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The standard Einstein’s field equations have been modified by introducing a general
function that depends on Ricci’s scalar without a prior assumption of the mathemat-
ical form of the function. By demanding that the covariant derivative of the energy-
momentum tensor should vanish and with application of Bianchi’s identity a first order
ordinary differential equation in the Ricci scalar has emerged. A constant resulting
from integrating the differential equation is interpreted as the cosmological constant
introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi-
cal constant corresponds to the form of Einstein-Hilbert’s Lagrangian appearing in the
gravitational action. On the other hand, when energy-momentum is not conserved, a
new modified field equations emerged, one type of these field equations are Rastall’s
gravity equations.

1 Introduction

In the early development of the general theory of relativity,
Einstein proposed a tensor equation to mathematically de-
scribe the mutual interaction between matter-energy and
spacetime as [13]

Rab = κTab (1.1)

where κ is the Einstein constant, Tab is the energy-momen-
tum, and Rab is the Ricci curvature tensor which represents
geometry of the spacetime in presence of energy-momentum.

Einstein demanded that conservation of energy-momen-
tum should be valid in the general theory of relativity since
energy-momentum is a tensor quantity. This was represented
as

Tab;b = 0 (1.2)

where semicolon (;) represents covariant derivatives. But
equation (1.2) requires

Rab;b = 0 (1.3)

too which is not always true.
Finally, Einstein presented his standard field equations

(EFEs) describing gravity in the tensor equations form,
namely, [2–5, 8–12]

Gab = κTab (1.4)

where Gab is the Einstein tensor given by

Gab = Rab −
1
2
gabR (1.5)

where, R, is the Ricci scalar curvature, and gab is the funda-
mental metric tensor.

In his search for analytical solution to his field equations
he turned to cosmology and proposed a model of static and
homogenous universe filled with matter. Because he believed
of the static model for the Universe, he introduced a constant

term in his standard field equations to represent a kind of “anti
gravity” to balance the effect of gravitational attractions of
matter in it.

Einstein modified his standard equations by introducing
a term to his standard field equations including a constant
which is called the cosmological constant Λ, [7] to become

Rab −
1
2
gabR + gabΛ = κTab (1.6)

whereΛ is the cosmological constant (assumed to have a very
small value). Equation (1.6) may be written as

Rab −
1
2

(R − 2Λ) gab = κTab (1.7)

Einstein rejected the cosmological constant for two rea-
sons:

• The universe described by this theory was unstable.

• Observations by Edwin Hubble confirmed that the uni-
verse is expanding.

Recently, it has been believed that this cosmological con-
stant might be one of the causes of the accelerated expansion
of the Universe [15].

Einstein has never justified mathematically introduction
of his cosmological constant in his field equations.

Based on that fact I have mathematically done that using
simple mathematics.

2 Modified standard Einstein’s field equations

I modified the (EFEs) by introducing a general function L(R)
of Ricci’s scalar into the standard (EFEs). I do not assume
a concrete form of the function. The modified (EFEs), then
becomes

Rab − gabL(R) = κTab (2.1)
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Taking covariant derivative denoted by semicolon (; ) of
both sides of equation (2.1) yields

Rab;b − [gabL(R)];b = κTab;b (2.2)

Since covariant divergence of the metric tensor vanishes,
equation (2.2) may be written as

Rab;b − gab

(
dL
dR

)
R;b = κTab;b (2.3)

Substituting the Bianchi identity

R;c = 2gabRac;b (2.4)

in equation (2.3) and requiring the covariant divergence of the
energy-momentum tensor to vanish (i.e. energy-momentum
is conserved), namely, equation (1.2), we arrive at

Rab;b − gab

(
dL
dR

) (
2gacRab;c

)
= 0 (2.5)

Rearranging equation (2.5) we get

Rab;b − 2
(

dL
dR

)
(gabg

ac) Rab;c = 0 (2.6)

Substituting the following identity equation

gabg
ac = δcb (2.7)

in equation (2.6), we get

Rab;b − 2
(

dL
dR

) (
δcb

)
Rab;c = 0 (2.8)

By changing the dummy indices, we arrive at

Rab;b

(
1 − 2

dL
dR

)
= 0 (2.9)

We have either,
Rab;b = 0, (2.10)

or

1 − 2
(

dL
dR

)
= 0 (2.11)

Equation (2.10) is not always satisfied as mentioned be-
fore. Whilst, equation (2.11) yields

dL
dR
=

1
2

(2.12)

This has a solution

L(R) =
1
2

R −C (2.13)

where C is a constant.
Interpreting the constant of integration C, as the cosmo-

logical constant Λ, the functional dependence of L(R) on
Ricci scalar may be written as

L(R) =
1
2

(R − 2Λ) (2.14)

Equation (2.14) is the well known Lagrangian functional
of the Einstein-Hilbert action with the cosmological constant.

3 The Modified Equations and the Einstein Spaces

In absence of energy-momentum i.e. in a region of spacetime
where is there no energy, a state which is different from vac-
uum state everywhere in spacetime, equation (2.1) becomes

Rab − gabL(R) = 0 (3.1)

Contacting equation (3.1) with gab, we get

R − NL(R) = 0 (3.2)

where N is the dimension of the spacetime. Equation (3.2)
yields

L(R) =
1
N

R (3.3)

Substituting equation (3.3) in equation (3.1), we get

Rab =
1
N
gabR (3.4)

Equation (3.4) is the Einstein equation for Einstein spaces in
differential geometry [1, 2];

Rab = I gab (3.5)

where I is an invariant. This implies that the function I pro-
posed, L(R), is exactly the same as the invariant I in Einstein
spaces equation when contacted with gab.

A 2D sections of the 4D spacetime of Einstein spaces
are geometrically one of the geometries of spacetime which
satisfies the standard Einstein’s field equations in absence of
energy-momentum.

A naive substitution of N = 4 into equation (3.4) would
lead to an identity from which Ricci scalar could not be cal-
culated, because it becomes a non-useful equation, it gives
R = R.

4 The modified equations and gravity equations with
non-conserved energy-momentum

Because in general relativity spactime itself is changing, the
energy is not conserved, because it can give energy to the
particles and absorb it from them [2].

In cosmology the notion of dark energy – represented by
term introduced by Einstein – and dark matter is a sort of
sources of energy of unknown origin.

It is possible to incorporate the possibility of non-con-
served energy-momentum tensor in the modified equations.
In this case equation (2.9) should become

Rab;b

(
1 − 2

dL
dR

)
= κTab;b (4.1)

where Tab;b , 0. Since Rab;b is not always equals to zero, this
implies that the bracket in the LHS of equation (4.1) is not
zero in any case.
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Let us assume it is equal to D , where D is a dimensionless
constant, i.e.

1 − 2
dL
dR
= D (4.2)

Then, equation (4.2) becomes

dL
dR
=

1
2

(1 − D) (4.3)

Now, integrating equation (4.3) yields

L(R,D) =
1
2

(1 − D) R − E (4.4)

where E is a constant. When D = 0, equation (4.4) should
reduce to equation (2.13), the equation in case of conserved
energy-momentum, for which E = Λ. So, equation (4.4) be-
comes

L(R,D) =
1
2

(1 − D) R − Λ (4.5)

Finally, the modified equations (equation (2.1)) in case of
non-conserved energy-momentum become

Rab −
1
2

(1 − D) gabR + Λgab = κTab (4.6)

5 The modified equations and the Rastall gravity
equations

Rastall [14] introduced a modification to the Einstein field
equations, in which the covariant conservation condition
Rab;b = 0 is no longer valid.

In his theory he introduced a modification to the Einstein
field equations without the cosmological constant which read

Rab −
1
2

(1 − 2λκ) gabR = κTab (5.1)

where λ is a free parameter. When λ = 0, we recover the stan-
dard Einstein’s field equations. Comparing Rastall’s equa-
tions in equation (5.1) with equation (4.6) without the cos-
mological constant, we deduce

D = 2λκ (5.2)
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