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In this paper, we consider the explanation of the Quantum Electrodynamics (QED)
phenomena of self-energy, vacuum polarization and mass renormalization provided by
the Elastodynamics of the Spacetime Continuum (STCED). We note that QED only
deals with the wave aspect of wave-particle objects, and hence QED only deals with the
distortion transverse strain energy W⊥, while the dilatation massive longitudinal strain
energy term W‖ is not considered. Hence there is no possibility of properly deriving
the mass, as QED uses an incomplete description of particle energies at the quantum
level. Comparison of QED mass renormalization with STCED strain energy shows that
the interaction of the particle with the medium or the field, δm, is the transverse strain
energy present in the spacetime continuum (or vacuum), essentially a field energy. We
provide the strain energy equivalence for QED mass renormalization and self-energies
for bosons, quarks and leptons.

1 Introduction

In this paper, we consider the explanation of the Quantum
Electrodynamics (QED) phenomena of self-energy, vacuum
polarization and mass renormalization provided by the Elas-
todynamics of the Spacetime Continuum (STCED) [1–11].
QED is the well-known relativistic quantum field theory of
electromagnetic dynamics (electrodynamics) in which char-
ged particle interactions are described by the exchange of
(virtual) photons. QED is a perturbative theory of the elec-
tromagnetic quantum vacuum [12], and the virtual particles
are introduced as an interpretation of the propagators which
appear in the perturbation expansion of vacuum expectation
values represented by Feynman diagrams.

In STCED, energy propagates in the spacetime continuum
(STC) as wave-like deformations which can be decomposed
into dilatations and distortions. Dilatations involve an invari-
ant change in volume of the spacetime continuum which is
the source of the associated rest-mass energy density of the
deformation. On the other hand, distortions correspond to a
change of shape (shearing) of the spacetime continuum with-
out a change in volume and are thus massless. Thus the de-
formations propagate in the continuum by longitudinal (di-
latation) and transverse (distortion) wave displacements.

This provides a natural explanation for wave-particle du-
ality, with the massless transverse mode corresponding to the
wave aspects of the deformations and the massive longitu-
dinal mode corresponding to the particle aspects of the de-
formations. The rest-mass energy density of the longitudinal
mode is given by [1, see Eq.(32)]

ρc2 = 4κ̄0ε (1)

where ρ is the rest-mass density, c is the speed of light, κ̄0 is
the bulk modulus of the STC (the resistance of the spacetime

continuum to dilatations), and ε is the volume dilatation

ε = εαα (2)

which is the trace of the STC strain tensor obtained by con-
traction. The volume dilatation ε is defined as the change in
volume per original volume ∆V/V [13, see pp. 149–152] and
is an invariant of the strain tensor, as is the rest-mass energy
density. Hence

mc2 = 4κ̄0 ∆V (3)

where m is the mass of the deformation and ∆V is the di-
latation change in the spacetime continuum’s volume corre-
sponding to mass m. This demonstrates that mass is not inde-
pendent of the spacetime continuum, but rather mass is part
of the spacetime continuum fabric itself.

In STCED, λ̄0 and µ̄0 are the Lamé elastic constants of the
spacetime continuum: µ̄0 is the shear modulus (the resistance
of the spacetime continuum to distortions) and λ̄0 is expressed
in terms of κ̄0, the bulk modulus:

λ̄0 = κ̄0 − µ̄0/2 (4)

in a four-dimensional continuum.

2 Energy in the spacetime continuum

In STCED, energy is stored in the spacetime continuum as
strain energy [5]. As seen in [1, see Section 8.1], the strain
energy density of the spacetime continuum is separated into
two terms: the first one expresses the dilatation energy den-
sity (the mass longitudinal term) while the second one ex-
presses the distortion energy density (the massless transverse
term):

E = E‖ + E⊥ (5)

where
E‖ =

1
2
κ̄0ε

2 ≡
1

32κ̄0
ρ2c4 , (6)

Pierre A. Millette. QED Mass Renormalization, Vacuum Polarization and Self-Energies in STCED 197



Volume 14 (2018) PROGRESS IN PHYSICS Issue 4 (October)

ρ is the rest-mass density of the deformation, and

E⊥ = µ̄0eαβeαβ =
1

4µ̄0
tαβtαβ , (7)

with the strain distortion

eαβ = εαβ − esg
αβ (8)

and the strain dilatation es = 1
4ε

α
α. Similarly for the stress

distortion tαβ and the stress dilatation ts. Then the dilatation
(massive) strain energy density of the deformation is given by
the longitudinal strain energy density (6) and the distortion
(massless) strain energy density of the deformation is given
by the transverse strain energy density (7).

The strain energy W of the deformation is obtained by
integrating (5) over the volume V of the deformation to give

W = W‖ + W⊥ (9)

where W‖ is the (massive) longitudinal strain energy of the
deformation given by

W‖ =

∫
V
E‖ dV (10)

and W⊥ is the (massless) transverse distortion strain energy
of the deformation given by

W⊥ =

∫
V
E⊥ dV (11)

where the volume element dV in cylindrical polar coordinates
is given by rdr dθ dz for a stationary deformation.

3 Quantum particles from STC defects

In [8, 10, 11], we show that quantum particles can be rep-
resented as defects in the spacetime continuum, specifically
dislocations and disclinations. Dislocations are translational
deformations, while disclinations are rotational deformations.
In particular, we consider the simplest quantum particle de-
fect given by the edge dislocation [10].

The strain energy density of a stationary edge dislocation
is given by

WE = WE
‖ + WE

⊥ . (12)

The longitudinal strain energy of the edge dislocation WE
‖

is
given by [10, eq. (8)]

WE
‖ =

κ̄0

2π
ᾱ2

0 b2 ` log
Λ

bc
(13)

where
ᾱ0 =

µ̄0

2µ̄0 + λ̄0
, (14)

` is the length of the dislocation, bc is the size of the core
of the dislocation, of order b0, the smallest spacetime Burg-
ers dislocation vector [9] and Λ is a cut-off parameter corre-
sponding to the radial extent of the dislocation, limited by the

average distance to its nearest neighbours. In (13), the edge
dislocation is along the z-axis with Burgers vector b along the
x-axis.

The transverse strain energy WE
⊥ is given by [10, eq. (10)]

WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

)
b2 ` log

Λ

bc
(15)

where

β̄0 =
µ̄0 + λ̄0

2µ̄0 + λ̄0
(16)

and the other parameters are as defined previously.

4 QED mass renormalization

The basic Feynman diagrams can be seen to represent screw
dislocations as photons, edge dislocations as bosons, twist
and wedge disclinations as fermions [10], and their interac-
tions. The interaction of defects results from the overlap of
the defects’ strain energy densities. In QED, the exchange of
virtual particles in interactions can be seen to be a perturba-
tion expansion representation of the forces resulting from the
overlap of the strain energy densities of the dislocations and
disclinations.

Similarly, the phenomena of self-energy and vacuum po-
larization can be understood to result from the strain energy
densities of individual defects. QED again represents this
situation as a perturbation expansion of an interaction of a
photon with the vacuum (photon self-energy also known as
vacuum polarization) or of a particle such as an electron with
its field (self-energy). In STCED, the perturbative expansions
are replaced by finite analytical expressions for the strain en-
ergy density of individual screw dislocations as photons, edge
dislocations as bosons, twist and wedge disclinations as ferm-
ions [10].

Quantum Mechanics and QED only deal with the trans-
verse component of spacetime continuum deformations as
they are only concerned with the wave aspect of wave-parti-
cle duality (see [14] for a discussion of this topic). The energy
terms used in QED thus correspond to the transverse strain
energy WE

⊥ . Hence there is no equivalent dilatation massive
longitudinal strain energy term (WE

‖
) used in QED, and no

possibility of properly deriving the mass from the theory, as
QED uses an incomplete description of particle energies at
the quantum level.

The mass term used in the QED equations is external to
and not derived from quantum equations. It is thus found
to not correspond to the actual mass of the particle and is
characterized instead as the bare mass m0 [15]. To this mass
is added the interaction of the particle with the medium or the
field, δm, the result of which mqm is “renormalized” (the value
of m0 and the field corrections are infinite) and replaced with
the actual experimental mass m according to

mqm = m0 + δm→ m . (17)
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Comparing this equation with (12), we find that

m = WE

m0 = WE
‖ =

κ̄0

2π
ᾱ2

0 b2 ` log
Λ

bc

δm = WE
⊥ =

µ̄0

4π

(
ᾱ2

0 + 2β̄2
0

)
b2 ` log

Λ

bc
.

(18)

The interaction of the particle with the medium or the field,
δm, is the transverse strain energy present in the spacetime
continuum (or vacuum), essentially a field energy.

We note that the bare mass (i.e. the massive longitudi-
nal strain energy) and the field correction (i.e. the transverse
strain energy) are both finite in this approach and there is no
need for the subtraction of infinities as both terms are well-
behaved. If integrated over all of spacetime, they would be
divergent, with the divergence being logarithmic in nature.
However, contrary to QED, the strain energies are bounded
by the density of defects present in the spacetime continuum,
which results in an upperbound to the integral of half the av-
erage distance between defects. As mentioned by Hirth [16],
this has little impact on the accuracy of the results due to the
logarithmic dependence. Hence including the longitudinal di-
latation mass density term as derived in STCED along with
the transverse distortion energy density term in the strain en-
ergy density provides the expression for the mass m and elim-
inates the need for mass renormalization as the theory is de-
veloped with the correct mass term.

Eq. (18) applies to massive bosons as shown in [10]. For
electrons, we have

W`3
= W`3

‖
+ W`3

⊥ , (19)

where the defect in this case is the `3 twist disclination [10]
and where (18) is replaced with the following:

m = W`3

m0 = W`3

‖
=
κ̄0

6π
ᾱ2

0

(
Ω2

x + Ω2
y

)
`3 log

Λ

bc

δm = W`3

⊥ =
µ̄0

2π
`3

3

[ (
Ω2

x + Ω2
y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy

(
ᾱ2

0 − 2β̄2
0

) ]
log

Λ

bc

(20)

where Ωµ is the spacetime Frank vector. The same consider-
ations as seen previously for bosons apply to (20) due to the
logarithmic dependence of the expressions.

For quarks, we have

WW = WW
‖

+ WW
⊥ (21)

where the defect in this case is the wedge disclination [10].

In most cases Λ � bc, and we have

m = WW

m0 = WW
‖
'
κ̄0

2π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ+

+ ᾱ0γ̄0 log Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]

δm = WW
⊥ '

µ̄0

4π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
log Λ+

+ 1
2

(
ᾱ2

0 − 3ᾱ0β̄0 + 3
2 β̄

2
0

) ]

(22)

where

γ̄0 =
λ̄0

2µ̄0 + λ̄0
. (23)

In this case, both the longitudinal strain energy WW
‖

and the
transverse strain energy WW

⊥ are proportional to Λ2 in the
limit Λ � bc. The parameter Λ is equivalent to the extent of
the wedge disclination, and we find that as it becomes more
extended, its strain energy is increasing parabolically. This
behaviour is similar to that of quarks (confinement). In ad-
dition, as shown in [10, see eqs. (16) and (20)], as Λ → bc,
the strain energy decreases and tends to 0, again in agreement
with the behaviour of quarks (asymptotic freedom).

5 Dislocation self-energy and QED self-energies

The dislocation self-energy is related to the dislocation self-
force. The dislocation self-force arises from the force on an
element in a dislocation caused by other segments of the same
dislocation line. This process provides an explanation for
the QED self-energies without the need to resort to the emis-
sion/absorption of virtual particles. It can be understood, and
is particular to, dislocation dynamics as dislocations are de-
fects that extend in the spacetime continuum [16, see p. 131].
Self-energy of a straight-dislocation segment of length L is
given by [16, see p. 161]:

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
×

× L
(
ln

L
b
− 1

) (24)

where there is no interaction between two elements of the
segment when they are within ±b, or equivalently

Wsel f =
µ̄0

4π

(
(b · ξ)2 +

µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2

)
L ln

L
eb

(25)

where e = 2.71828... . These equations provide analytic ex-
pressions for the non-perturbative calculation of quantum self
energies and interaction energies, and eliminate the need for
the virtual particle perturbative approach.
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In particular, the pure screw (photon) self-energy

WS
sel f =

µ̄0

4π
(b · ξ)2 L

(
ln

L
b
− 1

)
(26)

and the pure edge (boson) self-energy

WE
sel f =

µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
|(b × ξ)|2 L

(
ln

L
b
− 1

)
(27)

are obtained from (25), while (25) is also the appropriate
equation to use for the dual wave-particle “system”.

We can relate (27) to (12) and (18) by evaluating WE from
(12) using (13) and (15):

WE =
b2

4π

[
2κ̄0ᾱ

2
0 + µ̄0

(
ᾱ2

0 + 2β̄2
0

)]
` log

Λ

bc
. (28)

Substituting for κ̄0 from (4), for ᾱ0 from (14) and for β̄0 from
(16), the factor in square brackets in the above equation be-
comes

[] =
µ̄0

(2µ̄0 + λ̄0)2

(
4µ̄2

0 + 6µ̄0λ̄0 + 2λ̄2
0

)
(29)

which can be factored as

[] =
2µ̄0

(2µ̄0 + λ̄0)2
(2µ̄0 + λ̄0)(µ̄0 + λ̄0) . (30)

Substituting back into (28), we obtain

WE
sel f =

1
2

WE =
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0
b2 ` log

Λ

bc
. (31)

As noted in [17, see p. 178], the self-energy and the inter-
action energies are described by the same equations in the
non-singular theory, except that the self-energy is half of the
interaction energy. We thus see that the above result (28) is
essentially the same as (27) from Hirth [16, see p. 161] except
that the log factors are slightly different, but similar in intent
(log Λ/bc compared to log `/eb).

Dislocation self energies are thus found to be similar in
structure to Quantum Electrodynamics self energies. They
are also divergent if integrated over all of spacetime, with the
divergence being logarithmic in nature. However, contrary
to QED, dislocation self energies are bounded by the density
of dislocations present in the spacetime continuum, which re-
sults in an upperbound to the integral of half the average dis-
tance between dislocations.

For a dislocation loop, as each element dl of the dislo-
cation loop is acted upon by the forces caused by the stress
of the other elements of the dislocation loop, the work done
against these corresponds to the self-energy of the dislocation
loop. The self-energy of a dislocation loop can be calculated
from Eq. (4-44) of [16, see p. 110] to give

Wsel f =
µ̄0

8π

∮
C1=C

∮
C2=C

(b · dl1) (b · dl2)
R

+

+
µ̄0

4π
µ̄0 + λ̄0

2µ̄0 + λ̄0

∮
C1=C

∮
C2=C

(b × dl1) · T · (b × dl2)
R

(32)

where T is as defined in Eq. (4-44) of [16, see p. 110].

The photon self-energy also known as vacuum polariza-
tion is obtained from the strain energy density of screw dis-
locations. The longitudinal strain energy of the screw dis-
location WS

‖
= 0 as given by [10, eq. (6)] i.e. the photon is

massless. The photon self-energy is given by half the trans-
verse strain energy of the screw dislocation WS

⊥ given by [10,
eq. (7)]

WS
sel f =

1
2

WS
⊥ =

µ̄0

8π
b2 ` log

Λ

bc
(33)

which again includes the log Λ/bc factor. Comparing this ex-
pression with (26) and with (32), we find that (26) is likely
off by a factor of 2, being proportional to 1/8π as per Hirth’s
(32) and (33), not 1/4π as given in Hirth’s (24) and Hirth’s
(26).

6 Disclination self-energy and QED self-energies

From dislocation self-energies, we can calculate the photon
self-energy (also known as the vacuum polarization) and, in
the general case, the boson self-energy.

The fermion self-energies are calculated from the cor-
responding disclination self-energies, with the lepton self-
energy calculated from the interaction energy W`3

of the `3

twist disclination, the neutrino self-energy calculated from
the interaction energy W` of the ` twist disclination and the
quark self-energy calculated from the interaction energy WW

of the wedge disclination, using the result that self-energy is
half of the interaction energy as seen previously in Section 5.

6.1 The `3 twist disclination self-energy and lepton self-
energies

The lepton (electron) self-energy is calculated from the inter-
action energy W`3

of the `3 twist disclination by evaluating
W`3

from (19) using W`3

‖
and W`3

⊥ from (20):

W`3
=
κ̄0

6π
ᾱ2

0

(
Ω2

x + Ω2
y

)
`3 log

Λ

bc
+

+
µ̄0

2π
`3

3

[ (
Ω2

x + Ω2
y

) (
ᾱ2

0 + 1
2 β̄

2
0

)
+

+ 2 ΩxΩy

(
ᾱ2

0 − 2β̄2
0

) ]
log

Λ

bc
.

(34)

Substituting for κ̄0 from (4), for ᾱ0 from (14) and for β̄0 from
(16), (34) becomes

W`3
=
`3

6π
µ̄0

(2µ̄0 + λ̄0)2
×

×
[ (

Ω2
x + Ω2

y

) (
2µ̄2

0 + 2µ̄0λ̄0 + 1
2 λ̄

2
0

)
−

− 2 ΩxΩy

(
µ̄2

0 + 4µ̄0λ̄0 + 2λ̄2
0

) ]
log

Λ

bc

(35)
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which can be factored as

W`3
=

`3

12π
µ̄0

(2µ̄0 + λ̄0)2

{ (
Ω2

x + Ω2
y

) (
2µ̄0 + λ̄0

)2
−

− 4ΩxΩy

[(
µ̄0 + λ̄0

) (
µ̄0 + 2λ̄0

)
+ µ̄0λ̄0

] }
log

Λ

bc
.

(36)

The lepton self-energy is then given by

W`3

sel f =
1
2

W`3
=

µ̄0

24π

{ (
Ω2

x + Ω2
y

)
−

− 4 ΩxΩy

(
µ̄0 + λ̄0

) (
µ̄0 + 2λ̄0

)
+ µ̄0λ̄0

(2µ̄0 + λ̄0)2

}
`3 log

Λ

bc
,

(37)

where we have used the result that self-energy is half of the
interaction energy as seen previously in Section 5.

6.2 The ` twist disclination self-energy and the neutrino
self-energy

The neutrino self-energy is calculated from the strain energy
W` of the ` twist disclination. The longitudinal strain energy
of the ` twist disclination W`

‖
= 0 as given by [10, eq. 33)]

i.e. the neutrino is massless. In most cases Λ � bc, and the
strain energy W` of the ` twist disclination is given by the
transverse strain energy W` = W`

⊥ given by [10, eq. (35)]:

W` =
µ̄0

2π
`Λ2

[ (
Ω2

x + Ω2
y

) (
ᾱ2

0 log2 Λ + ᾱ0γ̄0 log Λ−

− 1
2 ᾱ0γ̄0

)
− 2 ΩxΩy

(
ᾱ0 β̄0 log Λ + 1

2 β̄0γ̄0

)]
.

(38)

Substituting for ᾱ0 from (14), for β̄0 from (16) and for γ̄0 from
(23), (38) becomes

W` =
µ̄0

2π
`Λ2

(2µ̄0 + λ̄0)2

{ (
Ω2

x + Ω2
y

) [
µ̄2

0 log2 Λ+

+ µ̄0λ̄0

(
log Λ − 1

2

) ]
−

− 2 ΩxΩy

[
µ̄0

(
µ̄0 + λ̄0

)
log Λ + 1

2 λ̄0

(
µ̄0 + λ̄0

)] }
.

(39)

The neutrino self-energy is then given by

W`
sel f =

1
2

W` =
µ̄0

4π
`Λ2

(2µ̄0 + λ̄0)2
×

×

{ (
Ω2

x + Ω2
y

) [
µ̄2

0 log2 Λ + µ̄0λ̄0

(
log Λ − 1

2

) ]
−

− 2 ΩxΩy

(
µ̄0 + λ̄0

) (
µ̄0 log Λ + 1

2 λ̄0

) }
(40)

where we have used the result that self-energy is half of the
interaction energy as seen previously in Section 5.

6.3 The wedge disclination self-energy and quark self-
energies

The quark self-energy is calculated from the interaction en-
ergy WW of the wedge disclination by evaluating WW from
(21) using WW

‖
and WW

⊥ from (22). In most cases Λ � bc,
and we have

WW '
κ̄0

2π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ+

+ ᾱ0γ̄0 log Λ + 1
4 (ᾱ2

0 + γ̄2
0)
]
+

+
µ̄0

4π
Ω2

z `Λ2
[
ᾱ2

0 log2 Λ−

−
(
ᾱ2

0 − 3ᾱ0β̄0

)
log Λ+

+ 1
2

(
ᾱ2

0 − 3ᾱ0β̄0 + 3
2 β̄

2
0

) ]
.

(41)

Substituting for κ̄0 from (4), for ᾱ0 from (14) for β̄0 from (16)
and for γ̄0 from (23), (41) becomes

WW '
Ω2

z

2π
`Λ2

(2µ̄0 + λ̄0)2

[
µ̄2

0

(
µ̄0 + λ̄0

)
log2 Λ+

+ µ̄0

(
µ̄2

0 + 2µ̄0λ̄0 + λ̄2
0

)
log Λ+

+ 1
4 λ̄0

(
µ̄2

0 + 2µ̄0λ̄0 + λ̄2
0

) ]
(42)

which can be factored as

WW '
Ω2

z

2π
`Λ2

(2µ̄0 + λ̄0)2

[
µ̄2

0

(
µ̄0 + λ̄0

)
log2 Λ+

+
(
µ̄0 + λ̄0

)2 (
µ̄0 log Λ + 1

4 λ̄0

) ]
.

(43)

The quark self-energy is then given by

WW
sel f =

1
2

WW '
Ω2

z

4π
(µ̄0 + λ̄0)2

(2µ̄0 + λ̄0)2
`Λ2 ×

×

 µ̄2
0

µ̄0 + λ̄0
log2 Λ + µ̄0 log Λ + 1

4 λ̄0

 (44)

where we have used the result that self-energy is half of the
interaction energy as seen previously in Section 5.

7 Discussion and conclusion

In this paper, we have considered how the Elastodynamics
of the Spacetime Continuum (STCED) explains the Quantum
Electrodynamics (QED) phenomena of self-energy, vacuum
polarization and mass renormalization. We have noted that
QED only deals with the wave aspect of wave-particle ob-
jects, and hence QED only deals with the distortion trans-
verse strain energy WE

⊥ , while the dilatation massive longitu-
dinal strain energy term WE

‖
is not considered. Hence there
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is no possibility of properly deriving the mass, as QED uses
an incomplete description of particle energies at the quantum
level.

Comparison of mass renormalization with STCED strain
energy shows that the interaction of the particle with the me-
dium or the field, δm, is the transverse strain energy present
in the spacetime continuum (or vacuum), essentially a field
energy. We provide the strain energy equivalence for QED
mass renormalization for bosons, leptons and quarks.

Both the bare mass (i.e. the massive longitudinal strain
energy) and the field correction (i.e. the transverse strain en-
ergy) are finite in this approach and there is no need for the
subtraction of infinities as both terms are well-behaved. Con-
trary to QED, the strain energies are bounded by the density
of defects present in the spacetime continuum, which results
in an upperbound to the integral of half the average distance
between defects. Hence including the longitudinal dilatation
mass density term as derived in STCED along with the trans-
verse distortion energy density term in the strain energy den-
sity provides the expression for the mass m and eliminates the
need for mass renormalization as the theory is developed with
the correct mass term. We have also derived the self-energy
expressions for bosons including photons, leptons including
neutrinos, and quarks.

It is important to note that

1. The expressions derived are for stationary (time inde-
pendent) defects.

2. The case of time-dependent screw and edge disloca-
tions moving with velocity v is covered in §16.1.2 and
§16.2.2 of [11] respectively. The calculations involve
integrals of the form∫

y

1
αy

arctan
(

x − vt
αy

)
dy =

−
i
2

[
Li2

(
−i

x − vt
αy

)
− Li2

(
i

x − vt
αy

)] (45)

where

α =

√
1 −

v2

c2 (46)

and where Lin(x) is the polylogarithm function which
arises in Feynman diagram integrals. For n = 2 and
n = 3, we have the dilogarithm and the trilogarithm
special cases respectively. This is a further indication
that the interaction of strain energies are the physical
source of quantum interaction phenomena described by
Feynman diagrams as discussed in section 4.

The results obtained are found to provide a physical explana-
tion of QED phenomena in terms of the interaction resulting
from the overlap of defect strain energies in the spacetime
continuum in STCED.
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