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The relativistic models for radiating spherical collapse is important for to explain the
emission process on very high energy in Supernova burst and Quasars. A general
method is reviewed, to obtain models which describe non static radiating spheres, with-
out having to make any hypothesis about the emission of radiation during the collapse.
It is concluded that the field equations together with the conservation laws (Bianchi’s
Identity) form a complete set of integrable equations that do not require additional the
emissivation hypothesis of a Gaussian pulse on at an arbitrary instant to trigger the col-
lapse. The emissivation hypothesis of a Gaussian pulse is not only unnecessary, but
also leads to qualitatively and quantitatively different solutions. Calculations were per-
formed using the computer algebra package GRTensorII, running on Maple 13, along
with several Maple routines that we have used specifically for this type of problems.
The Schwarzschild and Tolman VI models are shown as examples where it’s empha-
sizes the importance of using conservation equations properly, for describe the collapse
for the self-gravitating sphere.

1 Introduction

The last phases of stellar evolution of massive stars are dom-
inated by the contribution of stellar radiation due to changes
of the inner or outer distribution of matter, in the gravitational
potential of the radiating fluid spheres and, therefore, general
relativity provides a description of the collapse of the compact
objects (Neutron Stars, Black Holes). This description can
be extended to explain the radiation process of very high en-
ergy in astrophysical scenarios, such as Supernova bursts and
Quasars. A number of studies have been reported describing
a gravitational collapse: Oppenheimer and Snyder [1], Tol-
man [2] and furthermore the study of the collapsing radiating
fluid [3–6].

This scheme has recently been used for various scenar-
ios of relativistic hydrodynamics. We can highlight some ex-
amples: charged fluids [7–9], isotropic [10] or anisotropic
fluid [11, 12], shock waves [13, 14], in free space [15, 16]
or diffusion process [17, 18]. It is necessary to contrast its
quantitative results with other calculation schemes. Barreto
et al. [19] have extended the semi-numerical scheme to the
Schwarzschild coordinates, simulating some scenarios of the
gravitational collapse.

Herrera and collaborators [6, 19–21] developed a general
algorithm for modeling self gravitating spheres out of equilib-
rium, beginning from the known static solutions of Einstein’s
equations. This method divides the space-time in two spatial
regions. The outer region is described by the Vaidya solu-
tion and the space-time metric in the interior is obtained by
solving the Einstein field equations. Further, proper boundary
conditions are imposed in order to guarantee a smooth match-
ing of the solutions in the surface of the junction. This semi
numerical technique has been used extensively to study high

energy in astrophysical scenarios [19, 21–27].
However in these numerical simulations a Gaussian pulse

is introduced ad hoc to represent the emission of radiation that
initiates the disequilibrium during the collapse of the radiat-
ing fluid ball [6, 20, 21, 23–25, 28]. These assumptions could
be unnecessary and generate spurious solutions, since this
loss of mass is prescribed by one of the conservation equa-
tions when applying the Bianchi Identity [29, 30]. Parts of
the calculation of the Bianchi identities that were performed
in this work were possible and verified using the GRTensorII
package.

The purpose of this paper is to show the general method
to obtain models which describe radiating non-static spheres
without having to make any hypothesis about the emission of
radiation during the collapse. This paper follows as much as
possible the notation and physical description prescribed by
Herrera et al. [6]. For this, the field equations and conserva-
tion laws are shown in Section 2; then section 3 establishes
the procedure for the static solutions and obtaining the sur-
face equations. The models Schwarzschild-like and Tolman
VI-like are discussed in section 4 and 5 respectively, and in
the last section are shown the concluding remarks.

2 The Field equations and conservation relationships

Let us consider a non static radiating spheres. The metric
takes the form [4]

ds2 = e2βV
r

du2 + 2e2βdu dr − r2dθ2 − r2 sin2 θ dϕ2, (1)

where u and r are time like and radial-like coordinates re-
spectively; β and V are functions of u and r; θ, ϕ are the usual
angle coordinates. In these coordinates the gravitational field
equations are:
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As usual, note that we used the subscript ,0 and ,1 for the
derivative for u and r, respectively; and the semicolon (;) for
covariant differentiation. Then transformation relations be-
tween local Minkowskian and radiative coordinates are:

dt =
(
∂t
∂u

)
du +

(
∂t
∂r

)
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= eβ
(V
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) 1
2

du + eβ
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V
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dθ = r dθ (4)
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(
∂z
∂ϕ

)
dϕ = r · sin θ dϕ . (5)

We assumed the stellar material as perfect fluid, with energy
density ρ̂, radial pressure P̂, without heat conduction neither
viscosity, then

T̂αβ =
(
ρ̂ + P̂

)
· UαUβ − P̂ · ηαβ, (6)

where Uα = (1, 0, 0, 0), 3σ̂ is the isotropic radiation of the
energy density, and ε̂ no-polarized component of the energy
density in radial direction. Now consider an observer in local
Minskowskian system with radial velocity ω, in the Lorent-
zian system we can write:

T̄µν = ΛαµΛ
β
νT̂αβ, (7)

where the Lorentz matrix is

Λαµ =


1√

1−ω2
− ω√

1−ω2
0 0

− ω√
1−ω2

1√
1−ω2

0 0
0 0 1 0
0 0 0 1

 . (8)

We define

ρ̄ = ρ̂ + 3σ̂, P̄ = P̂ + σ̂, ε̄ = ε̂
1 + ω
1 − ω.

Note also that from (2-3) the velocity of matter in the radiative
coordinates is given by

dr
du
=

V
r
· ω

1 − ω, (9)

so forth the energy-impulse tensor in the Lorentz system is

T̄00 = ε̄ +
ρ̄ + ω2P̄
1 − ω2

T̄01 = T̄10 = −ε̄ − ω

1 − ω2

(
ρ̄ + P̄

)
T̄11 =

P̄ + ω2ρ̄

1 − ω2 + ε̄

T̄22 = T̄33 = P̄.

Using (2) - (5) we obtain the energy-impulse tensor in radia-
tive coordinates as:

T00 = e2β
(V

r

) (
ρ̄ + ω2P̄
1 − ω2 + ε

)
T01 = T10 = e2β

(
ρ̄ − ωP̄
1 + ω

)
T11 = e2β

( r
V

) (1 − ω
1 + ω

) (
ρ̄ + P̄

)
T22 =

T33

sin2 θ
= r2P̄.

Remember that a bar indicates that the quantity is measured in
the Lorentzian system, and the effective variables are written
without bar. Now

ρ ≡ ρ̄ − ωP̄
1 + ω

, P ≡ P̄ − ωρ̄
1 + ω

, ε ≡ ε̄. (10)

It can be seen at once that ρ = ρ̄ and P = P̄ in r = 0, also, in
the static case ω = 0. As before then:

T00 = e2β
(V

r

) [
ω (ρ + P)
(1 − ω)2 + ρ + ε

]
T01 = T10 = e2βρ

T11 = e2β
( r
V

)
(ρ + P)

T22 =
T33

sin2 θ
= r2P̄,

thus the field equations are:

−V
r2

[(
2β,0 −

V,0
V

)
− 1

r

(
2Vβ,1 − V,1 + e2β

)]
=

= 8π e2β
(V

r

) [
ε + ρ +

ω (ρ + P)
(ω − 1)2

] (11)

2Vβ,1 − V,1 + e2β = 8πr2e2βρ (12)
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Using the conservation equations (Bianchi Identity) T µν;µ = 0,
we obtain only three no-trivial relations:
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It is remarkable that only two Bianchi equations (15-17)
are independent, then

e2βT µ1;µ − T µ0;µ =

(V
r

)
T µ1;µ = 0. (18)

If we use the Bondi mass aspect V ≡ e2β (r − 2m), af-
ter some elementary algebra, the equation system becomes
equivalent to:

m,1 = 4πr2ρ (19)

β,1 = 2πr
(ρ + P)
1 − 2m

r

(20)

m,0 = −4πr2e2β
(
1 − 2m

r

) [
ε +
ω (ρ + P)
(1 − ω)2

]
(21)

8πP̄ = −2β,01e−2β +

(
1 − 2m

r

) (
2β,11 + 4β 2

,1 −
β,1

r

)
+

+
1
r
[
3β,1

(
1 − 2m,1

) − m,11
]
. (22)

Also, for two independent Bianchi equations (15) and (16),
we obtain:

−e−2β

2πr
β,10 +

∂P
∂r
+

+

(
4πr2P +

m
r

) (ρ + P)

r
(
1 − 2m

r

) + 2
r

(
P − P̄

)
= 0,

(23)

e2β

r

[
1+

(
1−2m

r

)
+ 4πr2 (P−ρ)

] [
ε+
ω (ρ+P)
(1−ω)2

]
+

+
V
r

ω

(1 − ω)2

∂

∂r
(ρ + P)+

+
V
r

[
∂ε

∂r
+

(1 + ω) (ρ + P)
(1 − ω)3

∂ω

∂r

]
+
∂ρ

∂u
= 0.

(24)

The expression (23) is the generalization of the Tolman -
Oppenheimer - Volkoff (TOV) equation of hydrostatic equi-
librium (see, for example [31]). It can be shown that the con-
servation equation (24) can also be obtained from the field
equations (19) and (21), remembering that the second mixed
derivatives commute, that is, m,01 = m,10. Now, combining
(21) with (24) we obtain:
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If we assume that radiation profiles ε and the variable ω,
vary little, so we can write an expression very similar to the
Euler equation
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(25)

Equation (25) is omitted in previous works on the evolu-
tion of radiating fluid sphere [6,20,21,23,28]. This omission
prevents the closing of the system of equations, and moti-
vates the spurious inclusion of a luminosity Gaussian pulse
[21, 23–25, 28]. Equation (25) allows us relate the mass ex-
change with the time like and radial derivatives of the effec-
tive variables, and together with eq. (21), the radiation flux ε
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Fig. 1: The radius A as a function of the normalized time-like co-
ordinate u

m(0) for the initial values A = 5.0; M = 1.0 in the model
Schwarzschild-like. Dashed line: Ω = 1 static equilibrium, Ω = 1.1
expansion; Ω = 0.91 collapse. Solid line: solutions according to
Herrera et al. [6].
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Fig. 2: The radius A as a function of the normalized time like co-
ordinate u

m(0) in the Schwarzschild-like model. Initial values for the
surface variables A = 5; M = 1.0; Ω = 0.833. Dashed line: calcula-
tions present. Solid line: solutions according to Herrera et al. [6].

is calculated. With the field equations (19) to (22) we can cal-
culate the expressions of the physical variables ω, P̄, ρ̄, if we
know the expressions m (u, r) and β (u, r) in each layer of the
material under study. As a consequence, the state equations
P (u, r) , ρ (u, r) play an important role in determining the be-
havior of the physical variables present in the field equations
and establishing their posterior evolution.

3 The models and surface equations

From the field equations (19) and (20) we can see

m =

∫ r

0
4πr2ρ dr, (26)

β = 2π
∫ r

a

ρ + P
1 − 2m

r

r · dr. (27)

These expressions for m and β are very similar to those
obtained in the static case. This suggests a procedure to ob-
tain dynamic solutions, following the same method of Herrera
et al. [6], starting from a static solution:

1. Select a static solution of the gravitational field equa-
tions for a perfect fluid with spherical symmetry that
explicitly shows its radial dependence

ρstatic = ρ (r) Pstatic = P (r) ,

2. Suppose that the effective variables P and ρ (eq. 10)
have the same radial dependence as in the static solu-
tion, but taking into account that now the edge condi-
tion P̄a = 0 is now expressed as

Pa = −ωaρa. (28)

Note that the subscript ∆a indicates that the quantity ∆
is evaluated at the edge of the distribution.

3. With this radial dependence for the effective variables,
and together with (26) and (27), the values of m and
β are calculable, except for three unknown functions
(surface variables) that we are going to determine:

(a) Equation (9) evaluated at r = a.

(b) Equation (25) evaluated at r = a.

(c) Equation (15) evaluated at r = a, or equation (22)
evaluated at r = a.

4. Integrating numerically the ordinary differential equa-
tions obtained in (3), for a set of initial data, we com-
pletely determine the functions m and β.

5. With the field equations (19) to (22) we can calculate
the expressions of the physical variables for the model
considered.

As outlined in the previous methods (subsection 3), it is
necessary to establish the surface variables and the equations
that control its evolution.

• As mentioned in (subsection 3a), one of the surface
equations is (9) evaluated at r = a, which takes the
form

å =
da
du
= Ȧ = F (Ω − 1) , (29)

where here it is very convenient to standardize the vari-
ables in terms of the initial mass m(0) = m(u = 0, r =
a) and define as surface variables:

A ≡ a
m (0)

M ≡ ma

m (0)
Ω ≡ 1

1 − ωa
, (30)

as well as the variable

F =
[
e2β

(
1 − 2m

r

)]
r=a
=

(V
r

)
a
, (31)
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Fig. 3: Density 8πm (0)2 ρ̄ in function of the temporal variable u
m(0)

for the model of Schwarzschild, for r
a = 0.00, 0.40 and 1.00.

Instead of using as surface variable F (31) – the grav-
itational potential at the surface – , as used in the ref-
erences [6, 20, 21, 28]; we will use mass M, that is, the
equation for radial evolution is

Ȧ =
(
1 − 2M

A

)
(Ω − 1) , (32)

This equation is valid for all models.

• The second equation (25) is dependent on the model
and it becomes necessary to calculate the first deriva-
tives of the effective density and pressure, as can be
seen.
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• The last equation (23) is the Tolman - Oppenheimer
- Volkoff conservation equation evaluated at r = a,
which we can write
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Fig. 4: Normalized pressure values 8πm (0)2 P̄ in function of the
time variable u

m(0) for the model of Schwarzschild, for r
a = 0.4 and

1.00

Both equations (33) and (34) have a similar structure, in
terms of the surface variables:

ΥM Ȧ + ΞM Ṁ + ΛM Ω̇ = ∆M (35)
ΥΩ Ȧ + ΞΩ Ṁ + ΛΩ Ω̇ = ∆Ω, (36)

where

Υξ ≡ Υξ (A,M,Ω) , Ξξ ≡ Ξξ (A,M,Ω) ,
Λξ ≡ Λξ (A,M,Ω) , ∆ξ ≡ ∆ξ (A,M,Ω) , ∀ξ ∈ {M,Ω}

are functions of (A,M,Ω). These three equations (32), (33)
and (34) allow us to establish a system of three ordinary dif-
ferential equations for the surface variables; which together
with the initials data set, determine m and β, as set forth in
subsection 4. Below are two examples for the interior dis-
tribution Schwarzschild-like and Tolman VI-like in section 4
and 5, respectively.

4 The Schwarzschild-like model

We will get as the first test example Schwarzschild’s well-
known internal and static constant density solution. For this,
we are going to assume that the density depends only on the
time-type variable, as explained in [6, 32] we can write the
state equation for the Schwarzschild type model as

ρ =
3m

4πr3 (37)

P = ρ


1 − 1

g

[
1− 2M

A ( r
a )2

1− 2M
A

] 1
2

1
g

[
1− 2M

A ( r
a )2

1− 2M
A

] 1
2

− 3

 , (38)

where the value of g is determinated from the boundary con-
dition

(
P̄a = 0

)
then the effective pressure satisfies the rela-

tionship (28); and consequently g = 1
3−2Ω . Evaluating equa-

tion (9), for r = a, we get (32) and with (23) and (24) for
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Fig. 6: Radiation profiles 8πm (0)2 ε. for the model of
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r = a we obtain then
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and from (20) and (19) we obtain, then after the immediate
integration

m (r) = m (0) · M
( r
a

)3

β =
1
2

log

1 + 3
2Ω


√√√ 1 − 2M

A

1 − 2M
A

(
r
a

)2 − 1


 .

Figures 1 and 2 show the evolution of the radius A. No-
tice that Ω = 1 represents a condition of static equilibrium,

Ω > 1 represents expansion, Ω < 1 the collapse. In both
cases the system returns to equilibrium very quickly. In or-
der to make some comparison, we took the initial data very
close to those chosen in the reference [6]. We did not use the
value for Ω = 1, since with this approximation the system
does not have static behavior. The figures 3, 4, 5, 6 represent
the profiles of physical variables versus the time like coordi-
nates for different pieces of material and for initials data. We
obtain monotonous variations in the physical quantities, as
a consequence of the non-assumption of the Gaussian pulse.
In particular it is shown in figure 6, how all the layers emit
monotonously, unlike the figure 7 in Herrera et al. [6]

5 The Tolman VI-like model

Following [2] we can assume as static solution
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and the corresponding values of β and m are
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( r
a

)
.

Figure 7 shows the temporal variation of the radius of a
radiant sphere, for different values of Ω. There is a critical
value Ω0 for A = 6.66 and M = 1 and slight increase in
Ω causes a permanent expansion or the contraction rises to
the critical value. In the following figures 8,9,10 we show
the variations of pressure density and radiation of some inte-
rior layers in case of surface expansion (explosion-like). We
noted in the example in the figure 10 that all layers absorbed
energy during the initial collapse, an then a radiative pulse is
emitted, before returning to the equilibrium configuration.
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6 Conclusions

We have reviewed the relativistic description of the collapse
of self-gravitating radiant spheres, following the usual pro-
cedure [6, 19–21, 23, 25, 28, 33] and find that it is an effec-
tive method for such a purpose, since the field equations to-
gether with the conservation laws (Bianchi’s Identity) form
a complete set of integrable equations that do not require an
additional hypothesis about the emission of radiated energy.
That is, the emission hypothesis of a Gaussian pulse at an
arbitrary instant to trigger the collapse; it is not only unneces-
sary, but also leads to qualitatively and quantitatively different
solutions, as we have shown in figures 1-9. We emphasize
the importance of using conservation equations properly, as
was done in Section 2; We formally reobtain the generalized
TOV equation of the hydrostatic equilibrium (equation 23)
and a relativistic version of the Euler equation for the self-
gravitating sphere (equation 25).

We have seen that the Schwarzschild-like description is an
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with r

a = 0.2, 0.4, 0.6, 0.8 and 1.
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ideal case that does not represent the phenomenology of the
high energy events observed in the stellar collapse of massive
stars such as supernovas and quasars. The measurable magni-
tudes of density, pressure and emission evolve smoothly, re-
turning to the equilibrium condition very rapidly (Figures 3-
6). On the other hand, the Tolman VI description involves two
possible qualitatively different scenarios, such as the implo-
sion or the explosion of the outer layers of the self-gravitating
sphere, depending on the initial values of the mass, radius and
velocity observables, as we have shown in figure 7.

We have shown that, in the case of contraction, the den-
sity and pressure variables similarly evolve (Figures 8 and 9)
as might be expected if a polytrope state equation is used.
In addition, Figures 8 and 9, show a dependence of the evolu-
tion of such magnitudes according to the radius of the consid-
ered layer, with much higher values of density and pressure
in the innermost layers, in agreement with the description of
the stellar collapse of massive stars.

Finally figure 10 shows that during the collapse of the
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self-gravitating radiating spheres a pulse of radiation emis-
sion is generated before reaching equilibrium again; which
arises naturally from the complete solution of the evolution
equations, and maybe is important to explain the emission
process in very high energy in Supernova bursts and Quasars.

Submitted on January 12, 2018
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