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We embolden the idea that the Dirac 4 × 4 γ-matrices are four-vectors where the space
components (γi) represent spin and the forth component (γ0) should likewise represent
the time component of spin in the usual four-vector formalism of the Special Theory of
Relativity. With the γ-matrices as four-vectors, it is seen that the Dirac equation admits
two kinds of wavefunctions — (1) the usual four component Dirac bispinor ψ and (2) a
scalar four component bispinor φ. Realizing this, and knowing forehand of the existing
mystery as to why Leptons and Neutrinos come in pairs, we seize the moment and make
the suggestion that the pair (ψ, φ) can be used as a starting point to explain mystery of
why in their three generations [(e±, νe), (µ±, νµ), (τ±, ντ)], Leptons and Neutrinos come
in doublets. In this suggestion, the scalar-bispinor φ can be thought of as the Neutrino
while the usual Dirac bispinor ψ can be thought of as the Lepton.

“We have found it of paramount importance that in
order to progress we must recognize our ignorance
and leave room for doubt.”

— Richard Phillips Feynman (1918-1988)

1 Introduction

As taught to physics students through the plethora of text-
books available on our planet e.g., refs. [1–5], the Dirac 4× 4
γ-matrices (γµ) are usually presented as objects that undergo
a transformation during a Lorentz transformation of the Dirac
[6, 7] equation. This issue of the transformation of these γ-
matrices is not well represented in the literature [8]. There,
thus, is a need to clear the air around this issue regarding the
proper transformation properties of these matrices. To that
end, we here argue in favour of these matrices as physical
four-vectors and as such, they must under a Lorentz transfor-
mation transform as four-vectors. In-fact, it is well known
that the γi-matrices (i = 1, 2, 3) represent spin (i.e., ~S =

1
2~γ

1~̂i + 1
2~γ

2~̂j + 1
2~γ

3~̂k) because, together with the angular
momentum operator ( ~L), their sum total of the orbital angu-
lar momentum and spin ( ~J = ~L + ~S) commutes with the
Dirac Hamiltonian (HD), i.e. ([ ~J ,HD] = 0), implying that ~J
is a constant of motion.

For a particle whose rest-mass and Dirac [6, 7] wave-
function are m0 and ψ respectively, the corresponding Dirac
[6, 7] equation is given by:

ı~γµ∂µψ = m0cψ, (1)

where:

γ0 =

 I2 0

0 −I2

 , γi =

 0 σi

−σi 0

 , (2)

are the 4 × 4 Dirac γ-matrices where I2 and 0 are the 2×2
identity and null matrices respectively, and |ψ〉 is the four
component Dirac [6, 7] wave-function, ~ is the normalized
Planck constant, c is the speed of light in vacuum, ı =

√
−1,

and:

ψ =


ψ0
ψ1
ψ2
ψ3

 =

 ψL

ψR

 , (3)

is the 4 × 1 Dirac [6,7] four component wavefunction and ψL

and ψR are the Dirac [6,7] bispinors that are defined such that:

ψL =

 ψ0

ψ1

 and ψR =

 ψ2

ψ3

 . (4)

Throughout this reading — unless otherwise specified;
the Greek indices will here-and-after be understood to mean
(µ, ν, ... = 0, 1, 2, 3) and the lower case English alphabet in-
dices (i, j, k ... = 1, 2, 3).

2 Lorentz Transformation of the Dirac as usually pre-
sented

To prove Lorentz Invariance (Covariance) two conditions
must be satisfied:

1. The first condition is that: given any two inertial ob-
servers O and O′ anywhere in spacetime, if in the frame
O we have:

[i~γµ∂µ −m0c]ψ(x) = 0, (5)

as the Dirac equation for the particle ψ, then:

[i~γµ
′

∂µ′ −m0c]ψ′(x′) = 0 (6)

is the equation describing the same state but in the fra-
me O′.
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2. The second condition is that: given that ψ(x) is the
wavefunction as measured by observer O, there must be
a prescription for observer O′ to compute ψ′(x′) from
ψ(x) where ψ′(x′) describes to O′ the same physical
state as that measured by O. The conserve must be true
as-well, that is: there must exist a prescription such that
starting from equation (6), one can arrive at (5).

In simpler mathematical terms, the above two require-
ments are saying that: starting from equation (5), there must
exist some physically legitimate transformations within the
framework of Lorentz transformations that can take (map) us
from this equation (5) to equation (6) and vice-versa. If we
can find these, then, the Dirac equation is said to be Lorentz
Invariant (Covariant).

Now, since the Lorentz transformations are linear, it is to
be required or expected of the transformations between ψ(x)
and ψ′(x′) to be linear too, i.e.:

ψ′(x′) = ψ′(Λx) = S (Λ)ψ(x) = S (Λ)ψ(Λ−1x′), (7)

where S (Λ) is a 4 × 4 matrix which depends only on the rel-
ative velocities of O and O′ and Λ is the Lorentz transforma-
tion matrix. S (Λ) has an inverse if O→ O′ and also O′ → O.
The inverse is:

ψ(x) = S −1(Λ)ψ′(x′) = S −1(Λ)ψ′(Λx), (8)

or we could write:

ψ(x) = S (Λ−1)ψ′(Λx) =⇒ S (Λ−1) = S −1(Λ). (9)

We can now write equation (5), as:[
i~γµ

∂xµ
′

∂xµ
∂µ′ −m0c

]
S −1(Λ)ψ′(x′) = 0, (10)

and multiplying this from the left by S (Λ), we have:

S (Λ)
[
i~γµ

∂xµ
′

∂xµ
∂µ′ −m0c

]
S −1(Λ)ψ′(x′) = 0, (11)

and hence:[
i~S (Λ)γµ

∂xµ
′

∂xµ
S −1(Λ)∂µ′ −m0c

]
ψ′(x′) = 0. (12)

Therefore, for the above equation to be identical to equa-
tion (6) (hence Lorentz Invariant), the requirement is that:

γµ
′

= S (Λ)γµ
∂xµ

′

∂xµ
S −1(Λ), (13)

hence, we have shown that — for as long as S −1(Λ) exists,
equation (5) is Lorentz Invariant.

3 Dirac ~4 × 4 ~γ-matrices as a four-vector

The Dirac equation (1) can be re-written in the traditional
Schrödinger formulation as (H ψ = Eψ) where H and E are
the energy and Hamiltonian operators respectively. In this
Schrödinger formulation, H , will be such that it is given by:

H = γ0m0c2 − ı~cγ0γ j∂ j, (14)

and (E = i~∂/∂t).
Now, according to the quantum mechanical equation gov-

erning the evolution of any quantum operator Q , we know
that:

ı~
∂Q
∂t

= QH − HQ = [Q ,H ] , (15)

hence, if:
[Q ,H ] ≡ 0, (16)

then, the quantum mechanical observable corresponding to
the operator Q is a conserved physical quantity.

With this [equation (15)] in mind, Dirac asked himself
the natural question — what the “strange” new γ-matrices
appearing in his equation really represent. What are they?
In-order to answer this question, he decided to have a “look”
at or make a closer “inspection” of the quantum mechanical
orbital angular momentum operator Li which we all know to
be defined:

Li = (~r × ~p)i = −ı~εi jk x j∂k, (17)

where, εi jk is the completely-antisymmetric three dimensional
Levi-Civita tensor. In the above definition of Li, the momen-
tum operator ~p is the usual quantum mechanical operator, i.e.:

~p = −ı~~∇ ⇒ pi = ı~∂i. (18)

From this definition of Li given in equation (17), it fol-
lows from equation (15) that ı~∂Li/∂t = [Li,H ], will be such
that:

ı~
∂Li

∂t
= −ı~m0c2εi jk

[
x j∂k, γ

0
]
+~2cεi jk

[
x j∂k, γ

0γl∂l

]
. (19)

Now, because the term γ0m0c2 is a constant containing no
terms in pi, it follows from this very fact that (εi jk

[
x j∂k, γ

0
]
≡

0), hence equation (19) will reduce to:

ı~
∂Li

∂t
= ~2cεi jkγ

0γl
[
x j∂k, ∂l

]
= ~2cεi jkγ

0γl
(
x j∂k∂l − ∂lx j∂k

)
.

(20)

From the commutation relation of position (xi) and mo-
mentum (−ı~∂ j) due to the Heisenberg uncertainty princi-
ple [9], namely (−ı~

[
xi, ∂ j

]
= −ı~δi j) where δi j is the usual

Kronecker-delta function, it follows that if in equation (20),
we substitute (∂lx j = x j∂l + δl j), this equation is going to
reduce to:

ı~
∂Li

∂t
=~2cεi jkγ

0γl
(
x j∂k∂l−x j∂l∂k

)︸              ︷︷              ︸ +~2cεi jkγ
0γlδl j∂k. (21)
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The term with the under-brace vanishes identically, that is
to say: (x j∂k∂l − x j∂l∂k ≡ 0); and (εi jkγ

0γlδl j = εilkγ
0γl), it

follows from this that equation (21), will reduce to:

ı~
∂Li

∂t
= ~2cεilkγ

0γl∂k. (22)

Since this result [i.e., equation (22) above] is non-zero, it
follows from the dynamical evolution theorem [i.e., equation
(16)] of Quantum Mechanics (QM) that none of the angular
momentum components Li are — for the Dirac particle —
going to be constants of motion. This result obviously both-
ered the great and agile mind of Paul Dirac. For example,
a non-conserved angular momentum would mean spiral or-
bits i.e., Dirac particles do not move in fixed and well defined
orbits as happens with electrons of the Hydrogen atom for ex-
ample; at the very least, this is very disturbing because it does
not tally with observations. The miniature beauty that Dirac
had — had the rare privilege to discover and, the first human
being to “see” with his beautiful and great mind — this —
had to be salvaged∗ somehow.

Now — enter spin! Dirac figured that “Subtle Nature”
must conserve something redolent with orbital angular mo-
mentum, and he considered adding something to Li that
would satisfy the desired conservation criterion, i.e.: call this
unknown, mysterious and arcane quantity Si and demand
that:

ı~
∂ (Li + Si)

∂t
≡ 0. (23)

This means that this strange quantitySi must be such that:

ı~
∂Si

∂t
= [Si,H ] = −~2cεilkγ

0γl∂k. (24)

Solving equation (24) for Si, Dirac arrived at:

Si =
1
2
~

(
σi 0
0 σi

)
=

1
2
~γ5γi, (25)

where (γ5 = ıγ0γ1γ2γ3), is the usual Dirac gamma-5 matrix.
Now, realising that:

1. The matrices σi are Pauli matrices and they had been
ad hocly introduced in 1925 into physics to account for
the spin of the Electron by the Dutch-American the-
oretical physicists, George Eugene Uhlenbeck (1900–
1988) and his colleague, Samuel Abraham Goudsmit
(1902–1978) [10].

2. His equation — when taken in the non-relativistic limit,
it would account for the then unexplained gyromag-
netic ratio (g = 2) of the Electron and this same equa-
tion emerged with σi explaining the Electron’s spin.

∗Such is the indispensable attitude of the greatest theoretical physicists
that ever graced the face of planet Earth — beauty must and is to be pre-
served; this is an ideal for which they will live for, and if needs be, it is an
ideal for which they will give-up their life by taking a gamble to find that
unknown quantity that restores the beauty glimpsed!

The agile Paul Dirac seized the golden moment and forth-
with identified Si with the ψ-particle’s spin. The factor 1

2~ in
Si implies that the Dirac particle carries spin 1/2, hence, the
Dirac equation (1) is an equation for a particle with spin 1/2!

While in this esoteric way (i.e., as demonstrated above)
Dirac was able to explain and “demystify” Wolfgang Pauli
(1900–1958)’s strange spin concept which at the time had
only been inserted into physics by “the sleight of hand” out
of an unavoidable necessity, what bothers us (i.e., myself) the
most is:

How it comes about that we (physicists) have had
issues to do with the transformational properties
of the γ-matrices? Why? Really — why? The
fact that orbital angular momentum ~L is a vector
invariably leads to the indelible fact that ~S is a
vector as-well, because we can only add vectors
to vectors.

If ~S is a vector, then the matrices γi must be components
of a 3-vector, so must the matrix γ0 be the component of the
time-vector in the usual four-vector formalism, hence γµ must
be a four-vector. So, right from the word go — with little or
no resistance whatsoever, it must have been pristine clear that
the γ-matrices must be four-vectors.

4 Dirac equation with the ~γ-matrices as a four-vector

With γ-matrices now taken as a four-vector, the object γµ∂µ
is a scalar, the meaning of which is that the Dirac equation
will now accommodate two types of spinors “the usual Dirac
bispinor” and a new “scalar-bispinor”, i.e.:

1. A spinor that is a scalar. Let us here call this a scalar-
bispinor and let us denote it with the symbol φ and be-
cause of its scalar nature — under a Lorentz transfor-
mation, we will have (φ′ = φ). Just like the ordinary
Dirac wavefunction ψ is a 4 × 1 component object, φ is
also a 4 × 1 object, i.e.:

φ =


φ0
φ1
φ2
φ3

 =

 φL

φR

 , (26)

where φL and φR are the scalar-spinors — which are
like the ordinary left and right handed Dirac spinors
(ψL, ψR); ψL and φR are defined:

φL =

 φ0

φ1

 and φR =

 φ2

φ3

 . (27)

Consideration of the scalar-bispinor has been made in
the past by others e.g., [11].

2. The ordinary Dirac bispinor ψ: that transforms lin-
early under a Lorentz transformation i.e. (ψ′ = Sψ),

92 G. G. Nyambuya. Transformation of the Dirac Matrices



Issue 2 (April) PROGRESS IN PHYSICS Volume 14 (2018)

where, a usual, Lorentz Invariance (Covariance) requi-
res that the function S = S (xµ, ẋµ) be such that:

γµ
′

∂µ′S = γµ∂µS = 0, (28)

and:
γµ = S −1γµS , (29)

which implies: [
S , γµ

]
= 0. (30)

Now, we certainly must ask “What does this all mean”.
That is to say, the fact that the Dirac equation allows for the
existence of the usual Dirac bispinor ψ and in addition to that
— a scalar-bispinor φ? Taken at the same level of under-
standing that the Dirac equation’s prediction of the existence
of antimatter is premised on the Dirac equation being sym-
metric under charge conjugation — on that very same level
of understanding, this fact that the Dirac equation in its most
natural and un-tempered state as presented herein — it, allows
for the existence of the usual Dirac bispinor ψ and scalar-
bispinor φ; in the same vein of logic, this naturally implies
that for every Dirac bispinor ψ, there must exist a correspond-
ing scalar-bispinor φ. That is, the Dirac bispinor ψ and the
scalar-bispinor φmust come in pairs. There is no escape from
this train of logic.

If we are thinking of Leptons and Neutrinos, the above
pair-picture of (ψ, φ) makes perfect sense. Based on this pic-
ture, we can write the Dirac equation for this pair (ψ, φ) as:

ı~γµ∂µ

 ψ

φ

 = m0c
(

1 0
0 η

)  ψ

φ

 , (31)

where η is a scalar-constant that we have introduced so as
to accommodate the possibility that the particle-pair (ψ, φ),
may have different masses. In this way, one can begin to en-
tertain ideas on how to explain the Lepton-Neutrino pairing
[(e±, νe), (µ±, νµ), (τ±, ντ)]. We have no intention of doing this
or going any deeper on this matter but merely to point out —
as we have just done — that, this idea may prove a viable av-
enue of research to those seeking an explanation of why this
mysterious pairing occurs in nature.

5 General discussion

We must categorically state that — what we have presented
herein is not new at all. All we have endeavoured is to make
bold the point that the γ-matrices constitute a four-vector.
Perhaps the only novelty there is — in the present contribu-
tion — is the suggestion that we have made — namely that,
the resulting scalar-bispinor (φ) and the usual Dirac bispinor
(ψ) can be used as a starting point to explain the currently
open problem of the three generation Lepton-Neutrino pair-
ing (e±, νe), (µ±, νµ) and (τ±, ντ); where the scalar-bispinor
can be assumed to be the Neutrino while the usual Dirac

bispinor can be thought of the Lepton. In the sequatial read-
ing [12], we will demonstrate how this formulation of the
Dirac equation can be used to explain how massless neutri-
nos can oscillate.
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