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Seeliger’s paradox is often regarded as an argument against Newtonian potentials in an
infinite universe. In this paper the argument is analyzed with the help of Riemann’s
series theorem. This theorem reveals that the paradox is a known consequence of the
rearrangement of conditionally convergent series or integrals, and so it demonstrates
that the same situation would arise with almost any other type of gravitational force
law. Therefore Seeliger’s argument is not a valid proof against Newton’s inverse square
law or even an infinite universe.

1 Introduction

In 1895 the German astronomer Hugo Seeliger published an
article [1] in which he revealed an apparent flaw in Newton’s
law of gravitation, which may lead to “unsolvable contradic-
tions”. His reasoning can be presented as follows.

Let’s suppose a boundless universe with a (near) homo-
geneous distribution of matter. For simplicity, let’s assume
this to be a continuous mass distribution, which extends uni-
formly to infinity in all directions. To calculate the gravita-
tional force exerted by this infinite universe on a test particle
with gravitational mass m located at a point P, we consider
all the masses in the universe as arranged in thin concentric
spheres centered in P. Since the Newtonian attraction of a
sphere on any point located inside of it is zero, we find that
the sum of all the concentric spheres extending to an infinite
distance will be zero. This is what might be expected from
symmetry.

Next, let’s calculate the force again, but this time using a
coordinate system centered at another point Q, located at an
arbitrary distance d from m. In order to calculate the force,
we divide the universe into two parts. The first one is the
sphere of radius d centered on Q and passing through P. The
mass of this sphere is M = 4

3ρπd
3 , where ρ is its density,

which attracts the material point m with a force given by F =
−GMm

d2 = 4
3ρπd

3 pointing from P to Q. The second part is
the remainder of the universe. This remainder is composed of
a series of external shells also centered on Q containing the
internal test particle m. As we have seen above, this second
part exerts no force on m. Therefore the force exerted by the
universe calculated in this way is proportional to the distance
d and directed towards Q.

This means that depending on which point Q we choose,
we obtain a different value for the force acting on m. The
conclusion that Seeliger extracts from this puzzling result is
that either the universe cannot be infinite, or that Newton’s
law of attraction must be modified. Taking the latter choice,
he proposed to add an absorption factor e−λr to the force of
gravity

FS eeliger = −G
mm′

r2 e−λr (1)

where λ is an arbitrary parameter, sufficiently small to make

this force compatible with the existing observational data.
When (1) is used, it can be demonstrated [2] that the grav-

itational force exerted on a particle m at the surface of a spher-
ical volume V1 uniformly filled with matter is equal and oppo-
site to the gravitational force exerted on the particle by all the
infinite concentric uniform spherical shells outside the first
spherical volume V1, so that the net force acting on the parti-
cle is zero. Seeliger thus believed to have found a solution of
the paradox.

The purpose of this paper is to generalize the formulation
of the problem and to show that Seeliger’s conclusion does
not hold.

2 Newton’s inverse square law and its relation to the
paradox

Before getting at the origin of the paradox, let’s look at dif-
ferent ways to formulate it.

First we note that Seeliger uses the fact, unique to the in-
verse square law, that the attraction of a sphere to any mass
inside of it is zero. To demonstrate that this is not an essential
feature, we will present the paradox from a different perspec-
tive.

Let’s calculate the gravitational field of an infinite plane.
Let ρ denote the mass density per unit area of this infinite
plane and consider a test particle of mass m located at a dis-
tance h from the plane, as shown in the following figure.

In Newtonian terms, the incremental force dF on this par-

Fig. 1: Attraction of an infinite plane on a mass m.
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ticle contributed by an annular ring of radius R and incremen-
tal width dR is just the projection onto the perpendicular of
the forces exerted by each element of the plane around the
circumference of the annular region. Thus we have:

dF =
Gmρ

h2 + r2 [π(R + dR)2 − πR2]
( h
√

h2 + R2

)
.

Expanding this expression and ignoring second order differ-
ential terms, we get

dF = 2πGmρh
R

(h2 + R2)
3
2

dR .

Integrating from R = 0 to ∞, we find that the total force ex-
perienced by the particle is

F = 2πGmρh
∫ ∞

0

R

(h2 + R2)
3
2

dR = 2πGmρ .

Thus the force exerted on the particle is independent of the
distance h from the plane. Adding more planes to form a slab
of thickness a, we get that the force would be in this case:

F = 2πGmρa.

Grouping infinite parallel slabs of the same thickness a and
adding the contribution of each of them, we get the force of
the universe acting on particle m

F =
∞∑
−∞

2πGmρa . (2)

It can be shown that this infinite sum will yield a different
result depending on how it is calculated. As a first way of
determining the value of (2), let’s pair each slab with its cor-
responding symmetrical one around the plane of origin. If we
consider this plane as the plane xy, then we take a parallel
slab of coordinate z0 and pair it with the slab of coordinate
−z0. Since the force of each slab in the pair is equal and op-
posite, their sum vanishes. The total force (2) will thus be
zero. Analytically, we can write this as

F = (2πGρma − 2πGρma)+

+ (2πGρma − 2πGρma) + ... = 0 .
(3)

Next, let’s calculate (2) again but this time starting one slab
further from m. The total force on m will be the sum of the
force due to this separate slab, which contains m on one of its
surfaces, plus all the remaining slabs in the universe, on both
sides of the first slab, thus

F = 2πGρma0 +

0∑
n=−∞

2πGρman −
∞∑

n=1

2πGρman

where n = 0 represents the separate slab. Since the terms

0∑
n=−∞

2πGρman −
∞∑

n=1

2πGρman

are paired one to one as in (3), they cancel each other out
and the result is zero. Therefore the total force on m will be
F = 2πGρma, which is an arbitrary value, since a has been
arbitrarily chosen.

This new version of the paradox does not use the fact that
the potential is null inside a sphere and yet, as in Seeliger’s
original version, it can return any arbitrary value. It is possi-
ble in fact to prove that the paradox occurs with a wide range
of forces other than Newton’s inverse square law. With New-
ton’s law, the force of each slab is independent of the dis-
tance, thus the force exerted by each of the layers is the same
and cancels out with another slab located symmetrically from
the given particle. However, if we had a different force law
in which the gravitational force of each slab were dependent
on the distance, we still would be able to repeat the previous
calculation by choosing for each slab a suitable thickness so
as to exactly balance another slab at the opposite side of the
particle, provided that the sum of the forces diverged.

3 Riemann series theorem

In 1827, mathematician Peter Lejeune-Dirichlet discovered
the surprising result that some convergent series, when rear-
ranged, can yield a different result [3]. Based on this dis-
covery, another German mathematician, Bernhard Riemann
published in 1852 a theorem [3], known today as Riemann’s
series theorem (or Riemann rearrangement theorem), proving
that in general, infinite series are not associative, that is, they
cannot be rearranged.

According to this theorem (see for example [4]), an abso-
lutely convergent series will always give the same result, no
matter how it is rearranged. However, a conditionally conver-
gent series, by a suitable permutation of its elements, can take
any arbitrary value or even diverge.

Let’s review some definitions. A series converges if there
exists a value ℓ such that the sequence of the partial sums

{S 1, S 2, S 3, ...} , where S n =

n∑
k=1

ak

converges to ℓ. That is, for any ϵ > 0, there exists an integer
N such that if n ≥ N, then

|S n − ℓ| ≤ ϵ .

A series S n =
∑∞

n=1 an converges absolutely if S n =
∑∞

n=1 |an|
converges. A series S n =

∑∞
n=1 an converges conditionally if

it converges but the series S n =
∑∞

n=1 |an| diverges.
Riemann’s series theorem can be directly extrapolated to

conditionally convergent integrals (see for example [5]).
In the case of Seeliger’s paradox, we note first that al-

though the masses in the universe should be treated as dis-
crete, Seeliger for simplicity turns them into a homogeneous
mass distribution throughout the universe, thus formulating it
in terms of integrals instead of series. Like Seeliger, we will
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work with a continuous mass distribution, but bearing in mind
that the problem is actually discrete.

Considering a uniform mass distribution with a volume
density ρ, and using a spherical coordinate system (r, θ, ϕ)
centered on m, we have that, according to Newton’s law, the
component of the total force exerted on a particle m along the
x axis is

Fx = −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr , (4)

and similarly for the other axes.
Since the integral is only conditionally convergent, we

have to pay attention to the order in which we calculate the
multiple integral. In this case, our goal is to integrate sequen-
tially the shells around the test mass, starting from r = 0 and
extending to r = ∞, thus we have to integrate first over the
variables θ and ϕ and only then over r. Note therefore that (4)
is not necessarily equal to

Fx = −Gm
∫ 2π

ϕ=0

∫ π

θ=0

∫ ∞

r=0
ρ sin ϕ cos ϕ drdθdϕ .

We solve the integral (4)

Fx = −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr

= −Gm
∫ ∞

r=0

∫ π

θ=0
ρ

[
sin

(
− cos2 ϕ

2

) ]2π

ϕ=0
dθdr = 0 ,

which, again, is what could be expected from symmetry. Fol-
lowing Seeliger’s procedure, we can calculate the integral in
a different way by splitting the space into a sphere of radius
a, centered in a point Q separated from m by a distance a,
so that the test mass lies on its surface, and concentric shells
also centered in Q containing the particle in their interior. In
other words, the contribution of every mass in the universe is
added but in a different order. Thus the integral is rearranged,
which is what Riemanns’s theorem warns us against. Taking
Q as the origin of coordinates, the x component of the force
will be

Fx = −
GmM

a2 −Gm
∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ρ sin ϕ cos ϕ dϕdθdr . (5)

The first term on the right hand side of (5) is the attraction
of the sphere, being M its mass, and a the distance between
the particle m and the center of the sphere. The second is the
attraction of the concentric shells, which is zero. Therefore,

Fx = −
GmM

a2 .

Since the integral is only conditionally convergent, it is no
surprise that the new integral obtained by a rearrangement of
its terms yields a different result.

Riemann’s theorem shows the reason why Seeliger’s para-
dox occurs, and it also demonstrates that its origin is mathe-
matical, not physical.

The integral converges to zero but any other rearrange-
ment of the integral will yield a different value. Given the
infinitely many possible results, we are forced to ask which
one, if any, is the “correct” value, i.e. the one that a measure
instrument would register in reality. Riemann’s theorem does
not provide a way to decide this, having therefore to rely on
the physical significance of each reordering of the integral
or the series. The following two arguments, although lack-
ing mathematical rigor, both indicate that the only valid way
to carry out the calculation is by considering the mass at the
center of coordinates:

a) Since all the observable physical magnitudes in this
system, i.e. the mass distribution, are smooth everywhere,
i.e. infinitely differentiable (except possibly at the point where
the test mass is located), it is required that any derived func-
tion be also differentiable. Any discontinuity introduced in
any of the magnitudes must be discarded as lacking physical
basis. However, the force obtained when we calculate (5) is

F(r) =


−4

3
GρπMr , r ≤ R0

−GMm
r2 , r > R0

(6)

where r is the distance from the test mass to the center of the
sphere, and R0 the radius of the latter. This function is differ-
entiable at r = R0 only if R0 = 0. Thus, the only arrangement
of terms which will provide a differentiable force function is
the one which considers the test mass at the origin of coordi-
nates.

b) A non-nil result of (5) would be acceptable only if it
is a constant finite value independent of r. That would cor-
respond to the whole universe being pushed and moving in
one direction with respect to absolute space. Since this ab-
solute space is not detectable, we cannot determine whether
this movement is actually taking place or not. However, if
the force depends on r, different parts of the universe would
be pushed with different forces, giving rise to the motion of
some masses with respect to other masses. This is not ob-
served, and thus we have to reject this possibility.

The only case where the force (5) is independent of r is
when F(r) = 0 everywhere. These two arguments both sug-
gest that the nil result is the only one physically meaningful.

Some authors had already suspected that Seeliger’s para-
dox has no physical relevance, [6], [7], but none of them give
a rigorous explanation. It is common to find in the litera-
ture regarding Seeliger’s paradox, confusing statements about
convergence of infinite series [6, 8]. Even Newton, in his fa-
mous letter to Bentley [9], erred when he spoke about the
stability of an infinite Universe:

... if a body stood in equilibrio between any two equal
and contrary attracting infinite forces, and if to either
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of these forces you add any new finite attracting force,
that new force, howsoever little,will destroytheir equi-
librium.

In the situation described by him we have two opposite
infinite sides pulling on each other, or ∞ − ∞. This is inde-
terminate and so, it might or might not be stable. However, if
we assume the stability of the system, as Newton does, it is
obvious that adding a finite quantity of mass to either infinite
side will not destroy the equilibrium, since a finite quantity
added to an infinite one will not alter the latter, and so it will
make no difference in the balance between the two infinite
hemispheres of the universe. The universe will thus remain
stable.

4 Conclusion

We have proved, with the help of Riemann’s series theorem,
that Seeliger’s paradox has no physical significance. It is the
consequence of a flawed manipulation of infinite condition-
ally convergent integrals. Therefore the paradox cannot be
used as a valid argument against Newton’s potential or the
infiniteness of the universe.

Received on May 22, 2018
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