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We investigate some subtle points of the Majorana(-like) theories. We show explicitly
the incompatibility of the Majorana Anzatz with the Dirac-like field operator in the
original Majorana theory in various spin bases.

1 Introduction.

Majorana proposed his theory of neutral particles [1], in fact,
on the basis of the Dirac equation [2]. However, the quantum
field theory has not yet been completed in 1937. The Dirac
equation [2–4] is well known to describe the charged particles
of the spin 1/2.

Usually, everybody uses the following definition of the
field operator [5]:

Ψ(x) =
1

(2π)3

∑
h

∫
d3p
2Ep

[
uh(p)ah(p)e−ip·x

+vh(p)b†h(p)e+ip·x
]
,

(1)

as given ab initio. After actions of the Dirac operator at
exp(∓ipµxµ) the 4-spinors (u− and v−) satisfy the momentum-
space equations: (p̂ − m)uh(p) = 0 and ( p̂ + m)vh(p) = 0,
respectively; the h is the polarization index; p̂ = pαγα. It is
easy to prove from the characteristic equations Det( p̂ ∓ m) =

(p2
0−p2−m2)2 = 0 that the solutions should satisfy the energy-

momentum relation p0 = ±Ep = ±
√

p2 + m2 with both signs
of p0.

However, the general method of construction of the field
operator has been given in the Bogoliubov and Shirkov
book [6]. In the case of the (1/2, 0) ⊕ (0, 1/2) representation
we have:

Ψ(x) =
1

(2π)3

∫
d4 pδ(p2 − m2)e−ip·xΨ(p) =

√
m

(2π)3

∑
h=±1/2

∫
d3p
2Ep

θ(p0)
[
uh(p)ah(p)|p0=Ep e−i(Ept−p·x)

+uh(−p)ah(−p)|p0=Ep e+i(Ept−p·x)
]
.

(2)

θ(p0) is the Heaviside function(al). During these calculations
we did not yet assume, which equation did this field operator
(namely, the u− spinor) satisfy (apart from the Klein-Gordon
equation), with negative- or positive- mass. The explicit in-
troduction of the factor

√
m is caused by the following con-

sideration. The 4-spinor normalization is known [4] to be able

being chosen to the unit:

ū(µ)(p)u(λ)(p) = +δµλ , (3)
ū(µ)(p)u(λ)(−p) = 0 , (4)
v̄(µ)(p)v(λ)(p) = −δµλ , (5)
v̄(µ)(p)u(λ)(p) = 0 , (6)

where µ and λ are the polarization indices. The action should
be dimensionless in c = ~ = 1. Thus, the Lagrangian density
has the dimension [energy]4, and the 4-spinor field, the di-
mension [energy]3/2. From (3-6) we see that the momentum-
space 4-spinors should be dimensionless in this formulation.
The creation/ahhihilation operators should have the dimen-
sion [energy]−1 if we want to keep the standard (anti) com-
mutation relations (20-24). Therefore, a factor with the di-
mension [energy]1/2 can be introduced explicitly in (2) for
the sake of conveniency instead of that in the normalizations
or in the anticommutation relations [5].

The creation/annihilation quantum-field operators are de-
fined by their actions on the quantum-field states in the repre-
sentation of the occupation numbers:

a†h(Ep,p)|n >= |n + 1; p, h >,
ah(Ep,p)|n >= |n − 1; p, h >, (7)

ah(Ep,p)|0 >= 0 . (8)

Their explicit forms and excellent discussion can be found
in [7]. However, the action of ah(−p) ≡ ah(−Ep,−p) on
the quantum-field vacuum is different (according, in fact, to
the consideration below). Namely, the QFT vacuum contains
all negative-energy states according to the Dirac interpreta-
tion. So when acting ah(−Ep,−p) on the vacuum this opera-
tor changes it (destroys a “hole”). The result is not zero, as
opposed to the action of ah(+Ep,p) on vacuum.∗

In general we should transform uh(−p) to the v(p) in or-
der to follow the original Dirac idea, where antiparticles were
treated as particles with negative energy. The procedure is the
following one [8, 9]. In the Dirac case we should assume the

∗The similar situation is encountered in quantum mechanics of harmonic
oscillator, where the creation operator can be obtained after application of
reflection operators to the annihilation operator, and vice versa. This is not
surprising because quantum field theory has the oscillator representation too.
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following relation in the field operator:∑
h

vh(p)b†h(p) =
∑

h

uh(−p)ah(−p) . (9)

We need Λµλ(p) = v̄µ(Ep,p)uλ(−Ep,−p). By direct calcula-
tions, we find

−b†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (10)

where Λµλ = −i(σ · n)µλ, n ≡ p̂ = p/|p|, and

b†µ(p) = +i
∑
λ

(σ · n)µλaλ(−p) . (11)

Multiplying (9) by ūµ(−Ep,−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb†λ(p) . (12)

The equations are self-consistent.
Next, we can introduce the helicity operator of

the (1/2, 0) ⊕ (0, 1/2) representation:

ĥ =

(
ĥ 02×2

02×2 ĥ

)
. (13)

where

ĥ =
1
2
σ · p̂ =

1
2

(
cos θ sin θe−iφ

sin θe+iφ − cos θ

)
, (14)

which commutes with the Dirac Hamiltonian, thus develop-
ing the theory in the helicity basis. We can start from the
Klein-Gordon equation, generalized for describing the spin-
1/2 particles (i. e., two degrees of freedom), Ref. [3]; again
c = ~ = 1. If the 2-spinors are defined as in [10, 11] then we
can construct the corresponding u− and v− 4-spinors in the
helicity basis.

u↑ = N+
↑

(
φ↑

E−p
m φ↑

)
=

1
√

2


√

E+p
m φ↑√
m

E+pφ↑

 , (15)

u↓ = N+
↓

(
φ↓

E+p
m φ↓

)
=

1
√

2


√

m
E+pφ↓√
E+p

m φ↓

 , (16)

v↑ = N−↑

(
φ↑

−
E−p

m φ↑

)
=

1
√

2


√

E+p
m φ↑

−
√

m
E+pφ↑

 , (17)

v↓ = N−↓

(
φ↓

−
E+p

m φ↓

)
=

1
√

2


√

m
E+pφ↓

−

√
E+p

m φ↓

 , (18)

where the normalization to the unit was again used. Please
note that as in Ref. [14] the γ−matrices are the same as in the
spinorial basis:

γ0 =

(
02×2 12×2
12×2 02×2

)
, γi =

(
02×2 −σi

σi 02×2

)
. (19)

Thus, in the helicity basis we also have vh(p) = γ5uh(p) as
usual. Next, both u− and v− spinors above are the eigen-
spinors of the helicity operator [14] because the 2-spinors φh

are the eigenspinors of ĥ.∗

We again define the field operator as in (2) except for the
polarization index h, which now answers for the helicity (not
for the third projection of the spin, see [14]). The commuta-
tion relations are assumed to be the standard ones [5,6,12,13],
except for adjusting the dimensional factor(see the discussion
above): [

aµ(p), a†λ(k)
]
+

= 2Epδ
(3)(p − k)δµλ , (20)[

aµ(p), aλ(k)
]
+

= 0 =
[
a†µ(p), a†λ(k)

]
+
, (21)[

aµ(p), b†λ(k)
]
+

= 0 =
[
bµ(p), a†λ(k)

]
+
, (22)[

bµ(p), b†λ(k)
]
+

= 2Epδ
(3)(p − k)δµλ , (23)[

bµ(p), bλ(k)
]
+

= 0 =
[
b†µ(p), b†λ(k)

]
+
. (24)

However, the attempt is now failed to obtain the previous re-
sult (11) for Λµλ(p). In this helicity case

v̄µ(p)uλ(−p) = iσyµλ . (25)

Please remember that the changes of the spin bases are per-
formed by the rotation in the spin-parity space.

2 Analysis of the Majorana Anzatz

It is well known that “particle=antiparticle” in the Majorana
theory. So, in the language of the quantum field theory we
should have

bµ(Ep,p) = eiϕaµ(Ep,p) . (26)

Usually, different authors use ϕ = 0,±π/2 depending on the
metrics and on the forms of the 4-spinors and commutation
relations. It is related to the Kayser phase factor.

So, on using (11) and the above-mentioned postulate we
come to:

a†µ(p) = +ieiϕ(σ · n)µλaλ(−p) . (27)

On the other hand, on using (12) we make the substitutions
Ep → −Ep, p→ −p to obtain

aµ(p) = +i(σ · n)µλb†λ(−p) . (28)

The totally reflected (26) is bµ(−Ep,−p) = eiϕaµ(−Ep,−p).
Thus,

b†µ(−p) = e−iϕa†µ(−p) . (29)

Combining with (28), we come to

aµ(p) = +ie−iϕ(σ · n)µλa†λ(−p) , (30)

∗However, when discussing the spin properties of u(−p) and v(−p)
in the helicity basis one should clarify the notational issues. Due to
φ↑↓(−p) = −iφ↓↑(p), u↑↓(−Ep,−p) = ±v↓↑(Ep,p) we have ĥu↑↓(−Ep,−p) =

− 1
2 v↓↑(Ep,p), and similarly for v(−p) 4-spinors. However, the equation (25)

below is valid within the used notation.
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and
a†µ(p) = −ieiϕ(σ∗ · n)µλaλ(−p) . (31)

This contradicts with the equation (27) unless we have the
preferred axis in every inertial system.

Next, we can use another Majorana anzatz Ψ = ±eiαΨc

with usual definitions

C =

(
0 iΘ
−iΘ 0

)
K , Θ =

(
0 −1
1 0

)
= −iσy . (32)

Thus, on using Cu∗
↑
(p) = iv↓(p), Cu∗

↓
(p) = −iv↑(p) we come

to other relations between creation/annihilation operators

a†
↑
(p) = ∓ie−iαb†

↓
(p) , (33)

a†
↓
(p) = ±ie−iαb†

↑
(p) , (34)

which may be used instead of (26). Due to the possible signs
± the number of the corresponding states is the same as in the
Dirac case that permits us to have the complete system of the
Fock states over the (1/2, 0)⊕ (0, 1/2) representation space in
the mathematical sense.∗ However, in this case we deal with
the self/anti-self charge conjugate quantum field operator in-
stead of the self/anti-self charge conjugate quantum states.
Please remember that it is the latter that answers for neutral
particles; the quantum field operator contains the information
about more than one state, which may be either electrically
neutral or charged.

As a discussion we observe that the origins and the con-
sequences of the contradiction between (27) and (31) may
be the following. In general, the QFT space reflection are
performed by the unitary transformations in the Fock space.
The time reflection is performed by the anti-unitary trans-
formation. However, after writing the present paper I learnt
from [15] about arguments of unitary time reversal on the first
quantization level. What would be the influence of this propo-
sition on the second quantization scheme and on the Majorana
Anzatz should be the subject of future publications.

3 Conclusions

We conclude that something is missed in the foundations of
the original Majorana theory and/or the Dirac “hole” theory.
At the moment the above consideration points to the rota-
tional symmetry breaking after application of the Majorana
Anzatz in the (1/2, 0) ⊕ (0, 1/2) representation, for higher
spins as well [16].
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∗Please note that the phase factors may have physical significance in
quantum field theories as opposed to the textbook nonrelativistic quantum
mechanics, as was discussed recently by several authors.
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