
lar and chaotic orbits, where the stability study was done us-
ing the SALI method. Such orbits were taken immersed in a
mathematical model for the gravitational potential that simu-
lates a barred galaxy in a system with two degrees of freedom.

2 Methodology
2.1 The SALI method
Considering a Hamiltonian flow (N degrees of freedom), an

orbit in the 2N-dimensional phase space with initial condition
P(0) = (x1(0), · · · , x2N(0)) and two different initial deviation
vectors from the initial point P(0), w1(t) and w2(t), we define
the Smaller Alignment Index (SALI) by:

SALI(t) = min
{
‖ŵ1(t) + ŵ2(t)‖, ‖ŵ1(t) − ŵ2(t)‖

}
(1)

where ŵi(t) = wi(t)/‖wi(t)‖ for i ∈ {1, 2}.
In the case of chaotic orbits, SALI(t) falls exponentially

to zero as follows:

SALI(t) ∝ e−(L1−L2)t (2)

where L1 and L2 are the biggest Lyapunov Exponents.
When the behavior is ordered, SALI oscillates in non-zero

values, that is:

SALI(t) ≈ constant > 0, t −→ ∞ . (3)

Therefore, there is a clear distinction between orderly and
chaotic behavior using this method.

2.2 Gravitational potential of a barred galaxy

We apply the SALI method in the study of stellar orbits im-
mersed in a gravitational potential of barred galaxies, once
the movement of a test particle in a rotating three-dimensional
model of a barred galaxy is given by the Hamiltonian:

H(x, y, z, px, py, pz) =

=
(
p2

x + p2
y + p2

z

)
+ ΦT (x, y, z) + Ωb(xpy − ypx)

(4)

where the bar rotates around z; x and y contain respectively
the major and minor axes of the galactic bar, ΦT is the gravi-
tational potential (which will be described later), and Ωb rep-
resents the standard angular velocity of the bar.
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(a) Initial Condition: (0,0.5436,0.1411,0) - Model S (b) Initial Condition: (0,0.1912,-0.1550,0) - Model S

(c) Initial Condition: (0,4.2280,-0.1491,0) - Model S (d) Initial Condition: (0,0.9090,-0.4139,0) - Model B

(e) Initial Condition: (0,5.7570,-0.2926,0) - Model B (f) Initial Condition: (0,0.4242,0.0602,0) - Model B

Fig. 1: Six orbits, each one with its SALI diagram. All orbits were integrated up to 10,000 Myr. Only the first 500 Myr were plotted in (a),
(b), (d) and (f), for clarity.

For this Hamiltonian, the corresponding equations of mo-
tion and the corresponding variational equations that govern
the evolution of a deviation vector can be found in [4]. With
such equations it is possible to follow the temporal evolution
of a moving particle immersed in the potential ΦT , as well as
verify if this orbit is chaotic or regular, following the evolu-
tion of deviation vectors by the SALI method.

In this work, the total potential ΦT is composed by three
components, representing the galactic bulge, disk and bar:

ΦT = ΦBulge + ΦDisk + ΦBar . (5)

We represent the bulge by the Plummer Model [8]

ΦBulge = −
GMS√

x2 + y2 + z2 + ε2
S

, (6)

where εS is the length scale and MS is the bulge mass.
We represent the disk by the Miyamoto-Nagai Model [6]

ΦDisk = −
GMD√

x2 + y2 + (A +
√

z2 + B2)2
(7)

where A and B are respectively the radial and vertical scale
lengths, and MD is the disk mass.

We represent the bar by the Ferrers Model [3]. In this
model, the density in given by

ρB(x, y, z) = ρc

(
1 − m2

)2
, m < 1

ρB(x, y, z) = 0 , m ≥ 1
(8)

where the central density is

ρc =
105
32π

GMB

abc
,

MB is the bar mass and

m2 =
x2

a2 +
y2

b2 +
z2

c2 ,

where a > b > c > 0 are the semi-axes of the ellipsoid which
represents the bar.

The potential created by the galactic bar is calculated with
the Poisson equation (see [1]):

ΦBar = −πG abc
ρc

3

∫ ∞

λ

du
∆(u)

(
1 − m2(u)

)3
(9)
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(a) Initial Condition: (0,0.0640,0.7960,0) - Model S (b) Initial Condition: (0,1.9932,0.0576,0) - Model S

(c) Initial Condition: (0,3.5032,-0.2931,0) - Model S (d) Initial Condition: (0,2.6664,-0.2257,0) - Model B

(e) Initial Condition: (0,3.5148,-0.0508,0) - Model B (f) Initial Condition: (0,5.5146,-0.2951,0) - Model B

Fig. 2: The SALI graphics has both axes in logarithmic scale. All orbits were integrated into 10,000 Myr. Only the first 5,000 Myr were
plotted in (b), for clarity.

where

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
,

∆2(u) = (a2 + u)(b2 + u)(c2 + u)

and λ is the positive solution of m2(λ) = 1 for the region
outside the bar (m ≥ 1) and λ = 0 for the region inside the bar
(m < 1).

2.3 The LP-VIcode program with minor adjustments

To perform the orbits integrations and the SALI calculation,
we used the LP-VIcode program [2], which is an operational
code in Fortran 77 that calculates efficiently 10 chaos indica-
tors for dynamical systems, including SALI.

In this program, the user must provide the expressions
of the potential as well the expressions of motion and vari-
ational equations. However, the general structure of motion
and variational equations previously written in the main pro-
gram, take into account only a static reference frame, and it
is known that in order to model the galactic bar potential, it is
necessary to consider a coordinate system that rotates along
with the bar.

In this context, considering Ωb the bar angular velocity,
our reference frame should also rotate with angular velocity
Ωb. This affects the motion and variational equations since,
as can be seen in [4], they depend on Ωb. In order to solve
this problem, adjustments were made to the main program to
include the rotation in the coordinate system with the same
angular velocity of the bar.

2.4 Parameters sets

We used the two parameter sets shown in Table 1 for the po-
tential model, taken from the paper by Manos & Athanas-
soula [5]. The model units adopted are: 1 kpc for length,
103 km s−1 for velocity, 103 km s−1 kpc−1 for angular velocity,
1 Myr for time, and 2 × 1011 Msolar for mass. The universal
gravitational constant G will always be considered 1 and the
total mass G(MS + MD + MB) will be always equal to 1.

2.5 Initial conditions

We emphasize that in this paper we study orbits with two de-
grees of freedom. In order to do that, we consider z = 0 and
pz = 0 in the three-dimensional Hamiltonian (4).
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Table 1: Parameter Sets and the Bars Co-rotation.

MS εS MD A B MB a b c Ωb CR
Model S 0.08 0.4 0.82 3.0 1.0 0.1 6.0 1.5 0.6 0.054 6.04
Model B 0.08 0.4 0.82 3.0 1.0 0.1 6.0 3.0 0.6 0.054 6.06

The effective potential, which is the sum of the gravita-
tional potential with the potential generated by the repulsive
centrifugal force, is given by:

Φe f f (x) = ΦT (x) −
1
2
|Ω × x|2 . (10)

Written like that, this potential represents a rotating system.
The quantity

EJ =
1
2
|v|2 + Φe f f (x) (11)

is called Jacobi Energy and is conserved in the rotating sys-
tem.

The curve given by Φe f f (0, y, 0) = EJ is called Zero Ve-
locity Curve and provides a good demarcation for the choice
of initial conditions, since there is only possibility of orbits
when Φe f f ≤ EJ , in other words, below this curve (see [1]).

Therefore, we generated some random initial conditions
initially taking a value to y0 less than the highest possible
value of y for a given energy EJ , taking x0 = 0 and vy0 = 0.
This done, we could calculate vx as follows:

EJ =
1
2

(
v2

x0
+ v2

y0

)
+ Φe f f =

1
2
v2

x0
+ Φe f f (12)

and this implies

vx0 = ±

√
2(EJ − Φe f f ) . (13)

Then we constructed initial conditions (x0, y0, vx0 , vy0 ) to
integrate the orbits. As x0 = 0 and vy0 = 0, the launched
orbits will always be initially over the y axis and will have
initial velocity only in the x direction.

Notice that we have two possible velocities from equation
(13): one negative and one positive. We decided to take y0
always positive, so that when vx0 is positive, the orbits are
prograde (orbits that rotate in the same direction of the bar)
and when vx0 is negative, the orbits are retrograde (orbits that
rotate in the opposite direction of the bar).

3 Results

In our computational calculations, we consider SALI < 10−8

close enough to zero to consider the movement chaotic.

3.1 Regular orbits

In Fig. 1 we show 6 different orbits, each one with its SALI
diagram, from where we can identify them as regular orbits,
as explained in section 2.1.

3.2 Chaotic orbits

Fig. 2 shows a sample of 6 chaotic orbits, identified by their
SALI indexes that goes to zero after some time, as discussed
in section 2.1.

4 Conclusion

In this study, we were able to reproduce a mathematical mod-
eling of the gravitational potential of a barred galaxy and, in
order to verify the stability of the orbits within, we applied the
SALI method. We were able to prove the SALI efficiency in
distinguishing regular or chaotic orbits. In fact, this method
offers an easily observable distinction between chaotic and
regular behavior.

We also perceive the LP-VIcode efficiency, which proved
to be extremely competent in the orbits integration and study
of stability with SALI. To make an adjustment in the varia-
tional and motion equations programmed in the LP-VIcode,
we insert an adaptation in the main code to take into account
a rotating system.

Therefore, we conclude that we were successful in cal-
culating these orbits and confirm the SALI method as a new
important tool in the study of stellar orbits stability.
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